Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/130097
Type: Thesis
Title: Improving Next-Generation Hydrogeological Models with Geophysics
Author: Li, Ho Yin (Chris)
Issue Date: 2020
School/Discipline: School of Physical Sciences : Earth Sciences
Abstract: This thesis presents advancements to the disciplines of geophysics and hydrogeological modelling. There are three main scientific contributions in this work. In Chapter 1 I propose a method to couple time-domain electromagnetics (TEM) and surface nuclear magnetic resonance (NMR) datasets with limited drillhole data to provide information on hydrogeological properties in a non-invasive manner, including groundwater salinity and hydraulic conductivity. This method reduces ambiguity in the hydrogeological interpretation of TEM-derived conductivity information by coupling conductivity to porosity values estimated using surface NMR data collected in the same field area. The method was applied to a South Australian River Murray floodplain to investigate the impact of artificial watering on the shallow groundwater salinity. In Chapter 2 I evaluate the impact of incorporating TEM and surface NMR datasets on the prediction error and uncertainty of groundwater models under different hydrogeological conditions using a synthetic approach. A method is presented to couple TEM and surface NMR to derive hydraulic conductivity using the Markov-Chain Monte Carlo method. In Chapter 3 I propose a modelling framework to couple multiple geophysical techniques, including TEM, borehole NMR and audio-frequency magnetotellurics (AMT), with stochastic groundwater modelling through the ensemble-smoother method. This approach allows the uncertainty in geophysical data to be expressed as a prior probability distribution that can be incorporated and accounted for in groundwater model inversion. This framework is applied to a potential in-situ recovery site in Kapunda, South Australia to estimate the regional-scale impact of a hypothetical operation trial in a probabilistic manner. Together, these three novel studies represent a contribution to the coupling between geophysics and hydrogeological modelling.
Advisor: Heinson, Graham
Hatch, Michael
Doble, Rebecca
Dissertation Note: Thesis (Ph.D.) -- University of Adelaide, School of Physical Sciences, 2021
Keywords: Groundwater model
geophysics
hydrogeology
electromagnetics
nuclear magnetic resonance
Provenance: This electronic version is made publicly available by the University of Adelaide in accordance with its open access policy for student theses. Copyright in this thesis remains with the author. This thesis may incorporate third party material which has been used by the author pursuant to Fair Dealing exceptions. If you are the owner of any included third party copyright material you wish to be removed from this electronic version, please complete the take down form located at: http://www.adelaide.edu.au/legals
Appears in Collections:Research Theses

Files in This Item:
File Description SizeFormat 
Li2021_PhD.pdfThesis2.83 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.