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Abstract

Curcumin is a natural pigment extracted from turmeric. It is well known as a
spice and herbal medicine in east Asia. The medicinal effects of curcumin have been
demonstrated for cancer, inflammation, Alzheimer’s disease, and cystic fibrosis. Re-
cent studies have explored a number of delivery systems to suppress rapid aqueous
degradation of curcumin and improve its bioavailability. Previously, we have demon-
strated that diamide linked γ-cyclodextrin dimers, namely 66γCD2su and 66γCD2-
ur, suppress the degradation of curcumin by forming strong 1:1 cooperative binding
complexes under physiological conditions. This result indicates the potential for 66-
γCD2su and 66γCD2ur as curcumin delivery systems.

As a part of the thesis work, both 66γCD2su and 66γCD2ur are used as molecular-
scale delivery agents for curcumin in potential treatment of cancer. Cellular viabil-
ity assays and gene regulation in human prostate cancer (PC-3) cells show an anti-
proliferative effect of curcumin complexed with 66γCD2su and 66γCD2ur, which is
comparable with that of curcumin alone. Both 66γCD2su and 66γCD2ur carriers
show a lack of toxicity to the cells. Fluorescence studies show the intracellular de-
livery of curcumin by 66γCD2su and 66γCD2ur. Our results strongly suggest the
potential of these carriers for future studies involving animal models.

To further understand the properties of curcumin, particularly its photo-therapeutic
effect, ultrafast dynamics of curcumin complexed with 66γCD2su and 66γCD2ur are
investigated using femtosecond transient absorption spectroscopy. Both curcumin
complexes show only an excited state absorption (ESA) band without any stimulated
emission signals. The ESA decay kinetics reveals the non-radiative relaxation of cur-
cumin through solvent reorganization, excited state intramolecular hydrogen atom
transfer, and other slow dynamics of inclusion molecules and flexibility of the γ-CD
moieties of 66γCD2su and 66γCD2ur. In addition, transient absorption anisotropy
studies reveal slow rotational motions of the curcumin complexes due to their large
hydrodynamic volumes.

Hydrophobically modified polyacrylates are also potential delivery systems for
curcumin because they suppress its degradation under physiological conditions. The
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3 % octadecyl randomly substituted polyacrylate, PAAC18, shows a remarkable abil-
ity to suppress the degradation of curcumin, which is attributed to strong hydrophobic
interactions between curcumin and the octadecyl substituents of PAAC18 within the
micelle-like aggregates and the hydrogel. In contrast, the 3 % dodecyl randomly sub-
stituted polyacrylate, PAAC12, shows a negligible effect on slowing the degradation
of curcumin, which is consistent with the dodecyl substituents being insufficiently
long to capture curcumin in an adequately hydrophobic environment.

The ultrafast dynamics of water molecules and curcumin in the PAAC18 hydrogel
are also studied using ultrafast spectroscopic techniques. The solvation dynamics
(reorganization) of water molecules in the PAAC18 hydrogel exhibit a triexponential
characteristic, as shown using femtosecond fluorescence upconversion spectroscopy.
We attribute the slow solvation dynamics to the confinement of water molecules in the
three-dimensional cross-linking network of the octadecyl substituents of PAAC18.
Moreover, non-radiative relaxation processes of curcumin were investigated using
femtosecond transient absorption spectroscopy.
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