Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/109355
Type: Journal article
Title: Application of adaptive fuzzy spiking neural P systems in fault diagnosis of power systems
Author: Tu, M.
Wang, J.
Peng, H.
Shi, P.
Citation: Chinese Journal of Electronics, 2014; 23(1):87-92
Publisher: Technology Exchange Limited Hong Kong
Issue Date: 2014
ISSN: 1022-4653
2075-5597
Statement of
Responsibility: 
Tu Min, Wang Jun, Peng Hong, Shi Peng
Abstract: Adaptive fuzzy spiking neural P systems (AFSN P systems) are a novel kind of computing models with parallel computing and learning ability. Based on our existing works, AFSN P systems are applied to deal with the fault diagnosis problems of power systems and the uncertainty of action messages about protective relays and breakers, and a new fault diagnosis model of power systems is proposed with simple reasoning process and fast speed with parallel processing capabilities. The effectiveness of the fault diagnosis model is verified by some examples of fault diagnosis. Furthermore, the learning ability of AFSN P systems can be applied to adjust the weights in the fault diagnosis model automatically.
Keywords: Membrane computing; spiking neural P systems; fault diagnosis; power systems
Rights: Copyright status unknown
RMID: 0030028253
Appears in Collections:Electrical and Electronic Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.