Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Detailed spectral and morphological analysis of the shell type supernova remnant RCW 86
Author: H.E.S.S. Collaboration
Abramowski, A.
Aharonian, F.
Ait Benkhali, F.
Akhperjanian, A.
Angüner, E.
Backes, M.
Balzer, A.
Becherini, Y.
Becker Tjus, J.
Berge, D.
Bernhard, S.
Bernlöhr, K.
Birsin, E.
Blackwell, R.
Böttcher, M.
Boisson, C.
Bolmont, J.
Bordas, P.
Bregeon, J.
et al.
Citation: Astronomy and Astrophysics: a European journal, 2018; 612:A4-1-A4-7
Publisher: EDP Sciences
Issue Date: 2018
ISSN: 0004-6361
Statement of
A. Abramowski ... R. Blackwell ... P. deWilt ... J. Hawkes ... J. Lau ... G. Rowell ... F. Voisin ... et al. (H.E.S.S. Collaboration)
Abstract: Aim. We aim for an understanding of the morphological and spectral properties of the supernova remnant RCW 86 and for insights into the production mechanism leading to the RCW 86 very high-energy γ-ray emission. Methods. We analyzed High Energy Spectroscopic System (H.E.S.S.) data that had increased sensitivity compared to the observations presented in the RCW 86 H.E.S.S. discovery publication. Studies of the morphological correlation between the 0.5–1 keV X-ray band, the 2–5 keV X-ray band, radio, and γ-ray emissions have been performed as well as broadband modeling of the spectral energy distribution with two different emission models. Results. We present the first conclusive evidence that the TeV γ-ray emission region is shell-like based on our morphological studies. The comparison with 2–5 keV X-ray data reveals a correlation with the 0.4–50 TeV γ-ray emission. The spectrum of RCW 86 is best described by a power law with an exponential cutoff at Ecut = (3.5 ± 1.2stat) TeV and a spectral index of Γ ≈ 1.6 ± 0.2. A static leptonic one-zone model adequately describes the measured spectral energy distribution of RCW 86, with the resultant total kinetic energy of the electrons above 1 GeV being equivalent to ~0.1% of the initial kinetic energy of a Type Ia supernova explosion (1051 erg). When using a hadronic model, a magnetic field of B ≈ 100 μG is needed to represent the measured data. Although this is comparable to formerly published estimates, a standard E−2 spectrum for the proton distribution cannot describe the γ-ray data. Instead, a spectral index of Γp ≈ 1.7 would be required, which implies that ∼7 × 1049/ncm⁻³ has been transferred into high-energy protons with the effective density ncm⁻³ = n/1 cm⁻³. This is about 10% of the kinetic energy of a typical Type Ia supernova under the assumption of a density of 1 cm⁻³.
Keywords: Astroparticle physics; gamma rays: general; ISM: supernova remnants; cosmic rays
Rights: © ESO 2018. Article published by EDP Sciences
DOI: 10.1051/0004-6361/201526545
Grant ID: ARC
Appears in Collections:Aurora harvest 8
IPAS publications
Physics publications

Files in This Item:
File Description SizeFormat 
hdl_111897.pdfPublished version921.79 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.