Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/137138
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Cell wall organic matrix composition and biomineralization across reef-building coralline algae under global change
Author: Bergstrom, E.
Lahnstein, J.
Collins, H.
Page, T.M.
Bulone, V.
Diaz-Pulido, G.
Citation: Journal of Phycology: an international journal of algal research, 2023; 59(1):111-125
Publisher: Wiley
Issue Date: 2023
ISSN: 0022-3646
1529-8817
Statement of
Responsibility: 
Ellie Bergstrom, Jelle Lahnstein, Helen Collins, Tessa M. Page, Vincent Bulone, and Guillermo Diaz-Pulido
Abstract: Crustose coralline algae (CCA) are one of the most important benthic substrate consolidators on coral reefs through their ability to deposit calcium carbonate on an organic matrix in their cell walls. Discrete polysaccharides have been recognized for their role in biomineralization, yet little is known about the carbohydrate composition of organic matrices across CCA taxa and whether they have the capacity to modulate their organic matrix constituents amidst environmental change, particularly the threats of ocean acidification (OA) and warming. We simulated elevated pCO₂ and temperature (IPCC RCP 8.5) and subjected four mid-shelf Great Barrier Reef species of CCA to two months of experimentation. To assess the variability in surficial monosaccharide composition and biomineralization across species and treatments, we determined the monosaccharide composition of the polysaccharides present in the cell walls of surficial algal tissue and quantified calcification. Our results revealed dissimilarity among species' monosaccharide constituents, which suggests that organic matrices are composed of different polysaccharides across CCA taxa. We also found that species differentially modulate composition in response to ocean acidification and warming. Our findings suggest that both variability in composition and ability to modulate monosaccharide abundance may play a crucial role in surficial biomineralization dynamics under the stress of OA and global warming.
Keywords: biomineralization
calcification
coral reefs
crustose coralline algae
global warming
monosaccharides
ocean acidification
organic matrix
Description: First published: 27 October 2022
Rights: © 2022 The Authors. Journal of Phycology published by Wiley Periodicals LLC on behalf of Phycological Society of America. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
DOI: 10.1111/jpy.13290
Grant ID: http://purl.org/au-research/grants/arc/DP160103071
Published version: http://dx.doi.org/10.1111/jpy.13290
Appears in Collections:Agriculture, Food and Wine publications

Files in This Item:
File Description SizeFormat 
hdl_137138.pdfPublished version1.69 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.