Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/57135
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIqbal, A.en
dc.contributor.authorAbbott, D.en
dc.date.issued2009en
dc.identifier.citationPhysics Letters A, 2009; 373(30):2537-2541en
dc.identifier.issn0375-9601en
dc.identifier.urihttp://hdl.handle.net/2440/57135-
dc.description.abstractThe well-known refinement of the Nash Equilibrium (NE) called an Evolutionarily Stable Strategy (ESS) is investigated in the quantum Prisoner's Dilemma (PD) game that is played using an Einstein–Podolsky–Rosen type setting. Earlier results report that in this scheme the classical NE remains intact as the unique solution of the quantum PD game. In contrast, we show here that interestingly in this scheme a non-classical solution for the ESS emerges for the quantum PD.en
dc.description.statementofresponsibilityAzhar Iqbal and Derek Abbotten
dc.description.urihttp://www.elsevier.com/wps/find/journaldescription.cws_home/505705/description#descriptionen
dc.language.isoenen
dc.publisherElsevier Science BVen
dc.subjectQuantum games; Prisoner's dilemma; Nash equilibrium; EPR–Bohm experiments; Joint probability; Quantum probabilityen
dc.titleNon-factorizable joint probabilities and evolutionarily stable strategies in the quantum prisoner's dilemma gameen
dc.typeJournal articleen
dc.identifier.rmid0020091138en
dc.identifier.doi10.1016/j.physleta.2009.05.020en
dc.identifier.pubid38553-
pubs.library.collectionElectrical and Electronic Engineering publicationsen
pubs.verification-statusVerifieden
pubs.publication-statusPublisheden
Appears in Collections:Electrical and Electronic Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.