Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/51943
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: In-situ X-ray absorption study of Iron(II) speciation in brines up to supercritical conditions
Author: Testemale, D.
Brugger, J.
Liu, W.
Etschmann, B.
Hazemann, J.
Citation: Chemical Geology, 2009; 264(1-4):295-310
Publisher: Elsevier Science BV
Issue Date: 2009
ISSN: 0009-2541
1872-6836
Statement of
Responsibility: 
Denis Testemale, Joël Brugger, Barbara Etschmann, Jean-Louis Hazemann
Abstract: X-ray absorption spectroscopy (XAS) measurements were used to determine the coordination structure and to derive the speciation of aqueous ferrous chloride complexes in acidic chloride brines over a wide range of conditions (25-450 °C, 500 bar, 0.5-12 m chloride molality), covering the range from sedimentary brines to magmatic hydrothermal fluids. EXAFS analysis coupled with ab initio free potential XANES calculations confirmed the octahedral geometry of the different Fe chlorocomplexes at low temperature (< 200 °C) and low (< 1 m) chloride concentration ([FeClx(H2O)6 - x]2 - x, x = 0-2), and attest the stability of a high-order tetrahedral Fe(II)-chloride complex at high-temperature (> 300 °C) and high (> 2 m) chloride molality ([FeCly]2 - y; y = 4 or y = 3; Fe-Cl distance = 2.31 ± 0.01 Å). These spectroscopic results contrast with the interpretation of most recent high-temperature studies of Fe(II) speciation in brines, which assumed that [FeCl2]0 is the predominant species in brines at high temperature. A reinterpretation of the experimental Fe solubilities measured by Fein et al. [Fein, J.B., Hemley, J.J., D'Angelo, W.M., Komninou, A., Sverjensky, D.A., 1992. Experimental study of iron-chloride complexing in hydrothermal fluids. Geochim. Cosmochim. Acta 56, 3179-3190.] for the magnetite-pyrite-pyrrhotite-quartz-muscovite-K-feldspar assemblage in KCl solutions at 300 °C/500 bar and 400 °C/500 bar shows that these solubility data can be explained using the high-order [FeCl4]2- complex. This study illustrates the complementarity between solubility and spectroscopic studies, and provides further evidence of the importance of high-order chlorocomplexes for the transport of transition metals (e.g., Zn, Ni) in high-temperature and/or supercritical fluids. © 2009 Elsevier B.V.
Keywords: X-ray absorption spectroscopy
Iron-chloride complexes
Thermodynamic properties
XANES
Hydrothermal conditions
DOI: 10.1016/j.chemgeo.2009.03.014
Grant ID: http://purl.org/au-research/grants/arc/DP0208323
http://purl.org/au-research/grants/arc/DP0878903
http://purl.org/au-research/grants/arc/DP0878903
http://purl.org/au-research/grants/arc/DP0208323
Published version: http://dx.doi.org/10.1016/j.chemgeo.2009.03.014
Appears in Collections:Aurora harvest
Earth and Environmental Sciences publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.