Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/41933
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Investigation of a combustion driven oscillation in a refinery flare - Part B: Visualisation of a periodic flow instability in a bifurcating duct following a contraction
Author: Riese, M.
Kelso, R.
Nathan, G.
Mullinger, P.
Citation: Experimental Thermal and Fluid Science, 2007; 31(8):1091-1101
Publisher: Elsevier Science Inc
Issue Date: 2007
ISSN: 0894-1777
1879-2286
Statement of
Responsibility: 
M. Riese, R.M. Kelso, G.J. Nathan and P.J. Mullinger
Abstract: A flow visualisation study was performed to investigate a periodic flow instability in a bifurcating duct within the tip of the flares at the Shell refinery in Clyde, NSW, to verify the trigger of a combustion-driven oscillation proposed in Part A of this study, and to identify its features. The model study assessed only the flow instability, uncoupled from the acoustic resonance and the combustion that are also present in the actual flare. Three strong, coupled flow oscillations were found to be present in three regions of the fuel line in the flare tip model. A periodic flow separation was found to occur within the contraction at the inlet to the tip, a coupled, periodic flow oscillation was found in the two transverse “cross-over ducts” from the central pipe to the outer annulus and an oscillating flow recirculation was present in the “end-cap” region of the central pipe. The dimensionless frequency of these oscillations in the model was found to match that measured in the full-scale plant for high fuel flow rates. This, and the strength of these flow oscillations, gives confidence that they are integral to the full-scale combustion-driven oscillation and most likely the primary trigger. The evidence indicates that the periodic flow instability is initiated by the separation and roll-up of the annular boundary layer at the start of the contraction in the fuel section of the flare tip. The separation generates an annular vortex which interacts with the blind-ended pipe downstream, leading to a pressure wave which propagates back upstream, initiating the next separation event and repeating the cycle. The study also investigated flow control devices with a view to finding a practical approach to mitigate the oscillations. The shape of these devices was constrained to allow installation without removing the tip of the flare. This aspect of the study highlighted the strength and nature of the coupled oscillation, since it proved to be very difficult to mitigate the oscillation in this way. An effective configuration is presented, comprising of three individual components, all three of which were found to be necessary to eliminate the oscillation completely.
Keywords: Bifurcating duct
Coupled flow instability
Contraction
Flow visualisation
Physical modelling
Description: Copyright © 2006 Elsevier Inc. All rights reserved.
DOI: 10.1016/j.expthermflusci.2006.11.003
Description (link): http://www.elsevier.com/wps/find/journaldescription.cws_home/505737/description#description
Published version: http://dx.doi.org/10.1016/j.expthermflusci.2006.11.003
Appears in Collections:Aurora harvest 6
Environment Institute Leaders publications
Mechanical Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.