Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/125914
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Solar-induced chlorophyll fluorescence measured from an unmanned aircraft system: sensor etaloning and platform motion correction
Author: Bendig, J.
Malenovsky, Z.
Gautam, D.
Lucieer, A.
Citation: IEEE Transactions on Geoscience and Remote Sensing, 2020; 58(5):3437-3444
Publisher: IEEE
Issue Date: 2020
ISSN: 0196-2892
1558-0644
Statement of
Responsibility: 
Juliane Bendig, Zbynĕk Malenovský, Deepak Gautam, and Arko Lucieer
Abstract: A dual-field-of-view spectroradiometer system has been developed for measuring solar-induced chlorophyll fluorescence (SIF), from an unmanned aircraft system (UAS). This “AirSIF” system measures spectral reflectance in the visible and near-infrared wavelengths as well as SIF in far-red O2-A and red O2-B absorption features at high spatial resolution. It has the potential to support the interpretation and validation of canopy-emitted SIF observed by airborne, and future spaceborne sensors at coarser spatial resolutions, as well as simulated by radiative transfer models. In this contribution, we describe the AirSIF data collection and processing workflows and present a SIF map product of spatially explicit and geometrically correct spectroradiometer footprints. We analyze two possible sources of error in SIF retrieval procedure: a sensor-specific spectral artifact called etaloning and the uncertainty of incoming irradiance during UAS flight due to airframe motion (pitching and rolling). Finally, we present results from two SIF acquisition approaches: a continuous mapping flight and a stop&go flight targeting predefined areas of interest. The results are analyzed for a case study of Alfalfa and grass canopies and validated against ground measurements using the same system.
Keywords: Airborne spectroscopy; solar-induced chlorophyll fluorescence (SIF); unmanned aerial vehicle (UAV)
Rights: © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
DOI: 10.1109/TGRS.2019.2956194
Grant ID: http://purl.org/au-research/grants/arc/DP140101488
http://purl.org/au-research/grants/arc/FT160100477
Published version: http://dx.doi.org/10.1109/tgrs.2019.2956194
Appears in Collections:Agriculture, Food and Wine publications
Aurora harvest 4

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.