Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/118360
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShan, J.-
dc.contributor.authorGuo, C.-
dc.contributor.authorZhu, Y.-
dc.contributor.authorChen, S.-
dc.contributor.authorSong, L.-
dc.contributor.authorJaroniec, M.-
dc.contributor.authorZheng, Y.-
dc.contributor.authorQiao, S.Z.-
dc.date.issued2019-
dc.identifier.citationChem, 2019; 5(2):445-459-
dc.identifier.issn2451-9308-
dc.identifier.issn2451-9294-
dc.identifier.urihttp://hdl.handle.net/2440/118360-
dc.description.abstractAchieving high activity and long-term stability is a major challenge in the design of catalysts. In particular, the oxygen evolution reaction (OER) in acidic media, which plays a key role in proton exchange membrane electrolyzers for fast hydrogen fuel generation, seriously suffers from rapid degradation of catalysts as a result of the harsh acidic and oxidative conditions. Here, we report a rational design strategy for the fabrication of a heterostructured OER electrocatalyst (Ru@IrOx) that has unique physicochemical properties and in which a strong charge redistribution exists between a highly strained ruthenium core and a partially oxidized iridium shell across the metal-metal oxide heterojunction. The increased valence of the iridium shell and the decreased valence of the ruthenium core activate a synergistic electronic and structural interaction, which results in the enhanced activity and stability of the catalyst compared with the majority of the state-of-the-art ruthenium- and iridium-based materials.-
dc.description.statementofresponsibilityJieqiong Shan, Chunxian Guo, Yihan Zhu, Shuangming Chen, Li Song, Mietek Jaroniec, Yao Zheng, Shi-Zhang Qiao-
dc.language.isoen-
dc.publisherCell Press; Elsevier-
dc.rights© 2018 Elsevier Inc.-
dc.source.urihttp://dx.doi.org/10.1016/j.chempr.2018.11.010-
dc.subjectOxygen evolution reaction; acidic media; core-shell nanocrystal; ruthenium-iridium alloy; charge redistribution; activity; stability-
dc.titleCharge-redistribution-enhanced nanocrystalline Ru@IrOx electrocatalysts for oxygen evolution in acidic media-
dc.typeJournal article-
dc.identifier.doi10.1016/j.chempr.2018.11.010-
dc.relation.granthttp://purl.org/au-research/grants/arc/FL170100154-
dc.relation.granthttp://purl.org/au-research/grants/arc/DP160104866-
dc.relation.granthttp://purl.org/au-research/grants/arc/DP170104464-
dc.relation.granthttp://purl.org/au-research/grants/arc/DE160101163-
dc.relation.granthttp://purl.org/au-research/grants/arc/DE160101293-
pubs.publication-statusPublished-
dc.identifier.orcidShan, J. [0000-0003-4308-5027]-
dc.identifier.orcidZheng, Y. [0000-0002-2411-8041]-
dc.identifier.orcidQiao, S.Z. [0000-0002-1220-1761] [0000-0002-4568-8422]-
Appears in Collections:Aurora harvest 4
Chemical Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.