Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/127113
Type: Thesis
Title: Epigenetic Regulation of Cells Involved in Periodontal Bone Destruction through Targeted Histone Deacetylase Inhibition
Author: Algate, Kent
Issue Date: 2018
School/Discipline: Adelaide Medical School
Abstract: Periodontitis (PD) is one of the most common bone loss pathologies in adults and currently affects more than 60% of the population in its destructive form. Ineffective or surgically invasive treatment options can result in patient noncompliance, gingival recession, alveolar bone destruction and eventual loss of teeth. Aside from the psychosocial effects of poor dental health, PD has been associated with a variety of systemic conditions, such as rheumatoid arthritis and cardiovascular disease, exacerbating their onset and severity. Histone deacetylase (HDAC) enzymes are molecules that control cellular activity through modifications to gene expression and protein function at an epigenetic level. Alterations to HDAC expression or function can cause diminished physiological cell regulation, thought to be an essential factor in the pathogenesis of disease. The use of selective HDAC inhibitors (HDACi) targeting candidate HDACs may be an effective, non-invasive therapeutic tool to treat both inflammation and bone loss in PD. The aim of this research was to investigate the effects of novel HDACi designed to target individual HDAC isoforms as a PD treatment. In vitro investigations identified therapeutic potential for targeting HDAC 1 and HDAC 2 during the inflammatory response and catabolic actions of human monocytes and osteoclasts. Whereas HDAC 5 inhibition holds regenerative potential, as osteoblastogenesis and matrix mineralisation was induced by its suppression. With the additional identification and characterisation of candidate HDAC isoforms in an in vivo mouse model of PD, the results of this thesis will provide a strong foundation for future investigations and clinical translation of HDACi.
Advisor: Haynes, David
Cantley, Melissa
Dissertation Note: Thesis (Ph.D.) -- University of Adelaide, Adelaide Medical School, 2018
Keywords: Bone metabolism
epigenetics
histone deacetylase
inflammation
periodontics
Provenance: This electronic version is made publicly available by the University of Adelaide in accordance with its open access policy for student theses. Copyright in this thesis remains with the author. This thesis may incorporate third party material which has been used by the author pursuant to Fair Dealing exceptions. If you are the owner of any included third party copyright material you wish to be removed from this electronic version, please complete the take down form located at: http://www.adelaide.edu.au/legals
Appears in Collections:Research Theses

Files in This Item:
File Description SizeFormat 
Algate2018_PhD.pdf30.75 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.