Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/127225
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Calcifiers can adjust shell building at the nanoscale to resist ocean acidification
Author: Leung, J.Y.S.
Chen, Y.
Nagelkerken, I.
Zhang, S.
Xie, Z.
Connell, S.D.
Citation: Small, 2020; 16(37):2003186-1-2003186-8
Publisher: Wiley-VCH GmbH
Issue Date: 2020
ISSN: 1613-6810
1613-6829
Statement of
Responsibility: 
Jonathan Y. S. Leung, Yujie Chen, Ivan Nagelkerken, Sam Zhang, Zonghan Xie and Sean D. Connell
Abstract: Ocean acidification is considered detrimental to marine calcifiers based on laboratory studies showing that increased seawater acidity weakens their ability to build calcareous shells needed for growth and protection. In the natural environment, however, the effects of ocean acidification are subject to ecological and evolutionary processes that may allow calcifiers to buffer or reverse these short-term negative effects through adaptive mechanisms. Using marine snails inhabiting a naturally CO2 -enriched environment over multiple generations, it is discovered herein that they build more durable shells (i.e., mechanically more resilient) by adjusting the building blocks of their shells (i.e., calcium carbonate crystals), such as atomic rearrangement to reduce nanotwin thickness and increased incorporation of organic matter. However, these adaptive adjustments to future levels of ocean acidification (year 2100) are eroded at extreme CO2 concentrations, leading to construction of more fragile shells. The discovery of adaptive mechanisms of shell building at the nanoscale provides a new perspective on why some calcifiers may thrive and others collapse in acidifying oceans, and highlights the inherent adaptability that some species possess in adjusting to human-caused environmental change.
Keywords: adaptation
biomineralization
calcifying organisms
nanostructures
ocean acidification
Description: Published online: August 9, 2020
Rights: © 2020 Wiley-VCH GmbH.
DOI: 10.1002/smll.202003186
Grant ID: http://purl.org/au-research/grants/arc/FT120100183
http://purl.org/au-research/grants/arc/FT0991953
http://purl.org/au-research/grants/arc/DP160104632
Published version: http://dx.doi.org/10.1002/smll.202003186
Appears in Collections:Aurora harvest 8
Environment Institute publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.