Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/140474
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Constraints on the Cosmic Expansion History from GWTC–3
Author: Abbott, R.
Abe, H.
Acernese, F.
Ackley, K.
Adhikari, N.
Adhikari, R.X.
Adkins, V.K.
Adya, V.B.
Affeldt, C.
Agarwal, D.
Agathos, M.
Agatsuma, K.
Aggarwal, N.
Aguiar, O.D.
Aiello, L.
Ain, A.
Ajith, P.
Akutsu, T.
Albanesi, S.
Alfaidi, R.A.
et al.
Citation: The Astrophysical Journal: an international review of astronomy and astronomical physics, 2023; 949(76):1-37
Publisher: American Astronomical Society
Issue Date: 2023
ISSN: 0004-637X
1538-4357
Statement of
Responsibility: 
The LIGO Scientific Collaboration, and the Virgo Collaboration, and the KAGRA Collaboration
Abstract: We use 47 gravitational wave sources from the Third LIGO–Virgo–Kamioka Gravitational Wave Detector Gravitational Wave Transient Catalog (GWTC–3) to estimate the Hubble parameter H(z), including its current value, the Hubble constant H0. Each gravitational wave (GW) signal provides the luminosity distance to the source, and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H(z). The source mass distribution displays a peak around 34 Me, followed by a drop-off. Assuming this mass scale does not evolve with the redshift results in a H(z) measurement, yielding = - H + - - 0 68 km s Mpc 8 12 1 1 (68% credible interval) when combined with the H0 measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the H0 estimate from GWTC–1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event’s potential hosts. Assuming a fixed BBH population, we estimate a value of = - H + - - 0 68 km s Mpc 6 8 1 1 with the galaxy catalog method, an improvement of 42% with respect to our GWTC–1 result and 20% with respect to recent H0 studies using GWTC–2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about H0) is the well-localized event GW190814.
Keywords: Gravitational waves; Gravitational wave astronomy; Gravitational wave sources
Rights: © 2023. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
DOI: 10.3847/1538-4357/ac74bb
Grant ID: ARC
Published version: http://dx.doi.org/10.3847/1538-4357/ac74bb
Appears in Collections:Physics publications

Files in This Item:
File Description SizeFormat 
hdl_140474.pdfPublished version5.22 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.