Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/12258
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Interactive effects of arbuscular mycorrhizal symbiosis, intraspecific competition and resource availability on Trifolium subterraneum cv. Mt. Barker
Author: Facelli, E.
Facelli, J.
Smith, S.
McLaughlin, M.
Citation: New Phytologist, 1999; 141(3):535-547
Publisher: CAMBRIDGE UNIV PRESS
Issue Date: 1999
ISSN: 0028-646X
1469-8137
Abstract: <jats:p>We performed two glasshouse experiments to determine whether the presence of arbuscular mycorrhizal symbiosis reduces the intensity of intraspecific competition at low concentrations of available phosphorus (P), and whether this effect is modified by a reduction in light intensity. In the first experiment, <jats:italic>Trifolium subterraneum</jats:italic> cv. Mt. Barker was grown at different densities in controlled conditions of light and temperature, and half of the pots were inoculated with spores of the arbuscular mycorrhizal fungus, <jats:italic>Gigaspora margarita</jats:italic>. In the second experiment, the plants were grown in similar controlled conditions but the light intensity received by half of the pots was reduced by &gt;50%. The biomass and P content of individual mycorrhizal plants and the biomass response to mycorrhizal infection were drastically reduced as plant density increased. The effects of density on percentage infection, shoot and root P concentrations, and root: shoot ratios were inconsistent. Generally reduction in light intensity did not alter these effects. Mycorrhizal symbiosis increased intraspecific competition intensity through an increase in the availability of soil P. This increase in competition was reflected in the greater size inequality of low density mycorrhizal treatments. Our results emphasize that the main effects of mycorrhizas at the individual level cannot be expected to be apparent at the population level, because they are overridden by density‐dependent processes.</jats:p>
DOI: 10.1046/j.1469-8137.1999.00367.x
Published version: http://dx.doi.org/10.1046/j.1469-8137.1999.00367.x
Appears in Collections:Aurora harvest 2
Ecology, Evolution and Landscape Science publications
Environment Institute publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.