
 

ACCEPTED VERSION  

Xianlin Zheng, Xingjun Zhu, Yiqing Lu, Jiangbo Zhao, Wei Feng, Guohua Jia, Fan Wang, 
Fuyou Li, and Dayong Jin 
High-contrast visualization of upconversion luminescence in mice using time-gating 
approach 
Analytical Chemistry, 2016; 88(7):3449-3454 
 
© 2016 American Chemical Society 

This document is the Accepted Manuscript version of a Published Work that appeared in 
final form in Analytical Chemistry, copyright © American Chemical Society after peer review 
and technical editing by the publisher. To access the final edited and published work see 
http://dx.doi.org/10.1021/acs.analchem.5b04626 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://hdl.handle.net/2440/99374 

PERMISSIONS 

http://pubs.acs.org/page/4authors/jpa/index.html 
 
The new agreement specifically addresses what authors can do with different versions of their 
manuscript – e.g. use in theses and collections, teaching and training, conference 
presentations, sharing with colleagues, and posting on websites and repositories. The terms 
under which these uses can occur are clearly identified to prevent misunderstandings that could 
jeopardize final publication of a manuscript (Section II, Permitted Uses by Authors). 

Easy Reference User Guide 
 
7. Posting Accepted and Published Works on Websites and Repositories: A digital file of the 
Accepted Work and/or the Published Work may be made publicly available on websites or repositories 
(e.g. the Author’s personal website, preprint servers, university networks or primary employer’s 
institutional websites, third party institutional or subject-based repositories, and conference websites that 
feature presentations by the Author(s) based on the Accepted and/or the Published Work) under the 
following conditions: 
 
• It is mandated by the Author(s)’ funding agency, primary employer, or, in the case of Author(s) 

employed in academia, university administration. 
• If the mandated public availability of the Accepted Manuscript is sooner than 12 months after online 

publication of the Published Work, a waiver from the relevant institutional policy should be sought. If a 
waiver cannot be obtained, the Author(s) may sponsor the immediate availability of the final Published 
Work through participation in the ACS AuthorChoice program—for information about this program see 
http://pubs.acs.org/page/policy/authorchoice/index.html. 
• If the mandated public availability of the Accepted Manuscript is not sooner than 12 months after online 
publication of the Published Work, the Accepted Manuscript may be posted to the mandated website or 
repository. The following notice should be included at the time of posting, or the posting amended as 
appropriate: 
“This document is the Accepted Manuscript version of a Published Work that appeared in final form in 
[JournalTitle], copyright © American Chemical Society after peer review and technical editing by the 
publisher. To access the final edited and published work see [insert ACS Articles on Request author-
directed link to Published Work, see http://pubs.acs.org/page/policy/articlesonrequest/index.html].” 
• The posting must be for non-commercial purposes and not violate the ACS’ “Ethical Guidelines to 
Publication of Chemical Research” (see http://pubs.acs.org/ethics). 
• Regardless of any mandated public availability date of a digital file of the final Published Work, 
Author(s) may make this file available only via the ACS AuthorChoice Program. For more information, 
see http://pubs.acs.org/page/policy/authorchoice/index.html. 
 

6 March 2017 

http://dx.doi.org/10.1021/acs.analchem.5b04626
http://hdl.handle.net/2440/99374
http://pubs.acs.org/page/4authors/jpa/index.html
http://pubs.acs.org/userimages/ContentEditor/1285231362937/jpa_user_guide.pdf
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/articlesonrequest/index.html
http://pubs.acs.org/ethics
http://pubs.acs.org/page/policy/authorchoice/index.html


1 High-Contrast Visualization of Upconversion Luminescence in Mice
2 Using Time-Gating Approach
3 Xianlin Zheng,† Xingjun Zhu,‡ Yiqing Lu,† Jiangbo Zhao,†,§ Wei Feng,‡ Guohua Jia,∥,⊥ Fan Wang,†,⊥

4 Fuyou Li,*,‡ and Dayong Jin*,†,⊥

5
†Advanced Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney,

6 New South Wales 2109, Australia

7
‡Department of Chemistry & Institutes of Biomedical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan

8 University, Shanghai, 200433, PR China

9
§Institute for Photonics and Advanced Sensing and School of Physical Sciences, University of Adelaide, Adelaide, South Australia

10 5005, Australia

11
∥Nanochemistry Research Institute, Department of Chemistry, Curtin University, Perth, Western Australia 6102, Australia

12
⊥Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, New South Wales

13 2007, Australia

14 *S Supporting Information

15 ABSTRACT: Optical imaging through the near-infrared (NIR) window provides
16 deep penetration of light up to several centimeters into biological tissues. Capable of
17 emitting 800 nm luminescence under 980 nm illumination, the recently developed
18 upconversion nanoparticles (UCNPs) suggest a promising optical contrast agent for
19 in vivo bioimaging. However, presently they require high-power lasers to excite when
20 applied to small animals, leading to significant scattering background that limits the
21 detection sensitivity as well as a detrimental thermal effect. In this work, we show
22 that the time-gating approach implementing pulsed illumination from a NIR diode
23 laser and time-delayed imaging synchronized via an optical chopper offers detection
24 sensitivity more than 1 order of magnitude higher than the conventional approach
25 using optical band-pass filters (S/N, 47321/6353 vs 5339/58), when imaging
26 UNCPs injected into Kunming mice. The pulsed laser illumination (70 μs ON in
27 200 μs period) also reduces the overall thermal accumulation to 35% of that under
28 the continuous-wave mode. Technical details are given on setting up the time-gating
29 unit comprising an optical chopper, a pinhole, and a microscopy eyepiece. Being generally compatible with any camera, this
30 provides a convenient and low cost solution to NIR animal imaging using UCNPs as well as other luminescent probes.

31 Near-infrared (NIR) optical imaging has drawn increasing
32 attention due to the desire for whole animal and deep
33 tissue imaging at high resolution.1,2 This is because (1) NIR
34 light of 700−1100 nm is capable of penetrating several
35 centimeters into tissues with much lower scattering compared
36 to visible wavelengths3−5 and (2) much lower autofluorescence
37 background exists in the NIR range, facilitating sensitive
38 fluorescence detection.6,7 Thanks to the availability of NIR
39 fluorescent dyes such as indocyanine green, in vivo NIR imaging
40 has been adopted preclinically and clinically for identifying
41 disease biomarkers,8,9 monitoring disease progression,10,11

42 determining the pharmaceutical effects of new drugs,12−14

43 and fluorescence image-guided surgery.15−17 Other nanop-
44 robes, such as dye-encapsulated silica nanoparticles and
45 semiconductor quantum dots, have also been proposed and
46 demonstrated for quality NIR imaging under preclinical
47 settings.18−22

48 Compared to these down-conversion materials, lanthanide-
49 based upconversion nanoparticles (UCNPs) offers a promising

50alternative with their unique anti-Stokes-shifted and long-lived
51luminescence.23−25 The past decade has witnessed rapid
52progress in material science to develop highly controlled
53UCNPs as a new type of high-sensitive, photostable, low-toxic,
54and multifunctional optical contrast agent for broad biological
55and biomedical applications.26−31 In particular, UCNPs
56codoped with Yb3+ and Tm3+ ions are capable of stepwise
57absorbing 980 nm low-energy photons and emitting strong 800
58nm luminescence, thus suitable for deep-tissue imaging in the
59NIR window.14,32−39 However, when whole animals are
60interrogated in practice, substantial scattering from skin and
61fur is often encountered for the excitation light as well as the
62emission luminescence, dramatically reducing the imaging
63contrast and blurring the targeted area.4,40,41 Additionally,
64high excitation power under the continuous-wave mode is
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65 typically used, resulting in accumulated absorption and thermal
66 effect that adversely affects or even damages the samples.42

67 To overcome these challenges, one opportunity arises from
68 the long luminescence lifetimes of UCNPs (tens to hundreds of
69 microseconds) that allows the time-gated luminescence (TGL)
70 technique to be applied. We have previously demonstrated
71 TGL microscopes employing pulsed excitation and time-
72 delayed detection to eliminate short-lived background from
73 autofluorescence (with lifetimes typically of ∼nanoseconds),
74 achieving high detection sensitivity and imaging contrast using
75 long-lived luminescent probes.43−45 In this paper, we explore
76 the time-gating approach for NIR imaging of UCNPs in small
77 animals. We demonstrate a system consisting of a fast-
78 switchable 980 nm diode laser and a high-speed optical
79 chopper, which is precisely synchronized for high-contrast time-
80 gated imaging without posing any restrictions on the camera.
81 The performance is evaluated in comparison to the conven-
82 tional filter-based imaging approach, using Kunming mice
83 injected with water-soluble Yb3+/Tm3+ codoped UCNPs as the
84 model.

85 ■ EXPERIMENTAL SECTION

86 TGL Imaging System. The schematic diagram of the TGL
f1 87 system for in vivo animal imaging is given in Figure 1. Briefly, a

88 time-gating unit comprising a high-speed optical chopper and a
89 microscope eyepiece (Olympus WHN10X) was inserted
90 between a camera lens (Nikon SIGMA 50MM F1.4 EX DG
91 HSM) and an EMCCD camera (Andor iXon Ultra 897). TGL

92imaging was realized by synchronizing the chopper with a
93pulsed 980 nm fiber-coupled diode laser (LE-LS-980-10000T
94FC, LEO Photonics; maximum output power 10 W) in
95antiphase, so that the detection path only opened after the laser
96switched off and any short-lived background decayed to
97negligible. The chopper used here (C995, Terahertz Tech-
98nologies) had a blade consisting of 30 slots with a duty cycle of
991:1. When operating at maximum frequency of 5 kHz (with an
100accuracy of 0.001 Hz), it gave a rotational speed of ∼167 rev/s.
101A 1 mm diameter pinhole aperture was attached very close to
102the chopper blade at a radius of 4.2 cm, so that an ON/OFF
103switching time of 23 μs was achieved for the signal light and
104any stray light was removed. The chopper output a TTL signal,
105generated from the slotted optical switch built in the chopper
106head, to trigger a homemade pulse synchronizer. The latter
107delivered pulses of 70 μs duration to the laser controller/driver
108to switch on the 980 nm laser when the detection path was
109blocked by the chopper blade, so that the EMCCD camera
110became effectively time-gated. Delay times of 5 μs and 25 μs
111were applied before and after the laser pulses, respectively, for
112optimizing the time-gating performance in practice.
113In Vivo Animal Imaging. Hydrophilic NaLuF4:Yb,Tm
114UCNPs were injected hypodermically in the abdomen of
115Kunming mice (refer to Supporting Information S1 for details).
116Under the imaging system, they were illuminated with the
117pulsed 980 nm laser beam output from the fiber without
118collimation, at an average intensity of 3.18 W/cm2. The
119luminescence signal from the UCNPs was collected by the
120camera lens, purified by the time-gating unit, and recorded by
121the EMCCD camera. For comparison, the same mice were also
122imaged using the conventional filter-based approach under
123continuous-wave 980 nm excitation at the identical intensity,
124and the upconversion luminescence was collected with one or
125two pieces of band-pass filters (FF01-800/12, Semrock)
126inserted in the detection path while the optical chopper was
127switched off. Bright-field imaging was also conducted
128simultaneously alongside the time-gated imaging, using a
129compact light-emitting diode (LED) to illuminate the mice.
130Thermal Effect Evaluation. Thermal images and temper-
131ature elevation curves of mice under continuous-wave and time-
132gated 980 nm laser were recorded by an infrared thermal
133camera (FLIR E40). As a typical procedure, mice were
134anesthetized first through intraperitoneal injection of ket-
135amine/xylazine solution (75 mg kg−1 ketamine and 15 mg kg−1

136xylazine) and then placed under the in vivo imaging system.
137The thermal camera recorded the temperature changes of mice
138when the 980 nm laser was switched on and irradiated the mice
139for half a minute. After the recording, the laser was switched off
140and the mice were placed on warming pad to avoid an excessive
141body temperature decrease. Temperature elevation curves were
142produced using the maximum temperature value in the
143irradiated region versus irradiation time.

144■ RESULTS AND DISCUSSION
145We compared the imaging contrast obtained by our time-gating
146approach with that using the conventional filter-based,
147nontime-gating approach. Although the band-pass filter used
148here should have eliminated residual excitation at 980 nm as
149well as other optical background, so that the camera only
150 f2collected NIR emission within the range of 800 ± 6 nm (Figure
151 f22a), in reality strong signal was also observed from the
152surroundings of the injection site (Figure 2b). Along a line
153drawn across the injection area on the 16-bit grayscale image,

Figure 1. Schematics illustrating the TGL system for in vivo NIR
imaging. The optical chopper (5 kHz, 1:1 duty ratio) generates a TTL
pulse from its reference output to trigger an in-house pulse
synchronizer, which times a fixed 70 μs pulse (with 5 μs delay from
the chopper output) to enable the 980 nm NIR laser. The pulsed 980
nm light illuminates the mouse to excite the UCNPs. The
luminescence signal is collected by a camera lens, passes through a 1
mm pinhole attached to the optical chopper, relayed by a microscope
eyepiece, and recorded by an EMCCD camera for in vivo imaging. The
delay time between the switching-off of the 980 nm pulse and the
switching-on of the EMCCD via chopping is 25 μs, followed by a
collection window of 100 μs.
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154 the maximum intensity recorded was 59 470; nevertheless, the
155 average intensity in the background area also reached 7309

f3 156 yielding a signal-to-noise ratio of merely 8.13 (Figure 3c). By
157 contrast, the time-gating approach employed pulsed excitation
158 of identical peak intensity but 35% duration and gated
159 detection of 50% duty ratio with the same camera settings
160 (Figure 2d). The image, shown as Figure 2e, was taken
161 immediately after Figure 2b was captured to ensure fair
162 comparison, and a well-defined injection site was revealed
163 against the background area. Along the same line drawn across,
164 although the average intensity in the injection site decreased to

1658160 (the outstanding peak intensity, 31 314, corresponds to
166the actual injection position) due to the effectively reduced
167excitation and detection time, that of the background area was
168suppressed more substantially down to 263, so that an
169enhanced signal-to-noise ratio of 31 was achieved (Figure 2f).
170Further analysis over the entire images showed the overall
171signal-to-noise ratio was improved by 12.4-fold using the time-
172gating approach over the nontime-gated approach (see
173Supporting Information S2 and Supporting Table 1).
174The high optical background here associated with the
175conventional approach arose from the strong scattering of the

Figure 2. Comparison of in vivo imaging contrast between the filter-based approach and the time-gating approach. (a) Spectra of the excitation
source, the UCNP luminescence, and the transmission of the band-pass filter. (b) The luminescence image of a Kunming mouse with subcutaneous
injection of hydrophilic NaLuF4:Yb,Tm UCNPs (200 μL, 1 mg/mL), obtained by the filter-based approach under CW 980 nm excitation. (c) The
intensity profile along the line across the 16-bit grayscale image in part b. (d) The temporal configuration for time-gated imaging. (e) The time-gated
image of the same Kunming mouse. (f) The intensity profile along the line across the 16-bit grayscale image in part e. The highest peak corresponds
to the actual injection position. The images in parts b and e were captured by the EMCCD camera with an exposure time of 0.4 s and gain of 10,
under an average 980 nm excitation intensity of 3.18 W/cm2 measured on the object mouse. Note that the EMCCD camera was not saturated during
the image acquisition.
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176 excitation light from the animal that one optical filter failed to
177 block. It could be improved by adding more filters, but the
178 effect was still inferior to the time-gating approach (see
179 Supporting Information S3). One possible reason for that was
180 the scattering light had a variety of incident angles, which may
181 also change depending on the position of the animal, making it
182 difficult for the interference-type filters to suppress completely
183 due to their angle-dependent transmission/reflection spectra.
184 Substitution for absorption-type (color-glass) filters is also not
185 possible, as no suitable candidate is currently available to
186 separate 808 nm emission from 980 nm excitation for the
187 UCNPs used here. Moreover, in the conventional approach the
188 background may increase further for animals with colored skin
189 and/or fur that introduce pigmentation-related NIR autofluor-
190 escence.41 Nevertheless, the time-gating approach effectively
191 removed residual scattering of the excitation light as well as
192 autofluorescence regardless of it spectrum or incident angle, so
193 that the background was limited close to the electronic noise
194 level of the camera. On the other hand, while the excitation
195 intensity remained identical, the exposure duration to the
196 excitation light was reduced to 35% (70 μs ON-time in every
197 200 μs period) under the time-gated mode. This reduced the
198 thermal effect to the animals very effectively. As shown in
199 Figure 3, the maximum temperature increased over 25 °C on
200 the mouse in only 30 s under the CW laser irradiation (same

201conditions as used in the luminescence imaging), while the
202temperature change remained negligible for the time-gated
203mode.
204The high signal-to-noise ratio without spectral filtering
205further allows the time-gated approach to be implemented
206alongside bright-field visualization, which was demonstrated
207 f4using the same mice model. As shown in Figure 4, after
208adjusting the relative brightness of the white LED light with
209reference to the 980 nm laser excitation to ensure similar levels
210of intensity were obtained for the respective bright-field and
211time-gated luminescence images (Figure 4a,b), the time-gated
212imaging was directly performed in the presence of the LED
213light to visualize both the entire animal and the UCNP
214injection site in real time (Figure 4c). This capability, which is
215not suitable using the conventional approach (see Supporting
216Information S4), offers significant potential for practical
217applications, such as luminescence image-guided surgery.

218■ CONCLUSIONS
219We have realized time-gated luminescence imaging of
220upconversion nanoparticles upon live small animals. In contrast
221to the conventional filter-based approach that suffers from the
222strong scattering of the excitation light, the time-gating
223approach is capable of efficient elimination of such background,
224allowing us to achieve a 12-fold enhancement in the signal-to-

Figure 3. Comparison of the thermal effect between the CW mode and the TGL mode. (a) The thermal images of a Kunming mouse under CW 980
nm laser illumination for 5, 20, and 30 s. (b) The thermal images of a Kunming mouse under pulsed 980 nm laser illumination employed in the TGL
mode for 5, 20, and 30 s. (c) The maximum temperature elevation over the irradiated area as a function of irradiation time under the CW and TGL
modes.

Figure 4. Dual-modal in vivo animal imaging. (a) A bright-field image of a Kunming mouse with subcutaneous injection of hydrophilic
NaLuF4:Yb,Tm UCNPs (200 μL, 1 mg/mL) under a white LED illumination. (b, c) The time-gated luminescence image of the same Kunming
mouse in (a) under 980 nm excitation in the absence (b) and presence (c) of the bright-field LED illumination. All images were taken by the
EMCCD camera with exposure time of 0.4 s and gain of 10. The average 980 nm excitation intensity was 3.18 W/cm2 measured on the object
mouse.
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225 noise ratio using Kunming mice injected with UCNPs as the in
226 vivo animal model. The overall exposure was reduced to 35%,
227 alleviating overheating as well as other side effects associated
228 with the NIR excitation light. Apart from the Yb/Tm codoped
229 UCNPs, the technique is applicable to other long-lived
230 luminescent probes with lifetimes in the microsecond-to-
231 millisecond region.46 For example, the Nd-sensitized UCNPs
232 that are excitable at 800 nm47−49 can be used to further
233 improve the temperature control as well as tissue penetration
234 depth. Furthermore, the time-gated luminescence imaging can
235 be conducted directly under bright-field visualization. These
236 advancements alongside the low cost of our well-engineered
237 instrumentation address the key issues to implement
238 upconversion nanoparticles for deep-tissue NIR imaging in
239 practice, paving the way for their use in biomedical diagnostics
240 as well as multifunctional applications.
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