Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/134402
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Gene drives for vertebrate pest control: realistic spatial modelling of eradication probabilities and times for island mouse populations
Author: Birand, A.
Cassey, P.
Ross, J.V.
Russell, J.C.
Thomas, P.
Prowse, T.A.A.
Citation: Molecular Ecology, 2022; 31(6):1907-1923
Publisher: Wiley
Issue Date: 2022
ISSN: 0962-1083
1365-294X
Statement of
Responsibility: 
Aysegul Birand, Phillip Cassey, Joshua V. Ross, James C. Russell, Paul Thomas, Thomas A. A. Prowse
Abstract: Invasive alien species continue to threaten global biodiversity. CRISPR-based gene drives, which can theoretically spread through populations despite imparting a fitness cost, could be used to suppress or eradicate pest populations. We develop an individual-based, spatially explicit, stochastic model to simulate the ability of CRISPR-based homing and X-chromosome shredding drives to eradicate populations of invasive house mice (Mus muculus) from islands. Using the model, we explore the interactive effect of the efficiency of the drive constructs and the spatial ecology of the target population on the outcome of a gene-drive release. We also consider the impact of polyandrous mating and sperm competition, which could compromise the efficacy of some gene-drive strategies. Our results show that both drive strategies could be used to eradicate large populations of mice. Whereas parameters related to drive efficiency and demography strongly influence drive performance, we find that sperm competition following polyandrous mating is unlikely to impact the outcome of an eradication effort substantially. Assumptions regarding the spatial ecology of mice influenced the probability of and time required for eradication, with short-range dispersal capacities and limited mate-search areas producing `chase' dynamics across the island characterised by cycles of local extinction and recolonization by mice. We also show that highly efficient drives are not always optimal, when dispersal and mate-search capabilities are low. Rapid local population suppression around the introduction sites can cause loss of the gene drive before it can spread to the entire island. We conclude that, although the design of efficient gene drives is undoubtedly critical, accurate data on the spatial ecology of target species is critical for predicting the result of a gene-drive release.
Keywords: CRISPR
X-shredder
homing drive
island conservation
pest eradication
spatial model
Rights: © 2022 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.
DOI: 10.1111/mec.16361
Grant ID: http://purl.org/au-research/grants/arc/LP180100748
Published version: http://dx.doi.org/10.1111/mec.16361
Appears in Collections:Environment Institute publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.