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Abstract 

High temperature steam or gas is used as the working medium for 

operation in advanced power conversion units, such as gas turbines or 

combined cycle power plants. The use of Concentrated Solar Power 

(CSP) technologies for energy generation relies on the heating of fluids 

to high temperatures. Conventional tubular or porous absorber 

volumetric receivers usually suffer from a relatively low thermal 

efficiency, less than 70%, and from high thermal losses. The solid 

particle solar receiver, in which the incoming solar radiation is directly 

absorbed by the solid particles and inner walls of the cavity receiver, 

promises to achieve higher thermal efficiency due to the enhanced heat 

transfer to the working fluid and the reduction in thermal losses. The 

main challenge in designing a high temperature solar receiver is to 

maximize the solar energy absorption and its efficient transfer to the 

working fluid, e.g. air. The objective of this research project is to 

characterize the thermal behaviour of a proposed cavity-type solar 

receiver concept based on the application of recirculating solid particles 

to achieve high temperature outlet air. In this concept, solar energy is 

absorbed by recirculating solid metallic particles, which, at the same 

time, transfer the absorbed thermal energy to the surrounding air in a 

cavity-type receiver. The cavity-type solid particle receiver is a well-

insulated enclosure, designed to capture the incident solar radiation 

effectively, which allows the incident radiation directly through an 

aperture.  

In this study, a well-insulated cavity-type enclosure was designed and 

constructed. The designed solar receiver consisted of an externally 

insulated cylindrical cavity with a circular aperture at the top covered 

by a quartz glass, a recirculating fan installed at the bottom of the 

chamber and with an inlet and an outlet installed on the chamber wall. 

A series of experiments were conducted to characterize the fluid 

dynamics and thermal behaviour of the solar receiver. The results 

showed that the direction of the total air flow velocity was vertically 



 

 

upward from the outer periphery of the fan and vertically downward 

through the centre of the receiver. The measured air flow velocity was 

normalized by against the particle terminal velocity. The results 

showed that the normalized flow velocity was 3 times higher than the 

particles terminal velocity and 45 times higher than the minimum 

fluidization velocity of particles for the same case. Hence the particle 

can be recirculated in the cavity. The particles’ concentration at 

different regions of the solar receiver was also measured using a laser-

based light-scattering technique. Black SiC of 70micron and 

200micron SiC particle were used during this experiment. The effect of 

particle size and fan RPM on the particle concentration at different 

regions of the solar receiver was optimized using the test results of the 

particle concentration measurements.  

At an RPM of 1250, the measured opacity of the particle cloud’s 

concentration was 0.95 for 70micron and 0.80 for 200micron particle 

at a specific freeboard height of the cavity. It is an indication that 

particles’ concentration and opacity at a different region is dependent 

on the particle size and air flow velocity. The results showed that the 

particle concentration and opacity increased exponentially with the 

RPM. The opacity is a measure of the irradiation penetration 

characteristics of the Xenon arc radiation beam into the cavity.  

The calculation of Stokes number and turbulence intensity from these 

measurements helped in understanding the slip velocity and velocity 

fluctuation of air and particles in the cavity. The maximum Stokes 

number was 0.50 for 70micron particle whereas it was 4 for 200 

micron particle measured at 500RPM. Hence, when comparing the 

Stokes numbers it becomes clear that the slip velocity was higher for 

200micron particles which denote more interaction with air. 

Turbulence intensity measurement showed that an average turbulence 

intensity of 38% was observed near the cavity wall and 30% at the 

centre of the cavity. Therefore, a better forced convection heat transfer 

was expected between the particle, air and cavity wall surface in the 

proposed receiver. 



 

 

Finally a thermal test was performed to assess the thermal 

performance of the designed solar receiver. Black SiC and brown 

alumina particles at two sizes (70 and 200microns) were used in these 

experiments. The results showed that the air temperature in the solar 

receiver, when radiated by a 5kW Xenon arc lamp, increased by up to 

83K resulting in a thermal efficiency of 55% for the proposed solar 

receiver. Here the air flow rate was set to 0.0055kg/s at an inlet 

temperature of 295K with no particles or fan forced circulation. When 

particles were added to the receiver, a 0.034% volume fraction, and the 

installed fan induced forced recirculation in the receiver the air 

temperature at the outlet of the receiver increased by 123K and the 

thermal efficiency reached 89% for the same air flow rate as before. The 

results of normalized thermal and power generation efficiency indicate 

that the use of recirculating particles enhances the thermal efficiency 

by 49% and power generation efficiency by 90%, when compared with 

the air only cavity-type solar receiver. Moreover the proposed 

recirculating flow receiver exhibits a more uniform temperature 

distribution than a conventional cavity-type solar receiver due to better 

mixing of air and particles, along with more effective radiation and 

convection heat transfer between them.  

A stand-alone feature of this solar receiver concept is that the air with 

particles is directly exposed to concentrated solar radiation 

monotonously through the recirculating flow inside the receiver and 

results in an efficient irradiation absorption and convective heat 

transfer to the air. The increase of thermal and power generation 

efficiency of more than 50% proved that the developed concept has the 

potential to enhance heat transfer from metallic particles to air through 

maximizing the heat carrying capacity by the particles and air from the 

receiver.  
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