Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Approximate Fisher information matrix to characterise the training of deep neural networks
Author: Liao, Z.
Drummond, T.
Reid, I.
Carneiro, G.
Citation: IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020; 42(1):15-26
Publisher: IEEE
Issue Date: 2020
ISSN: 0162-8828
Statement of
Zhibin Liao, Tom Drummond, Ian Reid, Gustavo Carneiro,
Abstract: In this paper, we introduce a novel methodology for characterising the performance of deep learning networks (ResNets and DenseNet) with respect to training convergence and generalisation as a function of mini-batch size and learning rate for image classification. This methodology is based on novel measurements derived from the eigenvalues of the approximate Fisher information matrix, which can be efficiently computed even for high capacity deep models. Our proposed measurements can help practitioners to monitor and control the training process (by actively tuning the mini-batch size and learning rate) to allow for good training convergence and generalisation. Furthermore, the proposed measurements also allow us to show that it is possible to optimise the training process with a new dynamic sampling training approach that continuously and automatically change the mini-batch size and learning rate during the training process. Finally, we show that the proposed dynamic sampling training approach has a faster training time and a competitive classification accuracy compared to the current state of the art.
Description: Date of Publication: 16 October 2018
Rights: © IEEE
RMID: 0030102453
DOI: 10.1109/TPAMI.2018.2876413
Grant ID:
Appears in Collections:Australian Institute for Machine Learning publications
Computer Science publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.