Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/60605
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: SCN1A duplications and deletions detected in Dravet syndrome: Implications for molecular diagnosis
Author: Marini, C.
Scheffer, I.
Nabbout, R.
Mei, D.
Cox, K.
Dibbens, L.
McMahon, J.
Iona, X.
Carpintero, R.
Elia, M.
Cilio, M.
Specchio, N.
Giordano, L.
Striano, P.
Genarro, E.
Cross, J.
Kivity, S.
Neufeld, M.
Afawi, Z.
Andermann, E.
et al.
Citation: Epilepsia, 2009; 50(7):1670-1678
Publisher: Blackwell Publishing Inc
Issue Date: 2009
ISSN: 0013-9580
1528-1167
Statement of
Responsibility: 
Carla Marini... Leanne M. Dibbens... John C. Mulley... et al.
Abstract: Objective:  We aimed to determine the type, frequency, and size of microchromosomal copy number variations (CNVs) affecting the neuronal sodium channel α 1 subunit gene (SCN1A) in Dravet syndrome (DS), other epileptic encephalopathies, and generalized epilepsy with febrile seizures plus (GEFS+). Methods:  Multiplex ligation-dependent probe amplification (MLPA) was applied to detect SCN1A CNVs among 289 cases (126 DS, 97 GEFS+, and 66 with other phenotypes). CNVs extending beyond SCN1A were further characterized by comparative genome hybridization (array CGH). Results:  Novel SCN1A CNVs were found in 12.5% of DS patients where sequence-based mutations had been excluded. We identified the first partial SCN1A duplications in two siblings with typical DS and in a patient with early-onset symptomatic generalized epilepsy. In addition, a patient with DS had a partial SCN1A amplification of 5–6 copies. The remaining CNVs abnormalities were four partial and nine whole SCN1A deletions involving contiguous genes. Two CNVs (a partial SCN1A deletion and a duplication) were inherited from a parent, in whom there was mosaicism. Array CGH showed intragenic deletions of 90 kb and larger, with the largest of 9.3 Mb deleting 49 contiguous genes and extending beyond SCN1A. Discussion:  Duplication and amplification involving SCN1A are now added to molecular mechanisms of DS patients. Our findings showed that 12.5% of DS patients who are mutation negative have MLPA-detected SCN1A CNVs with an overall frequency of about 2–3%. MLPA is the established second-line testing strategy to reliably detect all CNVs of SCN1A from the megabase range down to one exon. Large CNVs extending outside SCN1A and involving contiguous genes can be precisely characterized by array CGH.
Keywords: Array CGH
Deletion
Dravet syndrome
Duplication
Early-onset severe epilepsy
Multiplex ligation-dependent probe amplification
SCN1A
Rights: © 2009 International League Against Epilepsy
DOI: 10.1111/j.1528-1167.2009.02013.x
Published version: http://dx.doi.org/10.1111/j.1528-1167.2009.02013.x
Appears in Collections:Aurora harvest
Paediatrics publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.