Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/137705
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Individuality and stability of the koala (Phascolarctos cinereus) faecal microbiota through time
Author: Eisenhofer Philipona, R.
Brice, K.L.
Blyton, M.D.
Bevins, S.E.
Leigh, K.
Singh, B.K.
Helgen, K.M.
Hough, I.
Daniels, C.B.
Speight, N.
Moore, B.D.
Citation: PeerJ, 2023; 11:e14598-1-e14598-21
Publisher: PeerJ
Issue Date: 2023
ISSN: 2167-8359
2167-8359
Statement of
Responsibility: 
Raphael Eisenhofer, Kylie L. Brice, Michaela DJ Blyton, Scott E. Bevins, Kellie Leigh, Brajesh K. Singh, Kristofer M. Helgen, Ian Hough, Christopher B. Daniels, Natasha Speight and Ben D. Moore
Abstract: Gut microbiota studies often rely on a single sample taken per individual, representing a snapshot in time. However, we know that gut microbiota composition in many animals exhibits intra-individual variation over the course of days to months. Such temporal variations can be a confounding factor in studies seeking to compare the gut microbiota of different wild populations, or to assess the impact of medical/veterinary interventions. To date, little is known about the variability of the koala (Phascolarctos cinereus) gut microbiota through time. Here, we characterise the gut microbiota from faecal samples collected at eight timepoints over a month for a captive population of South Australian koalas (n individuals = 7), and monthly over 7 months for a wild population of New South Wales koalas (n individuals = 5). Using 16S rRNA gene sequencing, we found that microbial diversity was stable over the course of days to months. Each koala had a distinct faecal microbiota composition which in the captive koalas was stable across days. The wild koalas showed more variation across months, although each individual still maintained a distinct microbial composition. Per koala, an average of 57 (±16) amplicon sequence variants (ASVs) were detected across all time points; these ASVs accounted for an average of 97% (±1.9%) of the faecal microbial community per koala. The koala faecal microbiota exhibits stability over the course of days to months. Such knowledge will be useful for future studies comparing koala populations and developing microbiota interventions for this regionally endangered marsupial.
Keywords: Time series
Longitudinal
16S rRNA
Marsupial
Eucalyptus
Core microbiota
Arboreal folivore
Caecum fermenter
Koala
Australia
Rights: © 2023 Eisenhofer et al. Distributed under Creative Commons CC-BY 4.0
DOI: 10.7717/peerj.14598
Grant ID: http://purl.org/au-research/grants/arc/CE170100015
Published version: http://dx.doi.org/10.7717/peerj.14598
Appears in Collections:Animal and Veterinary Sciences publications
Australian Centre for Ancient DNA publications

Files in This Item:
File Description SizeFormat 
hdl_137705.pdfPublished version11.72 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.