Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/137372
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: A record of Neoarchaean cratonisation from the Storø Supracrustal Belt, West Greenland
Author: Gardiner, N.J.
Mulder, J.A.
Szilas, K.
Nebel, O.
Whitehouse, M.
Jeon, H.
Cawood, P.A.
Citation: Earth and Planetary Science Letters, 2023; 602:117922-117922
Publisher: Elsevier BV
Issue Date: 2023
ISSN: 0012-821X
1385-013X
Statement of
Responsibility: 
Nicholas J. Gardiner, Jacob A. Mulder, Kristoffer Szilas, Oliver Nebel, Martin Whitehouse, Heejin Jeon, Peter A. Cawood
Abstract: During the late Archaean, exotic juvenile continental (TTG) terranes assembled into stable cratons leading to continental emergence and deposition of shallow-marine sedimentary sequences. This period of cratonisation coincided with crustal reworking and maturation driving the production of granites sensu stricto on most cratons, and may mark a final transition to mobile-lid tectonics. We investigate the relative timing of continental assembly, stabilization, emergence, and maturation, during the formation of the North Atlantic Craton (NAC) in West Greenland from its constituent terranes, using geochemical data from zircon and monazite extracted from its oldest mature metasedimentary unit, the Storø quartzite. Zircons form two U-Pb age groups: (i) an older > 2820 Ma group with juvenile (elevated) Hf(t) and δ18O, derived from weathering surrounding Mesoarchaean terranes; and (ii) a younger < 2700 Ma group with less radiogenic (lower) Hf(t) and elevated δ18O that record post-burial metamorphism peaking ca. 2620 Ma. The quartzite protolith has a maximum depositional age of ca. 2830 Ma, and was deposited after final TTG formation but prior to granite magmatism at ca. 2715 Ma, during which time terranes had sufficiently assembled, stabilized, and emerged to form a common watershed. Cratons form via lateral accretion which requires strong continental lithosphere, for which one agent is crustal reworking and maturation. However, for the NAC, terrane assembly and emergence commenced prior to granite formation, and crustal reworking may be a response to lithospheric thickening. Cratonisation involves a series of complex, intertwined processes operating over 100’s of millions of years, which together lead to the development of thick, stable, continental lithosphere. Studies of ancient mature metasediments such as the Storø quartzite can help build timelines for these processes to ultimately better understand their choreography and co-dependencies, that together produced Earth’s enduring cratons.
Keywords: North Atlantic Craton stabilisation; potassic Archean Archaean granites; plate tectonics; Itsaq Isua; Isukasia Akia terrane; SCLM lithosphere mantle
Rights: © 2022 Elsevier B.V. All rights reserved.
DOI: 10.1016/j.epsl.2022.117922
Grant ID: http://purl.org/au-research/grants/arc/FL160100168
Published version: http://dx.doi.org/10.1016/j.epsl.2022.117922
Appears in Collections:Geology & Geophysics publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.