Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/127452
Type: Thesis
Title: Consensus Maximization: Theoretical Analysis and New Algorithms
Author: Cai, Zhipeng
Issue Date: 2020
School/Discipline: School of Computer Science
Abstract: The core of many computer vision systems is model fitting, which estimates a particular mathematical model given a set of input data. Due to the imperfection of the sensors, pre-processing steps and/or model assumptions, computer vision data usually contains outliers, which are abnormally distributed data points that can heavily reduce the accuracy of conventional model fitting methods. Robust fitting aims to make model fitting insensitive to outliers. Consensus maximization is one of the most popular paradigms for robust fitting, which is the main research subject of this thesis. Mathematically, consensus maximization is an optimization problem. To understand the theoretical hardness of this problem, a thorough analysis about its computational complexity is first conducted. Motivated by the theoretical analysis, novel techniques that improve different types of algorithms are then introduced. On one hand, an efficient and deterministic optimization approach is proposed. Unlike previous deterministic approaches, the proposed one does not rely on the relaxation of the original optimization problem. This property makes it much more effective at refining an initial solution. On the other hand, several techniques are proposed to significantly accelerate consensus maximization tree search. Tree search is one of the most efficient global optimization approaches for consensus maximization. Hence, the proposed techniques greatly improve the practicality of globally optimal consensus maximization algorithms. Finally, a consensus-maximization-based method is proposed to register terrestrial LiDAR point clouds. It demonstrates how to surpass the general theoretical hardness by using special problem structure (the rotation axis returned by the sensors), which simplify the problem and lead to application-oriented algorithms that are both efficient and globally optimal.
Advisor: Chin, Tat-Jun
Suter, David
Dissertation Note: Thesis (Ph.D.) -- University of Adelaide, School of Computer Science, 2020
Keywords: Computer vision
robus fitting
consensus maximization
Provenance: This electronic version is made publicly available by the University of Adelaide in accordance with its open access policy for student theses. Copyright in this thesis remains with the author. This thesis may incorporate third party material which has been used by the author pursuant to Fair Dealing exceptions. If you are the owner of any included third party copyright material you wish to be removed from this electronic version, please complete the take down form located at: http://www.adelaide.edu.au/legals
Appears in Collections:Research Theses

Files in This Item:
File Description SizeFormat 
Cai2020_PhD.pdf7.61 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.