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1 Introduction

Recently ATLAS and CMS experiments have reported an excess of diphoton events at an

invariant mass around 750 GeV and 760 GeV from LHC Run-2 with pp collisions at the

center of mass energy of 13 TeV [1, 2]. The local significance of the excess ATLAS events

is 3.9 σ while that of the excess CMS events is 2.6 σ, corresponding to the respective cross

sections σ(pp → γγ) = 10.6 fb and σ(pp → γγ) = 6.3 fb. ATLAS favours a broad width

of Γ ∼ 45 GeV, while CMS, although not excluding a broad resonance, actually prefers a

narrow width. The diphoton excesses observed by ATLAS and CMS at this mass scale may

be partially understood by the factor of 5 gain in cross-section due to gluon production.

However there is no evidence for any coupling of the resonance into anything except gluons

and photons (no final states such as ff̄ , V V (f being a fermion and V being W,Z) since

no missing ET or jets have been observed.

This may be the first indication of new physics at the TeV scale. It could even be the

tip of an iceberg of many future discoveries. Several interpretations have been suggested

based on extensions of the Standard Model spectrum [3–158]. Many of these papers suggest

a spinless singlet coupled to vector-like fermions [3, 9, 10, 12, 14, 21, 22, 34, 37, 55, 61,

63, 83, 84, 98, 104, 107, 109, 121, 125, 131, 158]. Indeed, the observed resonance could

be interpreted as a Standard Model scalar or pseudoscalar singlet state X with mass

mX ∼ 750− 760 GeV. Moreover, because it decays into two photons, its spin is consistent

with s = 0. The process of generating the two photons can take place by the gluon-gluon

fusion mechanism according to the process gg → X → γγ hence it requires production

and decay of the particle X. In a renormalisable theory this interaction can be realised

assuming vector-like fermions at the TeV scale, which carry electric charge and colour.

Such vector-like pairs have not been observed at LHC, hence the mass of the fermion pair

should be around or above the TeV scale. For example, in F-theory models based on E6, low

energy singlets coupling to extra vector-like matter is predicted and may be responsible for
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the 750 GeV diphoton resonance [158]. Such models motivate the phenomenological study

of E6 as being the origin of the new physics.

An example of a model with singlets and extra vector-like matter is the Exceptional

Supersymmetric (SUSY) Standard Model (E6SSM) [159, 160], where the spectrum of the

MSSM is extended to fill out three complete 27-dimensional representations of the gauge

group E6 which is broken at the unification scale down to the SM gauge group plus an

additional gauged U(1)N symmetry at low energies under which right-handed neutrinos

are neutral, allowing them to get large masses. The three 27i-plet families (labelled by

i = 1, 2, 3) contain the usual quarks and leptons plus the following extra states: SM-

singlet fields, Si; up- and down-type Higgs doublets, Hui and Hdi; and charged ±1/3

coloured, exotics Di and D̄i. The extra matter ensures anomaly cancellation, however the

model also contains two extra SU(2) doublets, H ′ and H̄ ′, which are required for gauge

coupling unification [161]. To evade rapid proton decay a Z2 symmetry, either Z
qq
2 or Zlq2 ,

is introduced and to evade large flavour changing neutral currents an approximate ZH2
symmetry is introduced where only the third family of Higgs doublets Hu3 and Hd3 and

singlets S3 are even under it and hence couple to fermions and get vacuum expectation

values (VEVs). In particular, the third family singlet S3 gets a VEV, 〈S3〉 = s/
√

2, which

is responsible for the effective µ term, inert Higgsino and D-fermion and Z ′N masses, while

the first and second families of Higgs doublets and SM-singlets do not get VEVs and are

called “inert”. Further aspects of the theory and phenomenology of this SUSY extension

of the SM have been extensively studied in [162–193].

In this paper we take all three singlets to be even under the approximate ZH2 , which

allows them all to couple to Ĥui and Ĥdi as well as D̂i and ˆ̄Di. We shall assume that

the third singlet S3 has appreciable couplings to the three families of Hui, Hdi and Di,

D̄i, so that its large VEV generates effective mass terms for all these states, as well a

Z ′N , above the TeV scale but possibly within the reach of LHC Run 2. However the first

and second singlets S1,2 may have relatively small couplings to the third pair of Higgs

doublets Hu3 and Hd3, which are the only Higgs doublets to acquire VEVs. In addition,

we shall suppose that the value of the third singlet S3 VEV s is above the TeV scale, while

the other singlets S1,2 at most develop small VEVs. This is different from the modified

E6SSM in [125], where two of the singlets were assigned even under the approximate ZH2
and both were allowed to develop VEVs and couple to all three families of Hui, Hdi and

Di, D̄i. In the version of the E6SSM here, we suppose that, after the third singlet S3 with

large large s VEV is integrated out, only the first and second singlets S1,2 appear in the

low energy effective theory and provide candidates for the 750-760 GeV resonance which

may be identfied as one or two scalars and/or one or two pseudoscalars contained in S1,2.

The assumed smallness of the coupling of S1,2 to Hu3 and Hd3 means that the observed

resonance will not easily decay into pairs of top quarks or W bosons.

Many of the features of the considered model would be common to other SUSY E6

models where the low energy spectrum consists of complete 27-plets. The present model

is a variant of the E6SSM and like that model is distinguished by the choice of surviving

gauged U(1)N under which right-handed neutrinos have zero charge and may acquire large

Majorana masses, corresponding to a high scale seesaw mechanism. For earlier literature
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on other SUSY E6 models based on different surviving gauged U(1) symmetries under

which right-handed neutrinos are charged see [159].

The layout of the remainder of the paper is as follows. In section 2 we discuss the

variant of the E6SSM that we shall study, and discuss the renormalisation group equations

which constrain the Yukawa couplings to be perturbative up to the unification scale. In

section 3 we apply this model to the 750 GeV diphoton resonance, calculating the branching

ratios and cross-sections for the two scalar and two pseudoscalar states associated with the

S1,2 singlets, including possible degeneracies and mixing. Section 4 concludes the paper.

2 A variant of the E6SSM

We first recall that the E6SSM [159, 160] may be derived from an E6 GUT group broken

via the following symmetry breaking chain:

E6 → SO(10)⊗U(1)ψ

→ SU(5)⊗U(1)χ ⊗U(1)ψ

→ SU(3)⊗ SU(2)⊗U(1)Y ×U(1)χ ⊗U(1)ψ

→ SU(3)⊗ SU(2)⊗U(1)Y ⊗U(1)N . (2.1)

We assume that the above symmetry breaking chain occurs at a single GUT scale MX in

one step, due to some unspecified symmetry breaking sector,

E6 → SU(3)⊗ SU(2)⊗U(1)Y ⊗U(1)N , (2.2)

where

U(1)N = cos(ϑ)U(1)χ + sin(ϑ)U(1)ψ (2.3)

and tan(ϑ) =
√

15 such that the right-handed neutrinos that appear in the model are

completely neutral and may get large intermediate scale masses. However the U(1)N gauge

group remains unbroken down to the few TeV energy scale where its breaking results in

an observable Z ′N . Three complete 27 representations of E6 then also must survive down

to this scale in order to ensure anomaly cancellation. These 27i decompose under the

SU(5)⊗U(1)N subgroup as follows:

27i → (10, 1)i + (5̄, 2)i + (5̄,−3)i + (5,−2)i + (1, 5)i + (1, 0)i, (2.4)

where the U(1)N charges must be GUT normalised by a factor of 1/
√

40. The first two

terms contain the usual quarks and leptons, and the final term, which is a singlet under the

entire low energy gauge group, contains the (CP conjugated) right-handed neutrinos N c
i .

The last-but-one term, which is charged only under U(1)N , contains the SM-singlet fields

Si. The remaining terms (5̄,−3)i and (5,−2)i contain three families of up- and down-type

Higgs doublets, Hui and Hdi, and charged ±1/3 coloured exotics, Di and D̄i. These are

all superfields and are written with hats in the following.

The low energy gauge invariant superpotential can be written

WE6SSM = W0 +W1,2, (2.5)
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where W0,1,2 are given by

W0 = λjkiĤdjĤukŜi + κjki
ˆ̄DjD̂kŜi + hNijkN̂

c
i ĤujL̂Lk

+ hUijkĤuiQ̂Lj û
c
Rk + hDijkĤdiQ̂Lj d̂

c
Rk + hEijkĤdiL̂Lj ê

c
Rk, (2.6)

W1 = gQijkD̂iQ̂LjQ̂Lk + gqijk
ˆ̄Did̂

c
Rj û

c
Rk, (2.7)

W2 = gNijkN̂
c
i D̂j d̂

c
Rk + gEijkD̂iû

c
Rj ê

c
Rk + gDijk

ˆ̄DiQ̂LjL̂Lk, (2.8)

with W1,2 referring to either W1 or W2 (but not both together which would result in

excessive proton decay unless the associated Yukawa couplings were very small).

At the renormalisable level the gauge invariance ensures matter parity and hence LSP

stability. All lepton and quark superfields are defined to be odd under matter parity ZM2 ,

while Ĥui, Ĥdi, D̂i,
ˆ̄Di, and Ŝi are even. This means that the fermions associated with

D̂i,
ˆ̄Di are SUSY particles analogous to the Higgsinos, while their scalar components may

be thought of as colour-triplet (and electroweak singlet) Higgses, making complete 5 and

5̄ representations without the usual doublet-triplet splitting.

In order for baryon and lepton number to also be conserved, preventing rapid proton

decay mediated by D̂i,
ˆ̄Di, one imposes either Zqq2 or Zlq2 . Under Zqq2 , the lepton, including

the RH neutrino, superfields are assumed to be odd, which forbids W2. Under Z
lq
2 , the

lepton and the D̂i,
ˆ̄Di superfields are assumed odd, which forbids W1. Baryon and lepton

number are conserved at the renormalisable level, with the D̂i,
ˆ̄Di interpreted as being

either diquarks in the former case or leptoquarks in the latter case.

In the E6SSM, a further approximate flavour symmetry ZH2 was also assumed. It is

this approximate symmetry that distinguishes the third (by definition, “active”) generation

of Higgs doublets and SM-singlets from the second and first (“inert”) generations. Under

this approximate symmetry, all superfields are taken to be odd, apart from the active Ŝ3,

Ĥd3, and Ĥu3 which are taken to be even. The inert fields then have small couplings

to matter and do not radiatively acquire VEVs or lead to large flavour changing neutral

currents. The active fields can have large couplings to matter and radiative electroweak

symmetry breaking (EWSB) occurs with these fields. In particular the VEV 〈S3〉 = s/
√

2

is responsible for breaking the U(1)N gauge group and generating the effective µ term and

D-fermion masses. In particular we must have s > 5 TeV in order to satisfy MZ′
N
> 2.5 TeV,

which is the current LHC Run 2 experimental limit [194].

We now propose a variant of the E6SSM in which we allow all three singlets Ŝi (as

well as Ĥd3 and Ĥu3 ) to be even under the ZH2 . This allows all three singlets Ŝi to couple

to Ĥui and Ĥdi as well as D̂i and ˆ̄Di. If for simplicity we take the couplings in eq. (2.6) to

have the diagonal form, λjki ∝ λjiδjk and κjki ∝ κjiδjk, then the ZH2 symmetry allows to

reduce the structure of the Yukawa interactions in the superpotential to:

WE6SSM ' λjiĤdjĤujŜi + κji
ˆ̄DjD̂jŜi +WMSSM (µ = 0) . (2.9)

The superfield Ŝ3 is assumed to acquire a rather large VEV (〈S3〉 = s/
√

2) giving rise to

the effective µ term, masses of exotic quarks and inert Higgsino states which are given by

µ =
λ33s√

2
, µHα =

λα3s√
2
, µDi =

κi3s√
2
,
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In our analysis here we restrict our consideration to the case when exotic quarks and inert

Higgsinos are sufficiently light compared to the VEV s > 5 TeV, but are heavier than half

the mass of the 750 GeV resonance, so that they appear in loop diagrams for the singlet

decays. It means that the Yukawa couplings of Ŝ3 to all exotic states should be quite small.

Throughout this paper we are going to assume that some scalar components of the first

and second singlets Ŝα, with α = 1, 2, can be identified with the resonances which give rise

to the excess of diphoton events at an invariant mass around 750 GeV recently reported

by the LHC experiments. ATLAS and CMS measurements indicate that the branching

ratios of the decays of such resonances into SM fermions have to be sufficiently small.

This implies that the mixing between the scalar components of Ŝα and the neutral scalar

components of the third pair of Higgs doublets Hu and Hd, which are the ones that give

rise to the EWSB, should be strongly suppressed. In order to ensure the suppression of the

corresponding mixing we impose the further requirement, namely that the SM singlets Ŝα,

with α = 1, 2, have rather small couplings to the third pair of Higgs doublets Hu and Hd,

i.e. λ3α ≈ 0. This guarantees that Ŝα develop rather small VEVs and the mixing between

the neutral scalar components of Ŝα, Hu and Hd can be negligibly small so that it can be

even ignored in the leading approximation. In this context it is worth pointing out that if

couplings κi3, λ3α, λα3 and λ33 are set to be small at the scale MX then they will remain

small at any scale below MX .

Neglecting the Yukawa couplings λ3α the low energy effective superpotential of the

modified E6SSM below the scale 〈Ŝ3〉 can be written as

Weff ' λα1Ŝ1(Ĥd
αĤ

u
α) + κi1Ŝ1(D̂i

ˆ̄Di) + λα2Ŝ2(Ĥd
αĤ

u
α) + κi2Ŝ2(D̂i

ˆ̄Di)

+ µHα(Ĥd
αĤ

u
α) + µDi(D̂i

ˆ̄Di) +WMSSM (µ 6= 0) .

(2.10)

where α = 1, 2 and i = 1, 2, 3. The superpotential (2.10) does not contain any mass

terms that involve superfields Ŝα. This implies that the fermion components of Ŝα can be

very light. In particular, the corresponding states can be lighter than 0.1 eV forming hot

dark matter in the Universe. Such fermion states have negligible couplings to Z boson as

well as other SM particles and therefore would not have been observed at earlier collider

experiments. These states also do not change the branching ratios of the Z boson and

Higgs decays.1 Moreover if Z ′ boson is sufficiently heavy the presence of such light fermion

states does not affect Big Bang Nucleosynthesis [181–183].

The superpotential (2.10) contains ten new Yukawa couplings λα1, λα2, κi1 and κi2.

The running of these Yukawa couplings obey the following system of the renormalization

1The presence of very light neutral fermions in the particle spectrum might have interesting implications

for the neutrino physics (see, for example [195]).
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group (RG) equations:

dλα 1

dt
=

λα 1

(4π)2

[
2λ2

α 1 + 2λ2
α 2 + 2

(∑
β

λ2
β 1

)
+ 3

(∑
j

κ2
j1

)
− 3g2

2

− 3

5
g2

1 −
19

10
g
′2
1

]
+

λα 2

(4π)2

[
2

(∑
β

λβ 1λβ 2

)
+ 3

(∑
j

κj1κj2

)]
,

dλα 2

dt
=

λα 2

(4π)2

[
2λ2

α 1 + 2λ2
α 2 + 2

(∑
β

λ2
β 2

)
+ 3

(∑
j

κ2
j2

)
− 3g2

2

− 3

5
g2

1 −
19

10
g
′2
1

]
+

λα 1

(4π)2

[
2

(∑
β

λβ 1λβ 2

)
+ 3

(∑
j

κj1κj2

)]
,

dκi 1
dt

=
κi 1

(4π)2

[
2κ2

i 1 + 2κ2
i 2 + 2

(∑
β

λ2
β 1

)
+ 3

(∑
j

κ2
j1

)
− 16

3
g2

3

− 4

15
g2

1 −
19

10
g
′2
1

]
+

κi 2
(4π)2

[
2

(∑
β

λβ 1λβ 2

)
+ 3

(∑
j

κj1κj2

)]
,

dκi 2
dt

=
κi 2

(4π)2

[
2κ2

i 1 + 2κ2
i 2 + 2

(∑
β

λ2
β 2

)
+ 3

(∑
j

κ2
j2

)
− 16

3
g2

3

− 4

15
g2

1 −
19

10
g
′2
1

]
+

κi 1
(4π)2

[
2

(∑
β

λβ 1λβ 2

)
+ 3

(∑
j

κj1κj2

)]
.

(2.11)

The requirement of validity of perturbation theory up to the Grand Unification scale MX

restricts the interval of variations of these Yukawa couplings at low-energies. In our analysis

here we use a set of one-loop RG equations (2.11) while the evolution of gauge couplings

is calculated in the two-loop approximation.

3 750GeV diphoton excess in the variant E6SSM

Turning now to a discussion of the 750 GeV diphoton excess recently observed by ATLAS

and CMS in the framework of the variant of the E6SSM discussed in the previous section,

whose effective superpotential is given by eq. (2.10). This SUSY model involves two SM

singlet superfields Ŝ1,2 plus a set of extra vector-like supermultiplets beyond the MSSM,

including two pairs of inert Higgs doublets (Ĥd
α and Ĥu

α), as well as three generations of

exotic quarks D̂i and D̂i with electric charges ∓1/3.

The scenario discussed in this section is that the 750-760 GeV diphoton resonance

may be identified as one or two scalars denoted N1,2 and/or one or two pseudoscalars

denoted A1,2 contained in the two singlet superfields Ŝ1,2. The masses of these scalars

and pseudoscalars arises from the soft SUSY breaking sector. However, to simplify our

analysis, we assume that all other sparticles are sufficiently heavy so that their contributions
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to the production and decay rates of states with masses around 750 GeV can be ignored.

Moreover the scenario under consideration implies that almost all exotic vector-like fermion

mass states are heavier than 375 GeV so that the on-shell decays of Nα and Aα into the

corresponding particles are not kinematically allowed.

Integrating out the heavy fermions corresponding to two pairs of inert Higgsino dou-

blets H̃d
α and H̃u

α and three generations of vector-like Di and Di fermions, which appear

in the usual triangle loop diagrams, one obtains the effective Lagrangian which describes

the interactions of Nα and Aα with the SM gauge bosons,

Leff =
∑
α

(
c1αNαBµνB

µν + c2αNαW
a
µνW

aµν + c3αNαG
σ
µνG

σµν

+ c̃1αAαBµνB̃
µν + c̃2αAαW

a
µνW̃

aµν + c̃3αAαG
σ
µνG̃

σµν

)
,

(3.1)

where

c1α =
αY
16π

[∑
i

2κiα

3
√

2µDi
A(xDi) +

∑
β

λβα√
2µHβ

A(xHβ )

]
,

c2α =
α2

16π

[∑
β

λβα√
2µHβ

A(xHβ )

]
,

c3α =
α3

16π

[∑
i

κiα√
2µDi

A(xDi)

]
,

A(x) = 2x(1 + (1− x) arcsin2[1/
√
x]) , for x ≥ 1 .

(3.2)

In eq. (3.1) Bµν , W a
µν , Gσµν are field strengths for the U(1)Y , SU(2)W and SU(3)C gauge

interactions respectively while G̃σµν = 1
2ε
µνλρGσλρ etc. In eqs. (3.2) xDi = 4µ2

Di
/M2

X , xHα =

4µ2
Hα
/M2

X and αY = 3α1/5 whereas α1, α2 and α3 are (GUT normalised) gauge couplings of

U(1)Y , SU(2)W and SU(3)C interactions. In order to obtain analytic expressions for c̃iα one

should replace in eqs. (3.2) ciα by c̃iα and substitute function B(x) instead of A(x), where

B(x) = 2x arcsin2[1/
√
x] . (3.3)

Because in our analysis we focus on the diphoton decays of Nα and Aα that may lead to

the 750 GeV diphoton excess it is convenient to use the effective Lagrangian that describes

the interactions of these fields with the electromagnetic one. Using eq. (3.1) one obtains

Lγγeff =
∑
α

(
cγαNαFµνF

µν + c̃γαAαFµνF̃
µν

)
, (3.4)

where cγα = c1α cos2 θW + c2α sin2 θW , c̃γα = c̃1α cos2 θW + c̃2α sin2 θW and Fµν is a field

strength associated with the electromagnetic interaction.

At the LHC the exotic states Nα and Aα can be predominantly produced through gluon

fusion. When exotic quarks have masses below 1 TeV the corresponding production cross

– 7 –
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section is rather large and determined by the effective couplings |c3α|2 and |c̃3α|2. However

such states mainly decay into a pair of gluons which is very problematic to detect at the

LHC. Therefore possible collider signatures of these exotic states are associated with their

decays into WW , ZZ, γZ and γγ. Since W and Z decay mostly into quarks the process

pp → Nα(Aα) → γγ tends to be one of the most promising channels to search for such

resonances. In the limit when exotic states decay predominantly into a pair of gluons the

branching ratios of Nα → γγ and Aα → γγ are proportional to |cγα|2/|c3α|2 and |c̃γα|2/|c̃3α|2

respectively. As a consequence cross sections σ(pp → Nα(Aα) → γγ) do not depend on

|c3α|2 and |c̃3α|2. The corresponding signal strengths are basically defined by the partial

decay widths Γ(Nα → γγ) and Γ(Aα → γγ).

The cross sections of the processes that may result in the 750 GeV diphoton excess can

be written as

σ(pp→ Xα → γγ) ' Cgg
MXαsΓXα

Γ(Xα → gg)Γ(Xα → γγ) , (3.5)

where Xα is either Nα or Aα exotic states, ΓXα is a total decay width of the resonance

Xα while Cgg ' 3163,
√
s ' 13 TeV and MXα is the mass of the appropriate exotic state

which should be somewhat around 750 GeV. The partial decay widths of the corresponding

resonances are given by

Γ(Nα → gg) =
2

π
M3
Nα |c3α|2 , Γ(Aα → gg) =

2

π
M3
Aα |c̃3α|2 ,

Γ(Nα → γγ) =
M3
Nα

4π
|cγα|2 , Γ(Aα → γγ) =

M3
Aα

4π
|c̃γα|2 .

(3.6)

In the limit when ΓXα ≈ Γ(Xα → gg) the dependence of the cross section (3.5) on Γ(Xα →
gg) disappear and its value is determined by the partial decay width Γ(Xα → γγ) as

one could naively expect. In this case, as it was pointed out in [10], one can obtain

σ(pp→ γγ) ≈ 8 fb at the 13 TeV LHC if

Γ(Xα → γγ)

MXα

= 1.1× 10−6 . (3.7)

Then the cross section σγγ ≈ σ(pp → γγ) for arbitrary partial decay widths of Xα → γγ

can be approximately estimated as

σγγ ' 7.3 fb× BR(Xα → gg)×
(

Γ(Xα → γγ)

MXα

× 106

)
. (3.8)

where the branching ratios associated with the decays of exotic states into gluons g and

vector bosons V (V = γ, W±, Z) are given by

BR(Xα → gg) =
Γ(Xα → gg)

ΓXα
, BR(Xα → V V ) =

Γ(Xα → V V )

ΓXα
. (3.9)

In eqs. (3.9) Γ(Xα → gg) and Γ(Xα → V V ) are partial decay widths that correspond

to the exotic state decays into a pair of gluons and a pair of vector bosons respectively

whereas ΓXα is a total decay width of this state.
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3.1 One scalar/pseudoscalar case

Let us now consider the scenario when one of the scalar/pseudoscalar exotic states (N1 or

A1) has a mass which is rather close to 750 GeV. From eqs. (3.2)–(3.4) and (3.6) it follows

that the diphoton decay rates of these new bosons and the corresponding signal strength

depend very strongly on the values of the Yukawa coulings λα1 and κi1. On the other hand

the growth of these Yukawa couplings at low energies entails the increase of their values at

the Grand Unification scale MX resulting in the appearance of the Landau pole that spoils

the applicability of perturbation theory at high energies (see, for example [196–198]). The

requirement of validity of perturbation theory up to the scale MX sets an upper bound on

the low energy value of λα1 and κi. In our analysis we use two-loop SM RG equations to

compute the values of the gauge couplings at the scale Q = 2 TeV. Above this scale we use

two-loop RG equations for the gauge couplings and one-loop RG equations for the Yukawa

couplings including the ones given by eq. (2.11) to analyse the RG flow of these couplings.

In the simplest case when λα1 = κi1 our numerical analysis indicates that the values of

these couplings at the scale Q = 2 TeV should not exceed 0.6.

The upper bound on the coupling λα1 becomes less stringent when κi1 are small. In

the limit when all κi1 vanish the value of λ11 = λ21 has to remain smaller than 0.81 to

ensure the applicability of perturbation theory up to the GUT scale. Although in this case

Γ(A1 → γγ) and Γ(N1 → γγ) attain their maximal value the production cross sections of

exotic states N1 or A1 are negligibly small since they are determined by the low-energy

values of κi1. The upper bounds on κi1 can be also significantly relaxed when λ11 = λ21 = 0.

If this is a case then the requirement of the validity of perturbation theory implies that

κ11 = κ21 = κ31 . 0.79. However in this limit the diphoton production rate associated

with the presence A1 or N1 is again negligibly small because the corresponding partial

decay width vanish. Thus in this section we focus on the scenario with λα1 = κi1 = 0.6.

This choice of parameters guarantees that the production cross sections of N1 and A1 as

well as their partial decay width can be sufficiently large.

In figures 1a and 1b the dependence of the branching ratios of the exotic pseudoscalar

and scalar states on the masses of exotic quarks is examined. To simplify our analysis

the masses of all exotic quarks are set to be equal while the masses of all inert Higgsinos

are assumed to be around 400 GeV. From figure 1a and 1b it follows that the exotic

pseudoscalar and scalar states decay predominantly into a pair of gluons when the masses

of exotic quarks µD are below 1 TeV. Moreover if µD is close to 400 − 500 GeV all other

branching ratios are negligibly small. With increasing µD the branching ratio of the exotic

pseudoscalar (scalar) state decays into gluons decreases whereas the branching ratios of

the decays of this state into W+W−, ZZ, γγ and γZ increase. The branching ratios of

A1(N1)→ WW and A1(N1)→ ZZ are the second and third largest ones. The branching

ratio of A1(N1)→ γγ is considerably smaller but still larger than A1(N1)→ γZ. Although

the branching ratios of A1(N1) → WW and A1(N1) → ZZ can be a substantially bigger

than the branching ratio A1(N1) → γγ their experimental detection is more problematic

because W and Z decays mainly into quarks. When µD is around 1 TeV the branching

ratio of A1(N1) → gg is still the largest one and constitutes about 75%(80%) while for

µD ' 2 TeV the branching ratios of A1(N1)→ gg and A1(N1)→WW become comparable.
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Figure 1. Predictions for the one pseudoscalar (left panels) or one scalar (right panels) case. In all

cases the masses of vector-like quarks are set to be equal, i.e. µDi = µD, whereas λα1 = κi1 = 0.6,

λα2 = κi2 = 0. In (a) the branching ratios of the decays of A1 into γZ (lowest solid line), γγ (second

lowest solid line), ZZ (third lowest solid line), WW (second highest solid line) and gg (highest solid

line) as a function of exotic quark masses µD for MA1
' 750 GeV. In (b) the branching ratios of

the decays of N1 into γZ (lowest dashed line), γγ (second lowest dashed line), ZZ (third lowest

dashed line), WW (second highest dashed line) and gg (highest dashed line) as a function of µD for

MN1 ' 750 GeV. In (c) the ratios Γ(A1 → γγ)/MX as a function of µD for MA1 ' 750 GeV. The

upper and lower solid lines correspond to the scenarios with µHα = 400 GeV and µHα = 500 GeV.

In (d) the ratios Γ(N1 → γγ)/MX as a function of µD for MN1
' 750 GeV. The upper and lower

dashed lines correspond to the scenarios with µHα = 400 GeV and µHα = 500 GeV. In (e) the cross

sections σ(pp→ A1 → γγ) in fb as a function of µD for MA1 ' 750 GeV. The upper and lower solid

lines represent the scenarios with µHα = 400 GeV and µHα = 500 GeV. In (f) the cross sections

σ(pp→ N1 → γγ) in fb as a function of µD for MN1
' 750 GeV. The upper and lower dashed lines

represent the scenarios with µHα = 400 GeV and µHα = 500 GeV.
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In figure 1c and 1d we explore the dependence of the partial decay widths associated

with the decays of the exotic pseudoscalar and scalar states into a pair of photons on the

masses of exotic quarks and inert Higgsinos µHα . One can see that these decay widths

decrease very rapidly with increasing µHα . The dependence on the masses of exotic quarks

is weaker because these states carry small electric charges ±1/3. Since here we assume

that κi1/µDi and λα1/µHα have the same sign the growth of either exotic quark masses

or µHα results in the reduction of the corresponding decay rate. When µD is larger than

1.5 TeV the dependence of the partial decay widths under consideration becomes rather

weak. From figure 1c and 1d it is easy to see that the partial width of the decays A1 → γγ

is substantially larger than the one associated with N1 → γγ leading to the larger value of

the cross sections σ(pp→ A1 → γγ) as compared with σ(pp→ N1 → γγ).

In our analysis we use eq. (3.8) to estimate the values of the cross sections σ(pp →
A1 → γγ) and σ(pp → N1 → γγ) at the 13 TeV LHC. The results of our investigation

are shown in figures 1e and 1f. In the case of scalar exotic states with mass 750 GeV this

cross section tends to be substantially smaller than 1 fb. The presence of 750 GeV exotic

pseudoscalar can lead to the considerably stronger signal in the diphoton channel. When

all exotic quarks have masses around 400 − 500 GeV the corresponding cross section can

reach 2−3 fb. Somewhat stronger signal can be obtained if we assume that both scalar and

pseudoscalar exotic states have masses which are close to 750 GeV. In this case the sum of

the cross sections σ(pp→ A1 → γγ) + σ(pp→ N1 → γγ) can reach 4.5 fb if exotic quarks

have masses about 400 GeV. The existence of two nearly degenerate resonances may also

explain why the analysis performed by the ATLAS collaboration leads to the relatively

large best-fit width which is about 45 GeV. Unfortunately, the cross sections mentioned

above decreases substantially with increasing exotic quark masses. Indeed, if µD & 1 TeV

the sum of the cross sections σ(pp→ A1 → γγ) + σ(pp→ N1 → γγ) does not exceed 2 fb.

These cross sections continue to fall even for µD & 1.5 TeV when the corresponding partial

decay widths are rather close to their lower saturation limits because the branching ratios

associated with the decays of A1 and N1 into a pair of gluons decrease with increasing µD.

3.2 Two degenerate scalar/pseudoscalar case

Now let us assume that there are two superfields Ŝ1 and Ŝ2 that have sufficiently large

Yukawa couplings to the exotic quark and inert Higgsino states and can contribute to the

measured cross section pp → γγ. In other words we assume that scalar and pseudoscalar

components of both superfields can have masses around 750 GeV. Naively one may expect

that this could allow to enhance the theoretical prediction for the cross section pp → γγ.

Again we start from the simplest case when all Yukawa couplings are the same. Then the

numerical analysis indicates that in this case the requirement of the validity of perturbation

theory up to the scale MX sets even more stringent upper bound on the low energy value

of the Yukawa couplings as compared with the one scalar/pseudoscalar case. Indeed, using

the one-loop RG equations (2.11) and two-loop RG equations for the gauge couplings one

obtains that λα1 = κi1 = λα2 = κi2 = λ0 . 0.43. Smaller values of the Yukawa couplings

do not affect the branching ratios of A1 and N1. Moreover A2 and A1 as well as N2 and N1

have basically the same branching ratios. This is because partial decay widths of A1,2 and
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Figure 2. Predictions for two degenerate pseudoscalars (left panels) or two degenerate scalars (right

panels) case. In all cases µDi = µD, while µHα = 400 GeV, λα1 = κi1 = 0.43 and λα2 = κi2 = 0.41.

In (a) the branching ratios of the decays of A1,2 into γZ (lowest solid line), γγ (second lowest

solid line), ZZ (third lowest solid line), WW (second highest solid line) and gg (highest solid line)

as a function of exotic quark masses µD for MA1,2
' 750 GeV. In (b) the branching ratios of

the decays of N1,2 into γZ (lowest dashed line), γγ (second lowest dashed line), ZZ (third lowest

dashed line), WW (second highest dashed line) and gg (highest dashed line) as a function of µD for

MN1,2 ' 750 GeV. In (c) the ratios Γ(A1 → γγ)/MX (upper solid line) and Γ(A2 → γγ)/MX (lower

solid line) as a function of µD for MA1,2
' 750 GeV. In (d) the ratios Γ(N1 → γγ)/MX (upper

dashed line) and Γ(N2 → γγ)/MX (lower dashed line) as a function of µD for MN1,2
' 750 GeV.

In (e) the cross sections (fb) σ(pp → A1 → γγ) (upper solid line) and σ(pp → A2 → γγ) (lower

solid line) as a function of µD for MA1,2 ' 750 GeV. The dashed-dotted line correspond to the sum

of these cross sections. In (f) the cross sections (fb) σ(pp → N1 → γγ) (upper dashed line) and

σ(pp→ N2 → γγ) (lower dashed line) as a function of µD for MN1,2
' 750 GeV. The dashed-dotted

line correspond to the sum of these cross sections.
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N1,2 as well as the corresponding total widths are proportional to λ2
0. As a consequence

in the leading approximation branching ratios do not depend on λ0 (see figure 2a and 2b).

On the other hand as one can see from figure 1c, 1d, 1e and 1f the partial decay widths

of A1,2 → γγ and N1,2 → γγ as well as the cross sections σ(pp → A1,2 → γγ) and

σ(pp → N1,2 → γγ) are reduced by factor 2 because of the smaller values of the Yukawa

couplings. If all exotic states A1 and A2 as well as N1 and N2 are nearly degenerate around

750 GeV so that their distinction is not possible within present experimental accuracy,

then the superpositions of rates from these bosons basically reproduces the corresponding

rates in the one scalar/pseudoscalar case (see figures 1e, 1f, 2e and 2f). Thus, it seems

rather problematic to achieve any enhancement of the signal in the diphoton channel in

the scenario when all Yukawa couplings are equal or reasonably close to each other.

3.3 Maximal mixing scenario

Following on from the discussion in the previous subsection, there is one case when a modest

enhancement of the signal in the diphoton channel can be achieved. This happens in the

so-called maximal mixing scenario when the masses of exotic scalars as well as the masses of

exotic pseudoscalars are rather close to 750 GeV and the breakdown of SUSY gives rise to

the mixing of these states preserving CP conservation. In this case one can expect that the

mixing angles between CP-odd exotic states and CP-even exotic states tend to be rather

large, i.e.about ±π/4, because these bosons are nearly degenerate. To simplify our analysis

here we set these angles to be equal to π/4. Then the scalar components of the superfields

S1 and S2 can be expressed in terms of the mass eigenstates N1, N2, A1 and A2 as follows

S1 =
1

2
(N1 +N2 + i(A1 +A2)) , S2 =

1

2
(N1 −N2 + i(A1 −A2)) . (3.10)

In addition we assume that only superfield S1 couples to the inert Higgsino states, i.e.

λα2 = 0, and only superfield S2 couples to the exotic quarks, i.e. κi1 = 0. In this limit

the requirement of the validity of perturbation theory up to the scale MX implies that

λα1 = λ0 . 0.8 and κi2 = κ0 . 0.79.

Setting µHα = µH , µDi = µD and MN1 ' MN2 ' MA1 ' MA2 ' MX = 750 GeV one

can obtain simple analytical expressions for the partial decay widths of N1, A1, N2 and A2

into a pair of photons

Γ(N1 → γγ) =
α2M3

X

256π3

∣∣∣∣∣ λ0

µH
A(xH) +

κ0

2µD
A(xD)

∣∣∣∣∣
2

, (3.11)

Γ(A1 → γγ) =
α2M3

X

256π3

∣∣∣∣∣ λ0

µH
B(xH) +

κ0

2µD
B(xD)

∣∣∣∣∣
2

, (3.12)

Γ(N2 → γγ) =
α2M3

X

256π3

∣∣∣∣∣ λ0

µH
A(xH)− κ0

2µD
A(xD)

∣∣∣∣∣
2

, (3.13)

Γ(A2 → γγ) =
α2M3

X

256π3

∣∣∣∣∣ λ0

µH
B(xH)− κ0

2µD
B(xD)

∣∣∣∣∣
2

, (3.14)

– 13 –



J
H
E
P
0
3
(
2
0
1
6
)
1
3
9

BR(A1 → gg,WW,ZZ, γγ, γZ) BR(N1 → gg,WW,ZZ, γγ, γZ)

500 1000 1500 2000

1

0.1

0.01

0.001

500 1000 1500 2000

1

0.1

0.01

0.001

µD µD

(a) (b)

BR(A2 → gg,WW,ZZ, γZ, γγ) BR(N2 → gg,WW,ZZ, γZ, γγ)

500 1000 1500 2000

1

0.1

0.01

0.001

500 1000 1500 2000

1

0.1

0.01

0.001

µD µD

(c) (d)

Figure 3. Predictions for the branching ratios in the maximal mixing scenario for two maximally

mixed pseudoscalars (left panels) or two maximally mixed scalars (right panels) case. In all cases

the masses of exotic quarks are set to be equal, i.e. µDi = µD, while µHα = 400 GeV, λα1 = 0.8,

κi2 = 0.79 and κi1 = λα2 = 0. In (a) the branching ratios of the decays of A1 into γZ (lowest

solid line), γγ (second lowest solid line), ZZ (third lowest solid line), WW (second highest solid

line) and gg (highest solid line) as a function of exotic quark masses for MA1
' 750 GeV. In (b)

the branching ratios of the decays of N1 into γZ (lowest dashed line), γγ (second lowest dashed

line), ZZ (third lowest dashed line), WW (second highest dashed line) and gg (highest dashed

line) as a function of exotic quark masses for MN1
' 750 GeV. In (c) the branching ratios of the

decays of A2 into γγ (lowest solid line), γZ (second lowest solid line), ZZ (third lowest solid line),

WW (second highest solid line) and gg (highest solid line) as a function of exotic quark masses for

MA1
' 750 GeV. In (d) the branching ratios of the decays of N2 into γγ (lowest dashed line), γZ

(second lowest dashed line), ZZ (third lowest dashed line), WW (second highest dashed line) and

gg (highest dashed line) as a function of exotic quark masses for MN1
' 750 GeV.

where xD = 4µ2
D/M

2
X and xH = 4µ2

H/M
2
X . Assuming, that κ0/µD and λ0/µD have the

same sign, eqs. (3.11) and (3.12) are very similar to the ones which was used before for

the calculation of the corresponding partial decay widths in one scalar/pseudoscalar case.

Because the expressions for other partial decay widths are also very similar the branching

ratios shown in figures 3a and 3b are almost the same as in figures 1a and 1b. At the same

time in the case of N2 and A2 destructive interference between the contributions of exotic

quarks and inert Higgsinos occurs. This leads to the suppression of the diphoton partial

decay width. As a consequence when exotic quarks are lighter than 1 TeV the branching

ratios of the decays N2 → γγ and A2 → γγ are the lowest ones (see figures 3c and 3d).
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As before from figure 3 it follows that all exotic states N1, A1, N2 and A2 decay mainly

into a pair of gluons. The corresponding branching ratio decreases with increasing µD be-

cause c3α and c̃3α diminish. The branching ratios of the decay of these states into WW and

ZZ are the second largest and third largest ones. These branching ratios are substantially

larger than the ones associated with the decays of exotic states into γγ and γZ. In the case

of N2 and A2 the branching ratios of the decay of these states into WW can be an order of

magnitude larger than the branching ratios of N2 → γγ and A2 → γγ. Nevertheless the ob-

servation of the decays of Nα and Aα into pairs of WW and ZZ tend to be more problematic

since W and Z decay mostly into quarks. All branching ratios of the exotic scalar and pseu-

doscalar decays except the largest one grow with increasing µD. As a result for µD ' 2 TeV

the branching ratios of Aα(Nα)→ gg and Aα(Nα)→WW become sufficiently close.

The dependence of the partial decay widths and the corresponding cross sections

at the 13 TeV LHC associated with the decays of the exotic pseudoscalar and scalar

states into a pair of photons on the exotic quark masses is shown in figure 4. The re-

sults of our calculations for N1 and A1 are very similar to the ones obtained in the one

scalar/pseudoscalar case (see figure 2e and 2f). The partial decay widths and the cross sec-

tions σ(pp→ A1(N1)→ γγ) are just a bit smaller since the Yukawa couplings of A1 and N1

to the exotic quarks and inert Higgsino states are slightly smaller. They decrease with in-

creasing the masses of exotic quarks µD as before. On the contrary, the partial decay widths

of N2 → γγ and A2 → γγ increase with increasing the exotic quark masses for fixed values

of inert Higgsino masses because of the destructive interference mentioned above. They at-

tain their maximal values for µD � 1 TeV when the contribution of the exotic quarks to the

partial decay widths become vanishingly small. The cross sections σ(pp→ A2(N2)→ γγ)

also increase with increasing exotic quark masses when µD . 700 GeV. However if exotic

quarks are considerably heavier than 1 TeV then these cross sections become smaller for

larger µD since the branching ratios of A2(N2)→ gg diminish.

The sums of the cross sections σ(pp → N1 → γγ) + σ(pp → N2 → γγ) and σ(pp →
A1 → γγ)+ σ(pp→ A2 → γγ) that correspond to the case when all exotic scalar and pseu-

doscalar states have masses around 750 GeV decreases with increasing µD (see figures 4c

and 4d). At large values of the exotic quark masses these cross sections are bigger than the

ones in the one scalar/pseudoscalar case shown in figure 1e and 1f. This is because the re-

quirement of the validity of perturbation theory up to the scale MX allows for larger values

of λα1 in the maximal mixing scenario as compared with the one scalar/pseudoscalar case.

From figures 4c and 4d one can see that the sum of all cross section that includes contribu-

tions of all scalar and pseudoscalar states with masses around 750 GeV changes from 4.5 fb

to 3 fb when the exotic quark masses vary from 400 GeV to 1 TeV. The presence of such

nearly degenerate states in the particle spectrum may also provide an explanation why the

value of the best-fit width of the resonance obtained by ATLAS collaboration is so large.

4 Conclusions

In this paper we have proposed a variant of the E6SSM in which the third singlet S3 breaks

the gauged U(1)N above the TeV scale, which predicts a Z ′N , vector-like colour triplet
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Figure 4. Predictions for the maximal mixing scenario for two maximally mixed pseudoscalars

(left panels) or two maximally mixed scalars (right panels) case. In all cases µHα = 400 GeV,

λα1 = 0.8, κi2 = 0.79, λα2 = κi1 = 0 and the masses of exotic quarks are set to be equal, i.e.

µDi = µD. In (a) the ratios Γ(A1 → γγ)/MX (upper solid line) and Γ(A2 → γγ)/MX (lower solid

line) as a function of exotic quark masses in the maximal mixing scenario for MAα ' 750 GeV. In

(b) the ratios Γ(N1 → γγ)/MX (upper dashed line) and Γ(N2 → γγ)/MX (lower dashed line) as a

function of exotic quark masses in the maximal mixing scenario for MNα ' 750 GeV. In (c) the

cross sections in fb σ(pp→ A1 → γγ) (upper solid line) and σ(pp→ A2 → γγ) (lower solid line) as

a function of exotic quark masses for MA1,2
' 750 GeV. The dashed-dotted line correspond to the

sum of these cross sections. In (d) the cross sections in fb σ(pp→ N1 → γγ) (upper dashed line) and

σ(pp → N2 → γγ) (lower dashed line) as a function of exotic quark masses for MN1,2
' 750 GeV.

The dashed-dotted line correspond to the sum of these cross sections.

and charge ∓1/3 quarks D, D̄, and two families of inert Higgsinos, all of which should be

observed at LHC Run 2, plus the two lighter singlets Ŝ1,2 with masses around 750 GeV

which are candidates for the recently observed diphoton excess. We have calculated the

branching ratios and cross-sections for the two scalars N1,2 and two pseudoscalars A1,2

associated with Ŝ1,2, including possible degeneracies and maximal mixing, subject to the

constraint that their couplings remain perturbative up to the unification scale.

Our results show that this variant of the E6SSM with two nearly degenerate pseu-

doscalars A1,2 with masses around 750 GeV, may give rise to cross sections of pp→ γγ that

can be as large as about 3 fb providing that the inert Higgsino states have masses around

400 GeV, while the three generations of D, D̄ are lighter than about 1 TeV. If the two
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J
H
E
P
0
3
(
2
0
1
6
)
1
3
9

nearly denegerate scalars N1,2 also have masses around 750 GeV, then these cross-sections

may be further boosted by about 1 fb, assuming that they are at present unresolvable. The

existence of nearly degenerate spinless singlets provides an explaination for why the best-

fit width of the 750 GeV resonance obtained by the ATLAS collaboration is apparently so

large, i.e. about 45 GeV. However further data from Run 2 should begin to resolve the two

separate pseudoscalar states A1,2 (plus perhaps the two scalar states N1,2).

Finally we emphasise that the three families of light vector-like D-quarks around 1 TeV

and two families of inert Higgsinos around 400 GeV, although not currently ruled out

because of their non-standard decay patterns, should be observable in dedicated searches

at Run 2 of the LHC. The Z ′N gauge boson also remains a prediction of the E6SSM. In

addition, the proposed variant E6SSM also predicts further decay modes of the 750 GeV

resonance into WW , ZZ and γZ that might be possible to observe in the Run 2 at the LHC.
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