Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/86296
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Coefficient of friction measured from nano- to macro-normal loads on plasma sprayed nanostructured cermet coatings
Author: Basak, A.
Celis, J.
Vardavoulias, M.
Matteazzi, P.
Citation: Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 2014; 45(2):1049-1056
Publisher: ASM International
Issue Date: 2014
ISSN: 1073-5623
1543-1940
Statement of
Responsibility: 
A. K. Basak, J.-P. Celis, M. Vardavoulias, and P. Matteazzi
Abstract: Alumina dispersed FeCuAl-based nanostructured cermet coatings were deposited from nanostructured powders by atmospheric plasma spraying on low carbon steel substrates. Nanostructuring was retained in the deposited coatings which exhibit up to four distinctive phases as revealed by electron microscopy. In this study, the friction behavior of the distinctive phases at nano-normal load scale was investigated alongside their contribution to the overall friction behavior at macro-normal load scale. Friction behavior at nano-normal load scale was investigated by lateral force microscopy, whereas conventional tribometers were used for investigations at micro and macro-normal loads. It appeared that, the friction measured at nano-normal loads on individual phases is dictated by both composition and hardness of the corresponding phases, and thus influences the overall friction behavior of the coatings at macro-normal loads. Moreover, the coefficient of friction at macro-normal loads differs from the one at nano-normal loads, and deviates from Amonton’s friction law.
Rights: © The Minerals, Metals & Materials Society and ASM International 2013
RMID: 0020136488
DOI: 10.1007/s11661-013-2033-z
Appears in Collections:Adelaide Microscopy publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.