Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/105449
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: The GCT camera for the Cherenkov Telescope Array
Author: Lapington, J.
Abchiche, A.
Allan, D.
Amans, J.
Armstrong, T.
Balzer, A.
Berge, D.
Boisson, C.
Bousquet, J.
Bose, R.
Brown, A.
Bryan, M.
Buchholtz, G.
Buckley, J.
Chadwick, P.
Costantini, H.
Cotter, G.
Daniel, M.
De Franco, A.
De Frondat, F.
et al.
Citation: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment, 2017; 876:1-4
Publisher: Elsevier BV
Issue Date: 2017
ISSN: 0168-9002
1872-9576
Statement of
Responsibility: 
J.S. Lapington ... G. Rowell ... V. Stamatescu ... et al. ... for the CTA Consortiumn
Abstract: The Gamma Cherenkov Telescope (GCT) is one of the designs proposed for the Small Sized Telescope (SST) section of the Cherenkov Telescope Array (CTA). The GCT uses dual-mirror optics, resulting in a compact telescope with good image quality and a large field of view with a smaller, more economical, camera than is achievable with conventional single mirror solutions. The photon counting GCT camera is designed to record the flashes of atmospheric Cherenkov light from gamma and cosmic ray initiated cascades, which last only a few tens of nanoseconds. The GCT optics require that the camera detectors follow a convex surface with a radius of curvature of 1 m and a diameter of ~35 cm, which is approximated by tiling the focal plane with 32 modules. The first camera prototype is equipped with multi-anode photomultipliers, each comprising an 8×8 array of 6×6 mm2 pixels to provide the required angular scale, adding up to 2048 pixels in total. Detector signals are shaped, amplified and digitised by electronics based on custom ASICs that provide digitisation at 1 GSample/s. The camera is self-triggering, retaining images where the focal plane light distribution matches predefined spatial and temporal criteria. The electronics are housed in the liquid-cooled, sealed camera enclosure. LED flashers at the corners of the focal plane provide a calibration source via reflection from the secondary mirror. The first GCT camera prototype underwent preliminary laboratory tests last year. In November 2015, the camera was installed on a prototype GCT telescope (SST-GATE) in Paris and was used to successfully record the first Cherenkov light of any CTA prototype, and the first Cherenkov light seen with such a dual-mirror optical system. A second full-camera prototype based on Silicon Photomultipliers is under construction. Up to 35 GCTs are envisaged for CTA.
Keywords: GCT; Cherenkov Telescope Array; Schwarzschild-Couder; imaging air Cherenkov telescope; photon-counting; camera
Rights: © 2016 Published by Elsevier B.V.
DOI: 10.1016/j.nima.2016.12.010
Published version: http://dx.doi.org/10.1016/j.nima.2016.12.010
Appears in Collections:Aurora harvest 8
Chemistry and Physics publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.