Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/134982
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Hhex Directly Represses BIM-Dependent Apoptosis to Promote NK Cell Development and Maintenance
Author: Goh, W.
Scheer, S.
Jackson, J.T.
Hediyeh-Zadeh, S.
Delconte, R.B.
Schuster, I.S.
Andoniou, C.E.
Rautela, J.
Degli-Esposti, M.A.
Davis, M.J.
McCormack, M.P.
Nutt, S.L.
Huntington, N.D.
Citation: Cell Reports, 2020; 33(3):108285-1-108285-20
Publisher: Elsevier
Issue Date: 2020
ISSN: 2211-1247
2211-1247
Statement of
Responsibility: 
Wilford Goh, Sebastian Scheer, Jacob T. Jackson, Soroor Hediyeh-Zadeh, Rebecca B. Delconte, Iona S. Schuster, Christopher E. Andoniou, Jai Rautela, Mariapia A. Degli-Esposti, Melissa J. Davis, Matthew P. McCormack, Stephen L. Nutt, and Nicholas D. Huntington
Abstract: Hhex encodes a homeobox transcriptional regulator important for embryonic development and hematopoiesis. Hhex is highly expressed in NK cells, and its germline deletion results in significant defects in lymphoid development, including NK cells. To determine if Hhex is intrinsically required throughout NK cell development or for NK cell function, we generate mice that specifically lack Hhex in NK cells. NK cell frequency is dramatically reduced, while NK cell differentiation, IL-15 responsiveness, and function at the cellular level remain largely normal in the absence of Hhex. Increased IL-15 availability fails to fully reverse NK lymphopenia following conditional Hhex deletion, suggesting that Hhex regulates developmental pathways extrinsic to those dependent on IL-15. Gene expression and functional genetic approaches reveal that Hhex regulates NK cell survival by directly binding Bcl2l11 (Bim) and repressing expression of this key apoptotic mediator. These data implicate Hhex as a transcriptional regulator of NK cell homeostasis and immunity.
Keywords: NK cells; proliferation; survival; apoptosis; BIM; transcriptional regulation
Rights: © 2020 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
DOI: 10.1016/j.celrep.2020.108285
Grant ID: http://purl.org/au-research/grants/nhmrc/GNT1124784
http://purl.org/au-research/grants/nhmrc/GNT1066770
http://purl.org/au-research/grants/nhmrc/GNT1057852
http://purl.org/au-research/grants/nhmrc/GNT1124907
http://purl.org/au-research/grants/nhmrc/GNT1057812
http://purl.org/au-research/grants/nhmrc/GNT1049407
http://purl.org/au-research/grants/nhmrc/GNT1027472
http://purl.org/au-research/grants/nhmrc/GNT1184615
http://purl.org/au-research/grants/nhmrc/GNT1195296
http://purl.org/au-research/grants/nhmrc/GNT1155342
http://purl.org/au-research/grants/nhmrc/GNT1119298
Published version: http://dx.doi.org/10.1016/j.celrep.2020.108285
Appears in Collections:Molecular and Biomedical Science publications

Files in This Item:
File Description SizeFormat 
hdl_134982.pdf3.01 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.