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Abstract 13 

Pipeline condition assessment is essential to targeted and cost-effective maintenance of aging water 14 

transmission and distribution systems. This paper proposes a technique for fast and non-invasive 15 

assessment of the wall condition of cement mortar lined metallic pipelines using fluid transient pressure 16 

waves (water hammer waves). A step transient pressure wave can be generated by shutting off a side-17 

discharge valve in a pressurised pipeline. The wave propagates along the pipe and reflections occur when 18 

it encounters sections of pipe with changes in wall thickness. The wave reflections can be measured by 19 
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pressure transducers as they are indicative of the location and severity of the wall deterioration. A 20 

numerical analysis is conducted to obtain the relationship between the degree of change in wall thickness 21 

in a cement mortar lined pipe and the size of the corresponding pressure wave reflection. As a result, 22 

look-up charts are generated for any specific cement mortar lined pipeline to map this relationship. The 23 

wall thickness of a deteriorated or distinct section can be determined directly and quickly from the charts 24 

using the size of the reflected wave, thus facilitating on-site pipeline condition assessment. The validity of 25 

this time-domain pipeline condition assessment technique is verified by numerical simulations and a case 26 

study using the field data measured in a mild steel cement mortar lined (MSCL) water main in South 27 

Australia. The condition of the pipe as assessed by the proposed technique is generally consistent with 28 

ultrasonic measurements.    29 

Keywords 30 

on-site, non-invasive, pipeline condition assessment, fluid transient pressure wave, water transmission 31 

and distribution system, water hammer 32 

Introduction 33 

Water transmission and distribution pipelines are critical infrastructure for modern cities. Due to the sheer 34 

size of the networks and the fact that most pipelines are buried under ground, the health monitoring and 35 

maintenance of this infrastructure is challenging. Although a number of techniques have been developed 36 

for pipeline condition assessment, including visual inspection (e.g. closed-circuit television inspection
1
), 37 

electromagnetic methods (e.g. magnetic flux leakage method
2
 and ground penetrating radar

3
), acoustic 38 

methods (e.g. SmartBall
4
), and ultrasonic methods (e.g. guided wave ultrasound inspection

5
), they are 39 

either too costly, inefficient for large networks or invasive 
6
. Efficient and non-invasive pipeline condition 40 
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assessment technologies are yet to be developed for targeted and cost-effective pipeline rehabilitation and 41 

the prevention of catastrophic events such as pipe failure. 42 

Research in the past two decades has shown that fluid transients
7, 8

, which are also known as water 43 

hammer waves, can be used for non-invasive detection of defects in pressurised pipeline systems. Fluid 44 

transients are pressure waves that propagate in the fluid and along a pipeline. A typical transient pressure 45 

wave used for detecting faults in pipelines is a step pressure wave generated by abruptly closing a side-46 

discharge valve after the steady-state flow is established. Theoretically, any physical changes on the pipe 47 

wall, such as leaks or wall thinning due to corrosion, can introduce wave reflections. The reflected waves 48 

propagate towards the source of the initial transients (i.e. the side-discharge valve) and can be measured 49 

by pressure transducers installed on existing accessible points such as air valves or fire hydrants. The 50 

arrival time of the wave reflection can be used to determine the location of the defect, and the magnitude 51 

of the reflection is indicative of the severity of the deterioration
9
.  52 

Typical defects in aging pipelines include leaks, blockages, internal or external corrosion and the spalling 53 

of cement mortar lining in lined pipes. Leak detection using transient pressure waves has been a focus of 54 

research for many years and a number of techniques have been developed, either in the time domain
10-12

, 55 

in the frequency domain
13-18

, or by means of advanced signal processing (e.g. wavelet) that involves 56 

analysis in both domains
19-23

. Blockage detection has also been studied intensively, either for discrete 57 

blockages (orifices)
24-28

 or extended partial blockages
29, 30

. The frequency-domain leak and blockage 58 

detection uses the change in the magnitude of resonant response or the shift of the resonant frequencies of 59 

the pipeline. The principle is similar to that used in vibration-based condition monitoring applied to other 60 

areas
31, 32

.  61 

In recent years, the use of fluid transients has been extended to non-invasively assess the condition of the 62 

pipe wall. Zecchin et al. 
33, 34

 studied general pipeline parameter identification using fluid transient waves 63 



4 
 

but only limited to numerical analysis. Stephens et al.
35, 36

 were the first to apply the inverse transient 64 

analysis (ITA) to detect degradation of the pipe wall in a mild steel cement mortar lined (MSCL) pipeline. 65 

The ITA uses an iterative process to calibrate pipeline parameters for a number of discretised reaches; 66 

therefore, it requires considerable computational effort for complex systems. Hachem and Schleiss
37

 67 

developed a technique for detecting a structurally weak section in a pipeline using a step transient 68 

pressure wave. The wave speed in the weak section was determined first and then the stiffness was 69 

estimated from the theoretical wave speed formula. However, challenges are expected when using their 70 

method to accurately determine wave speeds when multiple deteriorated sections exist in a pipeline. Gong 71 

et al.
9
 proposed an approach for determining the wall thickness of a single degraded section in an unlined 72 

pipeline. It was found that the magnitude of the wave reflection resulting from a section with a uniform 73 

change in wall thickness was directly related to the hydraulic impedance of that section. The impedance 74 

could then be used to determine the wall thickness and wave speed in the degraded section. An advanced 75 

technique was then proposed by Gong et al.
38

 to cater for the detection of multiple deteriorated sections in 76 

a pipeline. Only unlined pipelines were studied and the transient generation and measurement were 77 

required to be conducted at the upstream face of a closed end. However, in real water transmission 78 

systems, a great portion of pipelines used are cement mortar lined metallic pipes, and the requirement of 79 

generating and measuring at a closed end is not always achievable.  80 

The research presented in this paper develops a technique that enables on-site condition assessment for 81 

cement mortar lined pipes by fast time-domain analysis of transient pressure wave reflections. The 82 

location of a defect with respect to the measurement point can be determined by time-domain 83 

reflectometry (TDR)
39

 (i.e. using half the measured arrival time of the wave reflection multiplied by the 84 

wave speed). The procedure is not discussed in detail in this paper since applications have been reported 85 

in previous literature, such as for locating leaks
12, 20

, partially closed in-line valves
27

 and pipe sections 86 
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with a thinner wall thickness
9
. The focus of this research is to achieve fast and quantitative determination 87 

of the wall thickness of a degraded section in a cement mortar lined pipe using the magnitude of the 88 

pressure wave reflection. Mild steel cement mortar lined (MSCL) pipe is studied in particular, but the 89 

analysis can be easily extended to any other types of metallic cement mortar lined pipes. Equations are 90 

derived to connect the degree of change in wall thickness of an MSCL pipe to the size of the 91 

corresponding wave reflection. Changes in wall thickness from either side of the pipe wall (internal or 92 

external) are considered. As a result, plots can be drawn to describe this relationship for any MSCL 93 

pipeline if the specifications of the intact part are known. These plots can be used as look-up charts for 94 

on-site transient-based pipeline condition assessment in practice. The validity of this new technique is 95 

verified by numerical simulations. The applicability of this technique is verified by conducting wall 96 

condition assessment using a transient pressure trace measured from a MSCL water main in South 97 

Australia. Significant wave reflections are selected using a threshold corresponding to full cement loss 98 

and then analysed using the look-up charts. The representative wall thicknesses are determined for four 99 

sections that are believed to have significant loss of the cement mortar lining and internal corrosion. The 100 

condition of the pipeline determined using the proposed technique is generally consistent with pipe wall 101 

ultrasonic thickness measurements. 102 

Analysis of fluid transients in a cement mortar lined metallic pipe 103 

This section discusses the relationship between the size of the reflected transient pressure wave and the 104 

degree of change in wall thickness in a cement mortar lined metallic pipeline. First, the typical 105 

measurement setup of the field test layout is outlined. Second, the fundamental equations are reviewed 106 

and then adapted to mild steel cement mortar lined (MSCL) pipes. Two scenarios are considered: an 107 

internal change and an external change in wall thickness.  108 

Overview of Field Experiments 109 
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A typical configuration used for field measurement is given in Figure 1. A transient wave generator and 110 

multiple pressure transducers are typically used for each test. The adopted transient generator is a 111 

customised side-discharge valve connected to an existing access point (such as an air valve or scour 112 

valve). A small step transient pressure wave (typically 5 to 10 m in magnitude) is induced by rapidly 113 

closing (within 10 ms) the side-discharge valve after opening and releasing a flow (typically 20 to 40 L/s 114 

for pipes from 600 to 1000 mm in diameter) until steady-state conditions are reached. The generated 115 

incident wave then propagates along the pipe in both upstream and downstream directions. As discussed, 116 

reflections occur when the incident wave encounters a physical change in the pipe, such as a section with 117 

a reduction in wall thickness. The reflected waves propagate back towards the generator, and can be 118 

measured by pressure transducers that are mounted along the pipe (also at existing access points). The 119 

wave reflections are then able to be analysed to determine the location of defects from the arrival times, 120 

and the severity of the defects from the magnitude of the reflected wave. By comparing the arrival times 121 

of a specific reflection as measured by two or more pressure transducers at different locations, it can be 122 

determined whether the reflection comes from the upstream or downstream side of the generator. 123 

 124 

Side-discharge transient generator 

and pressure transducer 

Pressure 

transducer 

Spalling and internal 

corrosion 

Pressure 

transducer 

External 

corrosion 

Incident step waves 

Reflected waves 
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Figure 1. Typical configuration used in the field for pipeline condition assessment using transient 125 

pressure waves.  126 

Fundamental equations 127 

The spalling of cement mortar lining (CML) and extended internal, or external, corrosion are common 128 

problems in aging water pipelines. The deterioration often introduces a change in wall thickness, which in 129 

turn introduces a change in pipeline impedance. The impedance of a pipeline is defined as
7
 130 

 
a

B
gA

  
(1) 

where B is the impedance of the pipeline, a  is the wave speed of pressure waves, g is the gravitational 131 

acceleration and A is the internal cross-sectional area of the pipe. The wave speed ( a ) can be determined 132 

using the theoretical wave speed formula
7, 8

 133 

 
2 /

1 ( / )( / )

K
a

K E D e c





 

(2) 

in which K is the bulk modulus of elasticity of fluid,   is the density of fluid,  E  is Young’s modulus 134 

of the pipe wall material, D  is the internal diameter of the pipeline, e  is the wall thickness and  c  is a 135 

factor depending on the method of restraint of the pipeline
8
.  136 

Gong et al.
9
 demonstrated that the size of the pressure wave reflection from a deteriorated pipe section is 137 

related to any change in the pipeline impedance of that deteriorated pipe section. The dimensionless head 138 

perturbation can be determined using   139 

 
* 1

1

r
r

r

B
H

B





 

(3) 
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where 
*

rH is the dimensionless head perturbation of the first reflected pressure wave and 
rB  is the ratio 140 

of the impedance of the deteriorated pipe section to the impedance of an intact section. The dimensionless 141 

head perturbation, 
*

rH  can also be defined from the incident and reflected transient waves as 142 

 
1*

0

j i

r

i

H H
H

H H





 

(4) 

where 1jH  is the head of the reflected pressure wave, iH  is the head of the incident transient pressure 143 

wave and 0H  is the steady-state head at the measurement point before the generation of the transient 144 

incident wave (during which time the side-discharge valve based transient generator is open). The values 145 

of 1jH , iH and 0H are measureable by a pressure transducer. Note that, although 0H  appears in Eq. (4), 146 

the dimensionless head perturbation 
*

rH  is independent from 0H . In addition, 
*

rH  is only related to the 147 

size of the reflection ( 1j iH H , note that this can be negative) and the size of the incident wave 148 

( 0iH H ). The impedance ratio rB  is given as  149 

 
1

0

r

B
B

B
  

(5) 

where the subscript ‘0’ and ‘1’ represent the intact pipe section and the section with a change in 150 

impedance (the deteriorated pipe section), respectively.   151 

Equations adapted to mild steel cement mortar lined pipes 152 

For pipelines with a cement mortar lining (CML), the contribution of the lining has to be considered when 153 

calculating the wave speed. Mild steel cement mortar lined (MSCL) pipe is used as an example to 154 
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facilitate the analysis in this paper. The cross section of an intact MSCL pipe is shown diagrammatically 155 

in Figure 2. 156 

 157 

Figure 2. Cross section of an intact MSCL pipe ( 0D  is the internal diameter of the pipe, 0Ce is the 158 

thickness of the cement mortar lining and 0Se  is the thickness of the steel pipe wall).  159 

The cement mortar lining has a different modulus of elasticity to that of steel, but its contribution to the 160 

wave speed can be included as an equivalent thickness of steel
36

. The value of the total equivalent steel 161 

wall thickness (‘equivalent steel thickness’ as used in the rest of the paper) to be used in the wave speed 162 

formula is the summation of the equivalent thickness of steel contributed by the CML and the original 163 

thickness of the steel. For a thin-walled intact MSCL pipe, as shown in Figure 2, the equivalent steel 164 

thickness can be defined as 0e  and written as 165 

 0 0 0
C

C S

S

E
e e e

E
   

(6) 

where CE and SE are the modulus of elasticity of cement mortar lining and steel, respectively, and 0Ce  166 

and 0Se  are the thicknesses of the CML and that of the steel, respectively. The same concept of 167 
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equivalent steel thickness was used in Wylie and Streeter
8
 for reinforced concrete pipes. The use of the 168 

equivalent steel thickness [Eq. (6)] for thin-walled MSCL pipe is justified in the Appendix.  169 

Assuming the same Poisson’s ratio for steel and cement mortar, the theoretical wave speed for an intact 170 

MSCL pipe (Figure 2) is denoted as 0a  and can be written as 171 

 
2

0

0 0

/

1 ( / )( / )S

K
a

K E D e c





 

(7) 

where 0D  is the internal diameter of the intact MSCL pipe. Similarly, the wave speed in a section with a 172 

change in wall thickness can be written as 173 

 
2

1

1 1

/

1 ( / )( / )S

K
a

K E D e c





 

(8) 

where 1a , 1D  and 1e  are the wave speed, the internal diameter and the equivalent steel thickness, in the 174 

section with a change in wall thickness, respectively. As a result, rB  can be re-expressed as 175 

 
2

10

2

01

Da

Da
Br   

(9) 

To facilitate the analysis in subsequent sections, the relative change in equivalent steel thickness , rce  , is 176 

given as 177 

 
1 0

0

rc

e e
e

e


  

(10) 
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The aim of this research is to develop algorithms for estimating the remaining wall thickness of a 178 

deteriorated section from a measured transient pressure trace. For any pipeline, wall deterioration or a 179 

change in wall thickness (which results in a change in impedance) can occur either internally or externally 180 

or both. Theoretically, there are three possibilities for the cement mortar lining: intact, change in 181 

thickness (internally) and total loss. There are also three possibilities for the steel wall: intact, external 182 

change in thickness and internal change in thickness. As a result, there are 9 theoretical combinations for 183 

the condition of the pipe wall. Internal wall deterioration (only) and external wall deterioration (only) are 184 

discussed in subsequent sections. Simultaneous internal and external wall deterioration is not discussed in 185 

this paper, but it is expected to require a superposition of the effects caused by internal wall deterioration 186 

(only) and external wall deterioration (only).  187 

Four commonly-seen wall deterioration cases are identified as illustrated in Figure 3: (a) 1S : an internal 188 

change in the thickness of the CML; (b) 2S : total loss of the CML plus an internal reduction in the 189 

thickness of the steel wall; (c) 3S : intact CML with an internal change in the thickness of the steel wall; 190 

and (d) 4S : intact CML with an external change in the thickness of the steel. Case 3S  exists when the 191 

pipeline was initially installed with no lining but lined after years, or a section of original pipe is replaced 192 

by a section in the same nominal size (same outside diameter) but a different class (with thicker or thinner 193 

steel wall), or sections of a different class are installed during construction.  194 

 195  

(a)  (b)  (c)  (d)  
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Figure 3. Longitudinal view of four sections of MSCL pipe with the changes in wall thickness considered 196 

in this research: (a) 1S : an internal change in the thickness of the CML; (b) 2S : total loss of the CML 197 

plus an internal reduction in the thickness of the steel wall; (c) 3S : intact CML with an internal change in 198 

the thickness of the steel wall; and (d) 4S : intact CML with an external change in the thickness of the 199 

steel wall.    200 

An internal change in wall thickness 201 

For the scenario of an internal change in wall thickness, the diameter and wall thickness of the intact and 202 

damaged sections can be related based on the fact that the external diameter is constant. If the change is in 203 

the thickness of the CML alone [ 1S , Figure 3(a)], the following equation holds 204 

 0 0 1 12 2C CD e D e    (11) 

where 1Ce  is the thickness of the CML in the deteriorated/distinct section. In this case, the total 205 

equivalent steel thickness is given as 206 

 1 1 0
C

C S

S

E
e e e

E
   

(12) 

Substituting Eqs. (6) and (12) to Eq. (11) yields 207 

 0 0 1 12 2S S

C C

E E
D e D e

E E
    

(13) 

Substituting 1e  as given in Eq. (10) into Eq. (13), the ratio 1 1/D e  can be written as 208 
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1 0

1 0

2
(1 ) 1

S rc

rc C rc

D D E e

e e e E e
 

 
 

(14) 

Substituting Eq. (14) into Eq. (8), and then substituting the ratio 0 0/D e  using Eq. (7), the wave speed 209 

1a  can be described by  210 

 
 

 

2

02

1 2

0

( / ) 1

( / ) 1 2 /

rc

rc C

K e a
a

K e a cK E








 
 

(15) 

Substituting 1e  as given in Eq. (10) into Eq. (14) and rearranging the subsequent equation yields 211 

 
  

0

1 0 0

1

1 2 rc S C

D

D e e D E E



 

(16) 

Substituting Eqs (15) and (16) into Eq. (9), and replacing 0 0/D e  with an expression including 0a  as 212 

given in Eq. (7), the impedance ratio can be described by 213 

 
 

 

 
2

2

0

2 2

0 0

( ) 1
1 2

( / ) 1 2 /

rc C

r rc

rc C

K e K E a c
B e

K e a c K E K a



 



 
  

   
 

(17) 

Where finally, substituting Eq. (17) into Eq. (3), the relationship between the dimensionless head 214 

perturbation of the first reflected pressure wave 
*

rH  and the relative change in equivalent steel thickness 215 

rce  for case 1S  can be obtained as 216 
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(18) 

 217 

It can be seen from Eq. (18) that the dimensionless head perturbation 
*

rH  is related to the relative change 218 

in the equivalent steel thickness rce , the wave speed in the intact pipeline 0a , and  physical properties of 219 

the pipeline and fluid that are typically known (K and ). The value of 0a  can be calculated using the 220 

theoretical formula in Eq. (7), or measured by conducting experiments. As a result, when conducting 221 

pipeline condition assessment, the value of rce  can be determined from the value of 
*

rH , which in turn 222 

can be determined from a measured transient pressure trace. A curve describing values of 
*

rH  223 

corresponding to values of rce  can be plotted numerically. An example will be presented in the numerical 224 

simulations section. 225 

Eq. (18) is for an internal change in the thickness of the CML. A negative value of rce  represents a 226 

thinning in CML, which can be induced by deterioration. In this research, positive rce  is also considered, 227 

which represents a section of pipe with a CML thickness greater than the standard thickness. The lower 228 

bound of rce  is reached when the CML is totally lost and is calculated as 0 0/ 1Se e  . 229 

For case 2S  in Figure 3(b), the relationship between 
*

rH  and  rce  can be determined by a similar 230 

procedure as used in the derivation of Eqs (11) to (18). The expression of 
*

rH  for the 2S case is given 231 

by  232 
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 (19

) 

Note that the value of 2 / ScK E is in the order of 10
-2

 so that an approximation 1 2 / 1ScK E   is 233 

used in the derivation of Eq. (19). The possible range of rce  is from -1 to 0 0/ 1Se e  . The lower bound 234 

corresponds to total loss of the CML plus total reduction of the steel wall, and the upper bound refers to 235 

total loss of the CML, but no reduction in the steel thickness.  236 

By combining Eqs (18) and (19), a curve can be plotted for any specific MSCL pipe to describe the 237 

relationship between 
*

rH  and  rce  for cases 1S  and 2S  together. A discontinuity is expected in the 238 

curve, which represents the situation of total loss of the CML, but no loss of the steel wall thickness.  239 

Case 3S , i.e. intact CML with an internal change in the thickness of the steel wall,  can be analysed by 240 

the same strategy as used for cases 1S  and 2S . Analysis shows that case 3S  is equivalent to the 241 

scenario of an internal change in wall thickness in an unlined pipe. Using the approximation of 242 

1 2 / 1ScK E  , the relationship between  
*

rH  and  rce  in this case is given by 243 
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(20) 

An external change in wall thickness 244 



16 
 

Case 4S  shown in Figure 3(d), i.e. intact CML with an external change in the thickness of the steel wall, 245 

is discussed in this subsection. An example is a pipe section with a reduction in wall thickness due to 246 

extended external corrosion.   247 

The equivalent steel thickness for case 4S  can be written as 248 

 1 0 1
C

C S

S

E
e e e

E
   

(21) 

The intact pipe and the section with an external change in wall thickness have the same internal diameter 249 

0D . As a result, in this case, 0D  can be used in the formula for 1a  [Eq. (8)] and rB  is the ratio of the 250 

wave speeds, i.e. 1 0rB a a . Using Eqs (7), (8), (10) and (21), the impedance ratio can then be derived 251 

as 252 
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(22) 

Substituting Eq. (22) into Eq. (3) results 253 
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(23) 

In Eq. (23), the lower bound of rce  is 0 0/Se e , which represents total loss of the steel wall. A curve can 254 

be drawn for a specific MSCL pipeline for Eq. (23), and it can serve as a look-up chart for pipeline 255 

condition assessment. 256 
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Numerical simulations 257 

Numerical simulations using the Method of Characteristics (MOC)
7, 8

 were conducted to verify the 258 

validity of Eqs. (18), (19), (20) and (23). A reservoir-pipeline-valve (RPV) system was studied and a step 259 

transient pressure wave was used as the excitation. The physical details of the pipeline are those for the 260 

existing MSCL Morgan Transmission Pipeline (MTP) in South Australia, which will be further discussed 261 

in the subsequent case study section. For intact sections, the external diameter is 762 mm, the internal 262 

diameter ( 0D ) is 727.5 mm, the thickness of the CML ( 0Ce ) is 12.5 mm and the thickness of the steel 263 

( 0Se ) is 4.76 mm. Other parameters used in the numerical study include: the estimated elastic modulus of 264 

the cement mortar CE  = 25 GPa; the elastic modulus of the steel pipe wall SE  = 210 GPa; the bulk 265 

modulus of water (at 15℃) K  = 2.14 GPa; the density of water (at 15℃)  = 999.1 kg/m
3
 and the 266 

restraint factor for an axially and laterally restrained steel pipe c = 0.91 (for a Poisson’s ratio for the steel 267 

pipe wall of 0.3). As a result, the theoretical wave speed and equivalent steel thickness for an intact 268 

section are calculated as 0a = 1015 m/s and 0e = 6.25 mm, respectively.  269 

Plots for Eqs. (18), (19), (20) and (23) can be drawn using the physical details of the intact MSCL 270 

pipeline. Curves of Eqs. (18) and (19) are shown together in Figure 4. The point at 0 0/ 1rc Se e e   = − 271 

0.238 and 
*

rH  = −0.076 is the intersection of the curves of Eqs. (18) and (19) and it corresponds to total 272 

CML loss with an intact steel wall. Plots for Eqs (20) and (23) are given in Figure 5 and Figure 6. The 273 

lower bound for the curve in Figure 6 is 0 0/rc Se e e   = −0.762.  Figures 4 to 6 can be used as look-up 274 

charts for pipeline condition assessment for the MTP. 275 
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 276 

 Figure 4. Relationship between the dimensionless head perturbation ( rH 
) and the relative change in 277 

equivalent steel thickness ( rce ) for: (a) an internal change in the thickness of the CML [Eq. (18), 1S in 278 

Figure 3(a)], and (b) total loss of the CML plus a reduction in the thickness of the steel wall [Eq. (19), 279 

2S in Figure 3(b)].  280 
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Figure 5. Relationship between the dimensionless head perturbation ( rH 
) and the relative change in 282 

equivalent steel thickness ( rce ) for the case of intact CML with an internal change in the thickness of the 283 

steel wall [Eq. 20, 3S in Figure 3(c)]. 284 

 285 

Figure 6. Relationship between the dimensionless head perturbation ( rH 
) and the relative change in 286 

equivalent steel thickness ( rce ) for an external change in the thickness of the steel wall [Eq. (23), 4S in 287 

Figure 3(d)]. 288 
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adjustment to keep the Courant number value to unity) and started from 1015 m downstream of the 294 

reservoir. The time step used in the MOC was 0.0005 s. A step transient wave was generated by closing 295 

the downstream valve within one time step. Friction was not considered in the MOC simulations. 296 

Pressure responses were measured at a point 203 m downstream from the deteriorated section. 297 

The theoretical wave speeds in the four sections ( 1S  to 4S ) were calculated using the wave speed 298 

formula with the results: 1_ 1Sa = 975 m/s, 1_ 2Sa = 801 m/s, 1_ 3Sa = 1074 m/s, and 1_ 4Sa = 925 m/s. The 299 

theoretical equivalent steel thicknesses for the four sections ( 1S  to 4S ) were calculated as 1_ 1Se = 5.47 300 

mm, 1_ 2Se = 3.0 mm, 1_ 3Se = 7.84 mm, 1_ 4Se = 4.49 mm. The theoretical relative changes in the 301 

equivalent steel thicknesses are calculated as _ 1rc Se = −0.124, _ 2rc Se = −0.520, _ 3rc Se = 0.254, _ 4rc Se = 302 

−0.282. 303 

The dimensionless head perturbations (
*

rH ) obtained from the MOC simulations for the four cases are 304 

given in Figure 7. The values of the dimensionless head perturbations are also shown in Figure 7.  305 
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Figure 7.  Dimensionless head perturbations obtained from the MOC simulations for the four pipe 307 

sections with changes in wall thickness ( 1S  to 4S ).  308 

Using Figures 4 to 6, the corresponding values for the relative change in the equivalent steel thickness can 309 

be determined for each case, and the results are _ 1

MOC

rc Se = −0.123, _ 2

MOC

rc Se = −0.519, _ 3

MOC

rc Se = 0.258, _ 4

MOC

rc Se310 

= −0.283. It can be seen that the results determined from the numerical transient pressure traces are 311 

consistent to a high degree with the analytical results ( _ 1rc Se  to _ 4rc Se ). The small differences are from 312 

rounding errors and the approximations used in the derivation of Eqs. (18), (19), (20) and (23). The 313 

numerical simulations verify that Eqs (18), (19), (20) and (23) are valid, and they can be used for 314 

quantitative pipeline condition assessment. For a specific measured wave reflection, potential 315 

deterioration scenarios can be listed and the remaining wall thickness for each scenario can be determined. 316 

Case study 317 

A real-world case study is conducted to verify the applicability of the proposed pipeline condition 318 

assessment technique. A section of pipe in the Morgan Transmission Pipeline (MTP) in South Australia is 319 

studied. The section of pipe studied in this paper is from chainage (location as measured along the pipe 320 

length from some datum) 15000 m to CH 18000 m, covering scour valve No. 24 (SV24), and air valves 321 

No. 43 (AV43) and No. 44 (AV44). The layout of the section of pipe under study is given in Figure 8. 322 

The MTP is an above ground MSCL water main between a pump station and a staging tank over a length 323 

of 26.1 km. During the field testing, the pump was turned off and formed a dead-end boundary. The 324 

pipeline system was pressurised by the staging tank. The physical details for intact pipe sections ( 0D ,325 

0Ce , 0Se , 0e  and 0a ) and other parameters ( CE , SE , K ,  and c ) have been given in the section 326 
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numerical simulations.  The section between CH 15735 m and CH 15840 m has a known thicker steel 327 

thickness of 6.35 mm. However, the external diameter and the thickness of the CML in this section are 328 

the same as counterparts in the original intact sections (Case 3S ). A few replacements with thicker steel 329 

wall are also located in this section of pipe. These replacement sections are not considered here because 330 

of their short length (typically a few meters). A transient generator, which is a customised side-discharge 331 

valve, was used at SV24 to produce step transient pressure waves. Flow meters were connected to the 332 

side-discharge valve to measure the steady-state side-discharge before the signal generation. The steady-333 

state side-discharge is used to facilitate the determination of the magnitude of the incident step wave. 334 

Pressure transducers were placed at SC24, AV43 and AV44 to measure the pressure response. More 335 

details about the field tests and an analysis of this section of pipe using inverse transient analysis (ITA) 336 

are given in Stephens et al. 
36

. 337 

 338 

Figure 8. Layout of a section of the Morgan transmission pipeline. 339 

The dimensionless head perturbations between chainage 15000 m and 16500 m, as measured at AV43, 340 

are shown in Figure 9 as the solid line. Long-period (low frequency) pressure oscillations associated with 341 

the opening of the side-discharge valve (to introduce a side-discharge) have been removed by a band-pass 342 

filter and the original pressure trace and filtered trace are presented in Stephens et al.
36

. The steady-state 343 

head is determined by averaging a short period of the data measured before the arrival of the incident 344 
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wave, and the result is 
0H  = 32.01 m. The magnitude of the incident wave ( 0iH H ) is estimated from 345 

the wave front shown in the measured trace (the range from the steady state head 0H  to the first peak 346 

shown on the top of the wave front, which is 37.80 m), and the result is 5.79 m.  347 

The x-axis in Figure 9 is the chainage corresponding to the wave reflections. The chainage information is 348 

obtained by time-domain reflectometry (TDR) and using the measured arrival time of the reflection and 349 

the representative wave speeds. The arrival time of a reflection as measured by a transducer (relative to 350 

the arrival time of the wave front) is the time for a pressure wave to travel to, and be reflected back from, 351 

the corresponding defect. The representative wave speed for the section between AV43 (CH16620) and 352 

the right boundary of the thicker-walled section (CH15840) is 930 m/s, which is determined by the known 353 

distance and the arrival time of the reflection resulting from the thicker-walled section. The representative 354 

wave speeds for the thicker-walled section and the pipe section on its left side are calculated as 1050 m/s 355 

and 900 m/s respectively. 356 

The dashed line in Figure 9 represents the value of the dimensionless head perturbation resulting from a 357 

section of pipe with total CML loss but intact steel wall, which is 
*

rH = −0.076. This dashed line acts as a 358 

threshold to distinguish significant reflections that result from deteriorated sections with total CML loss 359 

and internal corrosion. The steel wall thickness values were also measured by an ultrasonic thickness 360 

measurement instrument at 5 m intervals along the MTP between CH 14900 and CH 18900. The 361 

ultrasonic measurements were taken at eight points around the circumference of the pipe (P1 to P8, 362 

starting from the top of the pipe and with 45° interval around the circumference) at each location. The 363 

interval of measurement was reduced to 1 m for some sections where changes in steel wall thickness were 364 

detected. The dotted line in Figure 9 gives the average steel wall thickness along the section of pipe 365 

(average of the ultrasonic wall thicknesses measurements at eight points around the circumference). The 366 
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markers shown in Figure 9 are ultrasonic measurements of the steel wall thickness with values less than 367 

4.3 mm (this value is considered significant as it corresponds to approximately a 10% steel wall reduction 368 

compared to the original steel thickness of 4.76 mm as given by the manufacturer for an intact MSCL 369 

section).     370 

 371 

Figure 9.  Dimensionless head perturbation (as function of distance) measured at AV43 (the solid line), 372 

dimensionless head perturbation resulting from a section of pipe with total CML loss but intact steel wall 373 

(the dashed line), average steel thickness measured by ultrasonic sounding (the dotted line), and 374 

ultrasonic measurements with values less than 4.3 mm (marks as indicated in the legend).  375 

Seven significant reflections are selected for analysis, shown as R1 to R7 in Figure 9. The selection is 376 

based on a comprehensive analysis of the transient traces measured at AV43, SC24 and AV44 in the same 377 

test to ensure the selected reflections are induced by defects that are located on the left hand side of AV43 378 

(see Figure 8). A reflection coming from the left hand side of AV43 will appear in the trace measured at 379 
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AV43 first, then shows at SC24 and finally arrives at AV44. The time lag between the arrival times of a 380 

reflection is consistent with the time for the initial incident pressure wave traveling from one point to 381 

another. By moving the traces measured at SC24 and AV44 forward in time by the corresponding time 382 

lag and then plotting them together with that measured at AV43, reflections from the left hand side of 383 

AV43 are overlapped while reflections from the other direction are not, consequently enabling an 384 

identification of the directional source of the reflection.  385 

The reflection R5 is from a known feature, the thicker-walled section between CH 15735 m and CH 386 

15840 m, and it aligns with Case S3 as in Figure 3(c). The maximum dimensionless head perturbation for 387 

R5 is read as 0.0254 from Figure 9.  Using the look-up chart given in Figure 5, the relative change in 388 

equivalent steel thickness is determined as 0.195. Using Eq. (10) and 0e = 6.25 mm for the MTP, the 389 

equivalent steel thickness for this thicker-walled section is determined as 
5

1

Re = 7.47 mm. Using Eq. (6) 390 

and 0Ce = 12.5 mm for the MTP, the thickness of the steel wall for the thicker-walled section is 391 

determined as 
5

1

R

Se = 5.98 mm. This result is smaller than the steel wall thickness given by the 392 

manufacturer for this section (which was 6.35 mm) and the ultrasonic measurement (6.1 to 6.5 mm). The 393 

discrepancy is believed to be caused by the inaccuracy of the estimated magnitude of the dimensionless 394 

head perturbation for R5 and the damping of the transient pressure wave.  395 

The MTP is an above ground pipe and no significant external wall deterioration was observed during the 396 

testing for the pipe section under study. As a result, the reflections R1 to R4, R6 and R7 are believed to be 397 

associated with pipe sections with internal changes in wall thicknesses. In real MSCL pipelines, the 398 

internal wall deterioration is more complex than the situation discussed in the numerical study [Cases S1 399 

and S2 as shown in Figure 3(a) and (b)]. The deterioration of CML mainly includes cracking, de-bonding, 400 

and spalling, and the distribution of deterioration is not uniform around the internal circumference. This 401 
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has been confirmed by the CCTV camera footage obtained for the MTP and photo evidence has been 402 

included in Stephens et al
36

.  After spalling of the CML, internal corrosion may start on the steel wall. 403 

The sizes of the dimensionless reflections are compared with the threshold that represents uniform total 404 

CML loss (dashed line in Figure 9).. Reflections R1, R4, R6 and R7 are greater than the threshold so that 405 

they are believed to be indications of large scale CML loss together with considerable internal corrosion 406 

of the steel wall. Reflections R2 and R3 are significant but haven’t reached the threshold, so that they are 407 

indications of considerable de-bonding and spalling of the CML and likely to be associated with localised 408 

internal corrosion.  409 

To quantify the deterioration, the look-up chart in Figure 4 is used to determine the representative wall 410 

thickness (the remaining wall thickness under uniform wall deterioration assumption). Sections associated 411 

with reflections R1, R4, R6 and R7 are equivalent to sections with total CML loss and uniform thinning 412 

of the steel wall (Case 2S ), in which the representative remaining steel wall thicknesses are determined 413 

as 
1

1

R

Se = 4.34 mm, 
4

1

R

Se = 4.05 mm, 
6

1

R

Se = 3.76 mm and 
7

1

R

Se = 4.62 mm, respectively. Note that the results 414 

are only the representative steel wall thicknesses (based on the assumption of ‘uniform deterioration’) and 415 

the thicknesses in some patches can be smaller than the representative values. Because the damping of the 416 

transient wave (which reduces the magnitude of wave reflections) is approximately proportional to the 417 

distance travelled by the wave, and the reflections R1 to R4 are resulting from sections more than 1 km 418 

away from the measurement point (AV43), the condition of these sections is likely to be worse than the 419 

representative conditions as determined by using the observed magnitudes of the reflections.  420 

Overall, the condition of the pipe, as determined by applying the proposed technique, is generally 421 

consistent with the ultrasonic results of the steel wall thickness. Six pipe sections with significant internal 422 

wall deterioration are identified by using the dimensionless head perturbation trace and the representative 423 

steel wall thicknesses are determined by the look-up charts. The case study demonstrates that the 424 
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proposed pipeline condition assessment technique can be used for non-invasive condition assessment for 425 

cement mortar lined pipes in the field. 426 

Limitations and challenges 427 

The proposed pipeline condition assessment technique has been proven to be useful but it has its 428 

limitations and some challenges are expected in the field. This time-domain technique directly maps the 429 

magnitude of a wave reflection to the wall thickness, which makes the technique efficient and easy to use, 430 

but also limits its application to the interpretation of selected significant wave reflections only. In contrast, 431 

the inverse transient analysis (ITA) is much more complex to apply, but it can provide information for the 432 

whole section of pipe under test and to a much higher resolution
36

.  433 

Internal and external changes in wall thickness are analysed separately in this research and equations that 434 

describe the relationship between a wave reflection and an internal or external change in wall thickness 435 

have been derived respectively. However, from a measured transient pressure trace, it is difficult to tell if 436 

a reflection is due to an internal or an external change in wall thickness. Without additional information, 437 

the operator has to estimate the wall thicknesses for different scenarios. If priori information is available 438 

(for example, from visual inspections of an above ground pipe), the operator can firstly determine the 439 

most likely wall deterioration scenario and then choose the corresponding look-up chart for the estimation 440 

of the remaining wall thickness.      441 

The accuracy of the look-up chart based technique proposed in this paper relies on the accurate 442 

determination of the wave speed for the intact pipe ( 0a ) and the magnitude of the dimensionless head 443 

perturbation as induced by the deteriorated section. In real pipelines, the determined 0a  may have 444 

uncertainties since some physical properties of the pipeline may be unknown; deterioration is more likely 445 

to be non-uniform; multiple deteriorated sections can introduce overlapped complex reflections; and the 446 
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transmission of the transient pressure wave is subject to signal dissipation and dispersion. These practical 447 

challenges make the accurate estimation of the dimensionless head perturbation difficult. Provided the 448 

dimensionless head perturbation is determined with acceptable accuracy, the wall thickness as obtained 449 

from the look-up chart is the representative wall thickness that indicates the overall condition of the 450 

deteriorated section. Localised information about wall thickness, such as the remaining steel thickness of 451 

a corrosion pit, is unable to be determined.  452 

The sharpness of the incident pressure wave is important
40

, but the generation of a sharp and clean step 453 

transient incident pressure wave in real pipelines is a challenge. In the case study reported in this paper, a 454 

ball valve-based side-discharge valve was connected to the downstream of a scour valve to act as the 455 

transient generator and the closing time was typically less than 10 ms
36

.  As a result, the generated 456 

incident pressure wave was sharp and the pressure oscillation in the scour valve chamber damped out in 457 

less than 30 ms. However, in cases where the generator cannot be connected to the main pipe closely but 458 

via a relatively long stand pipe (e.g.  several meters), the pressure oscillations in the stand pipe after the 459 

valve closure can be significant and persist for a longer time (hundreds of milliseconds), which impedes 460 

the analysis of the measured transient pressure signal for that time period.  If the side-discharge valve is 461 

not closed quickly enough so that the wave front is not as sharp as the step wave used in the numerical 462 

analysis, the reflections from the deterioration will not be sharp either. This may lead to error in the 463 

determination of the remaining wall thickness of a deteriorated section if the length of the section is 464 

shorter than / 2rT a , where rT  is the rise time of the wave front. A numerical study presented in Gong et 465 

al.
9
 explores how the sharpness of a wave front affects the accuracy of the analysis.  466 

Despite the limitations and challenges, the proposed technique is efficient and applicable to condition 467 

assessment of cement mortar lined pipes in the field. The accuracy of the determination of the wall 468 
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thickness can be improved in the future if techniques are developed to compensate the effects of multiple 469 

reflections and signal damping.  470 

Conclusions 471 

A new technique has been developed in this paper for the condition assessment of cement mortar lined 472 

pressurised pipes. The condition assessment is achieved by time-domain analysis of the transient pressure 473 

wave reflections measured at existing access points along a pipeline, such as air valves. The relationship 474 

between a change in wall thickness (either internal or external) in a cement mortar lined metallic pipe and 475 

the size of the wave reflection has been derived analytically for the first time. As a result, plots can be 476 

drawn to describe the relationship for any specific pipeline and these plots can serve as look-up charts for 477 

transient-based pipeline condition assessment. Numerical simulations have been conducted to verify the 478 

validity of the analytical findings. A case study has been conducted on a section of mild steel cement 479 

mortar lined (MSCL) water main in South Australia to illustrate how to apply the proposed technique to 480 

field data and also verify its applicability. The dimensionless head perturbation trace as measured at an air 481 

valve has been plotted and analysed. A threshold value, which represents the dimensionless head 482 

perturbation that would be induced by a section of pipe with total loss of the cement mortar lining, is used 483 

to facilitate evaluation of the significance of the wave reflections. Seven significant transient reflections 484 

have been identified and analysed, with one from a known thicker-walled section and the other six from 485 

sections with considerable internal wall deterioration. The reflection from the known feature and the four 486 

reflections that have magnitudes greater than the threshold are further analysed using the look-up chart to 487 

determine the representative thicknesses of the steel wall. The results are generally consistent with the 488 

ultrasonic measurements. 489 

This technique is non-invasive as fluid transient waves are used as the tool for the detection of defects. 490 

This technique is also efficient as look-up charts are used and no interactive calculation is involved. The 491 
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proposed technique enables on-site transient-based condition assessment for cement mortar line metallic 492 

pipes, which is cost-effective and contributes to strategic maintenance of critical pipeline assets.     493 
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Appendix 497 

Justification of the total equivalent steel wall thickness (equivalent steel thickness) as defined in Eq. (6) 498 

and used in Eq. (7) 499 

For a pressure wave propagating inside a frictionless pipe with uniform cross section, classic one-500 

dimensional water hammer theory gives the general wave speed formula as
8
 501 
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(A1) 

where A is the variation of the cross-sectional area of the pipe caused by the variation of the water 502 

pressure p . For a thin-walled steel pipe with thin-walled cement mortar lining, the change in tensile 503 

stress in the steel wall and in the cement mortar lining, S  and C  respectively as illustrated in 504 

Figure A1, are related to the change in radial force induced by p , where the relationship is 505 

 0 0 0 / 2S S C Ce e pD      
(A2) 
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 506 

Figure A1.  Forces on semicylinder of pipe due to variation in pressure.  507 

Assuming the cement mortar lining is closely bonded with the steel wall so that the change in 508 

circumferential unit strain is the same in both layers, ignoring the change in axial tensile stress and 509 

applying Hooke’s law to Eq. (A2), the change in circumferential unit strain  can be written by 510 
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The radial extension is obtained by multiplying   by the radius 0 / 2D , which , when multiplied by 511 

0D , yields the change in cross sectional-area A . As a result, the following equation is derived: 512 
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(A4) 

Substituting Eq. (A4) into Eq. (A1) and applying mathematical manipulation, the wave speed is given by 513 
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(A5) 

where 
0e  is the total equivalent steel wall thickness (equivalent steel thickness) as defined by Eq. (6). If 514 

0Se = 0 (no steel wall) and 0Ce = 0 (no cement lining), Eq. (A5) becomes the commonly seen general 515 

wave speed formula for uniform material thin-walled elastic pipe. If 
SE  or 

CE  reaches infinity, Eq. (A5) 516 

becomes /a K  , which is the acoustic speed of a small disturbance in an infinite fluid. 517 

If the change in axial tensile stress is considered, the Poisson’s ratio can be used to describe the 518 

relationship between the circumferential strain and the axial strain. Assuming that the Poisson’s ratios are 519 

the same for steel and cement, Eq. (7) can be derived. 520 

 521 
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