Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/121050
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Robust and tunable hybrid hydrogels from photo-cross-linked soy protein isolate and regenerated silk fibroin
Author: Dorishetty, P.
Balu, R.
Sreekumar, A.
De Campo, L.
Mata, J.P.
Choudhury, N.R.
Dutta, N.K.
Citation: ACS Sustainable Chemistry and Engineering, 2019; 7(10):9257-9271
Publisher: American Chemical Society
Issue Date: 2019
ISSN: 2168-0485
2168-0485
Statement of
Responsibility: 
Pramod Dorishetty, Rajkamal Balu, Anjitha Sreekumar, Liliana de Campo, Jitendra P. Mata, Namita Roy Choudhury and Naba K. Dutta
Abstract: Soy protein isolate (SPI), a plant derived protein, is emerging as a potential material for biomedical applications because of its abundance in nature, ease of isolation and processing, tailorable biodegradability, low cost, and low immunogenicity. Herein we report the development and structure–property relationship of photo-cross-linked SPI and SPI/silk fibroin (SF) hybrid hydrogels for the first time. The pristine SPI hydrogels were cross-linked at two different structural conformations (i.e., closed at pH 7 and open at pH 12), and SPI/SF hybrid hydrogels were co-cross-linked at pH 7 in three different weight ratios (3:1, 1:1, and 1:3). The fabricated hydrogels were characterized using electron microscopy, X-ray diffraction, Raman and infrared spectroscopy, thermal analysis, small- and ultrasmall-angle neutron scattering, rheology, water uptake, and in vitro degradation studies. The equilibrium water swollen SPI hydrogel cross-linked at pH 7 exhibited a specific microstructure, controlled degradation in phosphate-buffered saline, and a shear storage modulus of ∼7.7 kPa, which is in the range of human lumbar nucleus pulposus and significantly higher than soy hydrogels reported by thermal treatment, pressure treatment, salt-induced cold-setting, and enzymatic cross-linking. Conversely, the SPI hydrogel cross-linked at pH 12 exhibited ordered porous microstructure, higher water uptake of ∼1946%, poor water resistance, and low mechanical properties. Increase in SF content of the SPI/SF hybrid hydrogels demonstrated improved porosity, water swelling, molecular chain mobility, elastic, and water-resistant properties. An in-depth understanding of the effect of pH and composition on the hierarchical structure and physicochemical properties of the fabricated hydrogels was established. Moreover, the pristine SPI and SPI/SF hybrid inks used for hydrogel fabrication exhibited flow properties highly suitable for 3D-printing scaffolds for tissue engineering applications. The presented results contribute to a facile fabrication and fundamental understanding of the structure–property relationship of SPI-based hybrid hydrogels.
Keywords: Soy protein isolate; silk fibroin; photo-cross-linked hydrogels; structure-property relationship; hierarchical structure; physicochemical property
Rights: © 2019 American Chemical Society
DOI: 10.1021/acssuschemeng.9b00147
Grant ID: http://purl.org/au-research/grants/arc/DP160101267
Published version: http://dx.doi.org/10.1021/acssuschemeng.9b00147
Appears in Collections:Aurora harvest 4
Chemical Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.