Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/114085
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: The distribution of the time taken for an epidemic to spread between two communities
Author: Yan, A.
Black, A.
McCaw, J.
Rebuli, N.
Ross, J.
Swan, A.
Hickson, R.
Citation: Mathematical Biosciences, 2018; 303:139-147
Publisher: Elsevier
Issue Date: 2018
ISSN: 0025-5564
1879-3134
Statement of
Responsibility: 
Ada W.C.Yan, Andrew J.Black, James M.McCaw, Nicolas Rebuli, Joshua V.Ross, Annalisa J.Swan, Roslyn I.Hickson
Abstract: Assessing the risk of disease spread between communities is important in our highly connected modern world. However, the impact of disease- and population-specific factors on the time taken for an epidemic to spread between communities, as well as the impact of stochastic disease dynamics on this spreading time, are not well understood. In this study, we model the spread of an acute infection between two communities (‘patches’) using a susceptible-infectious-removed (SIR) metapopulation model. We develop approximations to efficiently evaluate the probability of a major outbreak in a second patch given disease introduction in a source patch, and the distribution of the time taken for this to occur. We use these approximations to assess how interventions, which either control disease spread within a patch or decrease the travel rate between patches, change the spreading probability and median spreading time. We find that decreasing the basic reproduction number in the source patch is the most effective way of both decreasing the spreading probability, and delaying epidemic spread to the second patch should this occur. Moreover, we show that the qualitative effects of interventions are the same regardless of the approximations used to evaluate the spreading time distribution, but for some regions in parameter space, quantitative findings depend upon the approximations used. Importantly, if we neglect the possibility that an intervention prevents a large outbreak in the source patch altogether, then intervention effectiveness is not estimated accurately.
Keywords: Disease spread; metapopulation; branching process; extinction probability; arrival time
Rights: © 2018 Elsevier Inc. All rights reserved.
DOI: 10.1016/j.mbs.2018.07.004
Grant ID: http://purl.org/au-research/grants/arc/DE160100690
http://purl.org/au-research/grants/arc/FT130100254
Published version: http://dx.doi.org/10.1016/j.mbs.2018.07.004
Appears in Collections:Aurora harvest 8
Mathematical Sciences publications

Files in This Item:
File Description SizeFormat 
hdl_114085.pdfAccepted version1.09 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.