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Highlights 

• Drugs of abuse activate the neuroimmune system 
• The neuroimmune system is pivotal to the progression of addiction 
• Multiple independent parallel systems are not sufficient to explain complex states 
• Integrated signalling networks are crucial for addictive behaviours 
• Targeting receptor interactions may offer a novel therapeutic intervention 

 

Abstract 
Drug addiction and dependence have proven to be difficult psychiatric disorders to treat. The limited 
efficacy of neuronally-acting medication such as, acamprosate and naltrexone, highlights the need to 
identify novel targets. Recent research has underscored the importance of the neuroimmune system 
in many behavioural manifestations of drug addiction. In this review, we propose that our appreciation 
for complex phenotypes such as drug addiction and dependence will come with a greater 
understanding that these disorders are the result of intricate, interconnected signalling pathways that 
are, if only partially, determined at the receptor level. The idea of receptor heteromerisation and 
receptor mosaics will be introduced to explain cross talk between the receptors and signalling 
molecules implicated in neuroimmune signalling pathways.  
 
Introduction 
Drug addiction is a chronic complex relapsing disorder with substantial morbidity and mortality. 
Worldwide the annual number of deaths attributable to illicit drug use and the harmful use of alcohol 
are 99,000 – 253,000 and 3.3 million, respectively.1,2 Conceptually, drug addiction is a perpetual 
pathological cycle consisting of three phases: binge, withdrawal and craving. As drug addiction 
progresses, there is an inherent shift in the reinforcement mechanisms underlying the motivation to 
consume the drug (from positive to negative reinforcement) which reflects maladaptive alterations in 
brain regions governing reward, salience, pain and anxiety.3,4 These neuronal alterations form the 
targets of our current pharmaceutical therapies for addiction. Unfortunately however, these 
interventions demonstrate extremely limited efficacy5, leading to high relapse rates. This highlights a 
need to better understand the complex mechanisms behind drug addiction and then identify novel 
targets that may provide a more promising therapeutic intervention. 
 



The importance of neuronal systems in the development of drug addiction cannot be understated. 
However, accumulating evidence demonstrates the crucial role of the neuroimmune system, 
specifically, microglia and astrocytes in many addiction behaviours.6 Microglia and astrocytes (glia) 
are the primary immunocompetent cells within the CNS. These cells were traditionally considered 
passive elements within the CNS thought only to provide structural support. However, evidence over 
the past two decades has suggested that these cells play a more pivotal role in brain physiology. Glia 
actively respond to many drugs of abuse such as alcohol, amphetamines, cocaine and opioids by 
producing a sub-inflammatory immune response.6,7 The neuroimmune system is not comprised solely 
of glia; neurons, oligodendrocytes, endothelial cells and infiltrating monocytes and T cells additionally 
participate in creating this complex system. The extent of each participant’s contribution varies 
substantially reflecting the type of drug of abuse. Indeed, the exact make up of the cellular 
environment may first allow the specific detection of the drugs of abuse and then determine the 
signalling outcome.  
 
Evidence for Neuroimmune system involvement in addiction 

Unravelling the neuroimmune system’s influence on drug addiction is complexed by the route of 

administration; time of drug exposure; stage of addiction; analytical endpoint; the brain region; and the 

animal model used to interpret a particular aspect of addiction. Irrespective of these variables, 

alterations in the neuroimmune system are consistently found following administration or withdrawal 

from drugs of abuse. Here we provide a brief overview of drug of abuse-induced neuroimmune 

signalling and highlight that this system acts at multiple levels within the CNS.  

 

Receptors: Drugs of abuse directly and indirectly interact with immune receptors. Direct interactions 

include drug of abuse-receptor binding. For example, in silico and in vitro evidence demonstrates Toll-

like receptor 4 (TLR4), an innate immune pattern recognition receptor, binds alcohol, cocaine and 

opioids within the same motif.8-10 Activation of TLR4 culminates in the translocation of inflammatory 

transcription factors such as NFκB to the nucleus, and the release of inflammatory mediators.11 This 

suggests a common pathway activating the neuroimmune system following exposure to drugs of 

abuse. Indirect interactions primarily arise from a drug-induced increase in inflammatory mediators, 

which subsequently bind to their cognate receptors. For example, cocaine-induced CCL2 release 

binds to CCR2+ neurons. This in turn alters membrane hyperpolarisation and ERK1/2 

phosphorylation, ultimately influencing neurotransmission.12 Consequently, examining how and where 

neuroimmune receptor interactions occur following drugs of abuse is crucial to the progression of 

addiction research and the development of future pharmacological interventions.  

 

Molecules: Although behaviour cannot be modelled in vitro, the use of cell lines for exploring the 
physiological effects of drugs of abuse have provided valuable insights towards understanding the key 
signalling components in addiction. For example, alcohol, at physiologically relevant concentrations 
increases the release of pro-inflammatory mediators (CCL2, COX-2, IL-1β, IL-6 and TNFα,) from 
primary microglial and astrocyte cultures.13 Similarly, morphine increases the expression of CCL2, 



CCL5 and IFNγ-inducible protein.14 In vivo, systemic injections of either opioids and alcohol increases 
the expression of inflammatory mediators in key neuroanatomical areas associated with addiction 
such as the prefrontal cortex and hippocampus but not the cortex within mice.14-16 Furthermore, both 
opioids and alcohol drug classes increase inflammatory-related transcription factor activation in 
microglia and astrocytes in the aforementioned brain regions in both rodents and humans.10,17 
However, just as these drugs of abuse have specific neurotransmitter profiles, as determined by the 
neurotransmitters released following exposure to drugs of abuse, there is also a neuroimmune profile. 
This has been demonstrated by the differences in the inflammatory mediator expression following 
morphine and alcohol exposure.14,18 It is worth highlighting, an immune challenge results in wide and 
systemic release of inflammatory mediators, whereas an immune response to drugs of abuse within 
the CNS results in a more localised immune response. This localised response is termed neurokine 
signalling. These immune molecules including cytokines and chemokines, act on neighbouring 
neurons to induce alterations to synaptic function, influencing neuronal processing and therefore 
behavioural output.7 For example, TNFα and CCL2 decrease the threshold for firing action potentials 
from central amygdala neurons and increase the excitability of dopaminergic neurons respectively.19,20  
 

Gene transcription: Gene analysis (transcriptome or network analysis) has primarily focused on 

alcohol addiction with fewer studies examining the gene networks of other drug addictions. However, 

network analysis of alcohol-, opioid- or smoking-addiction all demonstrate neuroimmune 

involvement.21 Specifically, toll-like receptor and chemokine receptor (indirectly linked to NFκB)-

related genes were over-represented among these three forms of addiction. Importantly, opioids and 

alcohol demonstrated the most immune gene overlap relative to smoking addiction, further supporting 

the concept of specific neuroimmune profiles of drugs of abuse.21 Despite very little overlap of genes 

between amygdala, nucleus accumbens and prefrontal cortex regions (~20%), studies examining 

gene networks (via transcriptome) in the context of alcohol have determined all three regions were 

enriched with astrocyte and microglia-associated pathways.22 This identified the most persistent gene 

alterations primarily associated with the immune response. Finally, an epigenetic neuroimmune link to 

abuse liability following maladaptive early life experiences has been established. Schwarz et al (2011) 

demonstrated that early life events in rodents caused specific adaptions in the methylation of the IL-10 

gene within nucleus accumbens microglia, which in turn, was associated with an increase in 

morphine’s rewarding properties.23  

 

Behaviour: There is a wealth of behavioural literature supporting the neuroimmune system’s 

involvement in addiction phenotypes in both animals and humans. Ibudilast, a pharmacological glial 

attenuator, blocks self-administration of a variety of drugs such as alcohol, methamphetamine and 

opioids in rodents.14,24,25 In humans, ibudilast successfully reduced characteristics of opioid withdrawal 

compared to placebo controls.26 Furthermore, in preclinical models global knockout and selective 

knockout (via siRNA) of immune receptors and related molecules attenuate addiction-like behaviours 

such as impulsive consumption and craving.27,28  

 



Drugs of abuse act at the cellular, receptor and molecular level, engaging multiple overlapping 
neuroimmune pathways. However, it is important to appreciate that these systems do not work in 
isolation. Rather, the behavioural and signalling outcomes are a result of complex interactions 
between receptors and the resulting integrated signalling networks that complement and coordinate 
with one another to generate complex addiction behaviours. 
 
Molecular mechanisms underlying addiction 
The molecular mechanisms underlying addiction are as varied as the drugs of abuse themselves. At 
first glance, it may therefore be surprising to find a few key receptors and their ligands have been 
implicated in the signalling mechanisms responsible for addiction. However, fine details such as time 
and spatial resolution of expression of these proteins are likely to play a crucial role in achieving the 
signal diversity and specificity observed in the signalling profiles of drugs of abuse. Additionally, as 
mentioned earlier, the importance of protein-protein interactions in fine-tuning cellular signalling, their 
co-expression with other receptors or signalling proteins provide a greater level of complexity and 
control (figure 1 illustrates the potential diverse signaling outcomes as a result of receptor-receptor 
interactions discussed in detail below). 
 
This concept of protein-protein interactions is especially important and revolutionary in the field of G 
protein-coupled receptors (GPCRs), where the formation of higher order oligomers has provided a 
novel perspective on signal diversity and specificity. Termed heteromerisation, this is a sophisticated 
and complex mechanism by which GPCRs can influence the signalling outcomes of one or more 
receptors. As different cell types or tissues express a unique combination of receptors that may be 
regulated by both physiological and pathological conditions (including those attributed to drugs of 
abuse), the term “receptor mosaics”, very succinctly describes the complex and dynamic protein 
networks that are responsible for complex traits, such as drug addiction.29 Originally coined by 
Aganati and Fuxe in 1982, the term ‘receptor mosaics’ was employed to describe the interactions 
between clusters of diverse receptors, but more powerfully it emphasizes that the geographical 
location of each receptor with respect to each of the other receptors is crucial. The exact pattern of 
receptor interactions and crucially the order of receptor activation may provide the complex signaling 
networks required for drug addiction and maintenance. Therefore, although the idea of receptor 
mosaics brings complexity for designing effective therapies, it also brings with it the potential for 
activating or attenuating key receptors in a complex that may be responsible for precipitating addictive 
behaviors. 
 
The µ opioid receptor, a member of the GPCR superfamily, is one such receptor relevant to many 
addiction-related behaviours, ranging from euphoria and reward to anhedonia and pain.30,31 This 
receptor is associated with addiction of all drugs of abuse including amphetamines, alcohol, cannabis, 
cocaine and opioids.32 Interestingly, the µ opioid receptor plays a key role in the neuroimmune 
system, with several lines of evidence suggesting a close interaction between chemokines, in 
particular the chemokine receptor CCR5 and its ligands CCL3 (Macrophage inflammatory protein 1α), 
CCL4 (Macrophage inflammatory protein 1β) and CCL5 (RANTES). For examples see Table 1.	
  



Table 1 Interactions between µ opioid receptor agonist and CCR5 

Treatment Outcome 
Morphine Increased the expression of CCL5 but not CCR5 in the 

frontal cortex and striatum of rats.33 
Morphine Increased the release of CCL5 from rat primary 

astrocyte cultures but not microglial or neuronal 
cultures.34 

Morphine Increased astrocytes CCR5 expression attributable to 
activation of p38 MAPK and CREB pathways.35 

Morphine or methadone Increased the expression of CCR5 in CEMx174 
Human Lymphoid cell line.36,37 

Morphine (behavioural withdrawal) Increased CCL5 expression in the nucleus accumbens 
and ventral tegmental area but not the dentate gyrus, 
hippocampus, dorsal periaqueductal grey, substantia 
nigra, central nucleus of the amygdala or medial 
prefrontal cortex.14 

Morphine + CCL5 (intra periaqueductal grey) Increased the antinociceptive response from rats 
undergoing cold water tail flick test.38 

  
However, the interactions between CCR5 and the µ opioid receptor extend beyond associative 
evidence. Co-immunoprecipitation studies in CHO and CEMx174 cells overexpressing CCR5 and µ 
opioid receptors demonstrated these proteins can function as heteromers.39,40 Functionally, the CCR5 
and µ opioid receptor heteromer regulate one another’s activity through cross-desensitisation. For 
example, treatment with either CCL5 or DAMGO, a  µ opioid receptor agonist, desensitised the µ 
opioid receptor and CCR5 respectively. Cross-desensitisation was attributable to increased receptor 
phosphorylation and attenuated receptor G protein-coupling (assessed by [35S]GTPγ binding assay). 
However, desensitisation was independent of receptor internalisation and alterations in receptor 
affinity.39 CCR5 receptor phosphorylation was later found attributable to PKCζ (through PDK1) 
dependent phosphorylation. The authors further hypothesised that this effect was attributable to G-
protein β-induced PI3K signaling (figure 2).41 
 
The interaction between CCR5 and the µ opioid receptor may assist in the many behavioural 
manifestations of addiction in particular tolerance and anhedonia. For example, drugs of abuse, such 
as alcohol and opioids have been reported to increase the expression of CCL3 and CCL5 from glial 
cells respectively (via TLR4 or µ opioid receptors).6,18,34 During chronic exposure to these drugs of 
abuse (under addictive circumstances) CCL5 remains elevated for prolonged periods (exceeding the 
metabolism and excretion of the drug of abuse).14,18 Prolonged elevation of CCL5 may desensitise the 
µ opioid receptor on both neurons and glial cells. In neurons, µ opioid receptor activation is 
responsible for many actions of drugs of abuse including reward, euphoria and anhedonia during the 
withdrawal stage.32,42 Consequently, desensitisation of the µ opioid receptor (tolerance) would 
decrease the reward and euphoria normally associated with drugs of abuse. This in turn would 
potentiate intake of the drug to achieve the desired psychopharmacological effect. Furthermore, 



during periods of withdrawal, (in the absence of the drug), if CCL5 continues to desensitise the µ 
opioid receptor, the individual may become anhedonic as there is a reduced basal µ opioid response. 
Given that the effects of withdrawal are pivotal to escalating drug use, this effect may promote further 
intake and ultimately lead to addiction. Furthermore, CCR5 activation induces the expression of c-
Fos, a transcription factor that promotes neuroplastic events governing addiction.43,44 In the long term, 
this may reinforce maladaptive behaviours. In glia, a biased CCL5 response promotes an 
inflammatory phenotype, which may contribute to neurokine signaling – further influencing 
neurotransmission induced by drugs of abuse.45  
 
We are beginning to appreciate the functional relevancy of this unique interaction as two bivalent 
ligands antagonising the CCR5-µ opioid receptor heteromer have recently been published.46,47 These 
ligands are based upon naltrexone and maravioc, and oxymorphone and 2(TAK-220) respectively. 
While they have yet to be trialed for addiction, they have been successfully used in pain research, a 
related field. Specifically these drugs have elucidated novel mechanisms underlying hyperalgesia and 
allodynia.46 
 
In recent years there has been a greater interest in investigating the interaction of GPCRs with 
receptors outside of the superfamily. Interestingly, there is evidence of an interaction between the 
chemokine CXCR4 receptor and Toll-like receptor 4.48,49 Given the mounting evidence supporting the 
role of TLR4 in addiction50, a pairwise assessment of TLR4 interaction with the key GPCRs implicated 
in addiction should be fully explored and exploited as a potential therapeutic avenue. Similarly, 
literature provides evidence for an interaction between TLR4 and the GABA receptor. Interestingly, in 
the context of ethanol self-administration, this interaction is limited to the amygdala but not the ventral 
pallidium.28 This example demonstrates the importance of exploring protein-protein interactions 
between diverse receptor families whilst also appreciating the influence of the cellular background on 
the interactions.  
 
Concluding remarks 
The neuroimmune system’s responses are complex and integrate at multiple levels. Numerous 
pathways and signaling components act in a highly coordinated and dynamic fashion, in order for 
normal physiological processes to occur.  However, these sophisticated neuroimmune processes are 
hijacked by drugs of abuse and the ultimate biological outcome is dependent on the exact signaling 
complexes (receptor heteromers or receptor mosaics) modulated by these drugs.51 More importantly, 
understanding the detailed signaling profiles of heteromers in the context of the neuroimmune system 
as a whole may be crucial in developing successful therapies. Ideally, the use of heteromer-selective 
ligands that regulate signaling from specific heteromers has the potential to reduce off-target effects 
(Please see review for details on identifying heteromer-selective ligands).52 As such, this area holds 
much promise for conventional addiction therapies, which are limited by both their efficacy, and their 
adverse side effects.  
 



Figure 1: Interactions at the receptor level result in the activation of novel signalling pathways that 
may be cell type dependent. As illustrated here, receptor heteromers are composed of at least two a) 
or more b) functional receptor units. c) The exact pattern of receptor expression and complex 
interactions between these receptors on multiple cell types results in the modulation of signalling 
pathways crucial for the normal function of the neuroimmune system. Drugs of abuse can modify 
these signalling pathway resulting in complex behaviours such as addiction and dependence. 
 
Figure 2: a. Ligand (CCL3/4/5) binding to CCR5 increases intracellular calcium and initiates signalling 
pathways which culminate in the activation of transcription factors c-FOS and c-Jun. b. Endogenous 
or exogenous opioid binding to a CCR5-µ opioid receptor heteromer desensitises the CCR5 receptor 
through PKCζ –dependent phosphorylation. This in turn prevents CCR5 activation. c. CCL3/4/5 
binding to the CCR5-µ opioid receptor heteromer desensitises the µ opioid receptor (via 
phosphorylation), however, the mechanism underlying this process is presently unknown. d. 
Exogenous or endogenous opioid binding to the µ opioid receptor increases intracellular potassium 
(potentially leading to membrane hyperpolarisation in a neuron) and removes intracellular calcium 
from the cell. Activation of the µ opioid receptor results in the activation of CREB, a transcription factor 
associated with addiction and dependence. 
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