Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/72886
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Failure strength of human vertebrae: prediction using bone mineral density measured by DXA and bone volume by micro-CT
Author: Perilli, E.
Briggs, A.
Kantor, S.
Codrington, J.
Wark, J.
Parkinson, I.
Fazzalari, N.
Citation: Bone, 2012; 50(6):1416-1425
Publisher: Elsevier Science Inc
Issue Date: 2012
ISSN: 8756-3282
1873-2763
Statement of
Responsibility: 
Egon Perilli, Andrew M. Briggs, Susan Kantor, John Codrington, John D. Wark, Ian H. Parkinson and Nicola L. Fazzalari
Abstract: Significant relationships exist between areal bone mineral density (BMD) derived from dual energy X-ray absorptiometry (DXA) and bone strength. However, the predictive validity of BMD for osteoporotic vertebral fractures remains suboptimal. The diagnostic sensitivity of DXA in the lumbar spine may be improved by assessing BMD from lateral-projection scans, as these might better approximate the objective of measuring the trabecular-rich bone in the vertebral body, compared to the commonly-used posterior-anterior (PA) projections. Nowadays, X-ray micro-computed tomography (μCT) allows non-destructive three-dimensional structural characterization of entire bone segments at high resolution. In this study, human lumbar cadaver spines were examined ex situ by DXA in lateral and PA projections, as well as by μCT, with the aims (1) to investigate the ability of bone quantity measurements obtained by DXA in the lateral projection and in the PA projection, to predict variations in bone quantity measurements obtained by μCT, and (2) to assess their respective capabilities to predict whole vertebral body strength, determined experimentally. Human cadaver spines were scanned by DXA in PA projections and lateral projections. Bone mineral content (BMC) and BMD for L2 and L3 vertebrae were determined. The L2 and L3 vertebrae were then dissected and entirely scanned by μCT. Total bone volume (BV(tot)=cortical+trabecular), trabecular bone volume (BV), and trabecular bone volume fraction (BV/TV) were calculated over the entire vertebrae. The vertebral bodies were then mechanically tested to failure in compression, to determine ultimate load. The variables BV(tot), BV, and BV/TV measured by μCT were better predicted by BMC and BMD measured by lateral-projection DXA, with higher R(2) values and smaller standard errors of the estimate (R(2)=0.65-0.90, SEE=11%-18%), compared to PA-projection DXA (R(2)=0.33-0.53, SEE=22%-34%). The best predictors of ultimate load were BV(tot) and BV assessed by μCT (R(2)=0.88 and R(2)=0.81, respectively), and BMC and BMD from lateral-projection DXA (R(2)=0.82 and R(2)=0.70, respectively). Conversely, BMC and BMD from PA-projection DXA were lower predictors of ultimate load (R(2)=0.49 and R(2)=0.37, respectively). This ex vivo study highlights greater capabilities of lateral-projection DXA to predict variations in vertebral body bone quantity as measured by μCT, and to predict vertebral strength as assessed experimentally, compared to PA-projection DXA. This provides basis for further exploring the clinical application of lateral-projection DXA analysis.
Keywords: Lumbar Vertebrae
Humans
Cadaver
Imaging, Three-Dimensional
Absorptiometry, Photon
Bone Density
Compressive Strength
Stress, Mechanical
Aged
Aged, 80 and over
Female
Male
X-Ray Microtomography
Biomechanical Phenomena
Rights: © 2012 Elsevier Inc. All rights reserved.
DOI: 10.1016/j.bone.2012.03.002
Grant ID: NHMRC
Published version: http://dx.doi.org/10.1016/j.bone.2012.03.002
Appears in Collections:Aurora harvest
Materials Research Group publications
Medical Sciences publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.