Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/134236
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Breaking constraint of mammalian axial formulae
Author: Hauswirth, G.M.
Garside, V.C.
Wong, L.S.F.
Bildsoe, H.
Manent, J.
Chang, Y.-C.
Nefzger, C.M.
Firas, J.
Chen, J.
Rossello, F.J.
Polo, J.M.
McGlinn, E.
Citation: Nature Communications, 2022; 13(1):1-12
Publisher: Springer Nature
Issue Date: 2022
ISSN: 2041-1723
2041-1723
Statement of
Responsibility: 
Gabriel M. Hauswirth, Victoria C. Garside, Lisa S.F. Wong, Heidi Bildsoe, Jan Manent, Yi-Cheng Chang, Christian M. Nefzger, Jaber Firas, Joseph Chen, Fernando J. Rossello, Jose M. Polo, Edwina McGlinn
Abstract: The vertebral column of individual mammalian species often exhibits remarkable robustness in the number and identity of vertebral elements that form (known as axial formulae). The genetic mechanism(s) underlying this constraint however remain ill-defined. Here, we reveal the interplay of three regulatory pathways (Gdf11, miR-196 and Retinoic acid) is essential in constraining total vertebral number and regional axial identity in the mouse, from cervical through to tail vertebrae. All three pathways have differing control over Hox cluster expression, with heterochronic and quantitative changes found to parallel changes in axial identity. However, our work reveals an additional role for Hox genes in supporting axial elongation within the tail region, providing important support for an emerging view that mammalian Hox function is not limited to imparting positional identity as the mammalian body plan is laid down. More broadly, this work provides a molecular framework to interrogate mechanisms of evolutionary change and congenital anomalies of the vertebral column.
Keywords: Spine
Tail
Animals
Mammals
Mice
Tretinoin
Homeodomain Proteins
Bone Morphogenetic Proteins
MicroRNAs
Body Patterning
Genes, Homeobox
Growth Differentiation Factors
Biological Evolution
Transcriptome
Rights: © The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
DOI: 10.1038/s41467-021-27335-z
Grant ID: http://purl.org/au-research/grants/nhmrc/1051792
http://purl.org/au-research/grants/arc/DP180102157
Published version: http://dx.doi.org/10.1038/s41467-021-27335-z
Appears in Collections:Medical Sciences publications

Files in This Item:
File Description SizeFormat 
hdl_134236.pdfPublished version4.92 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.