Ultrafast Spectroscopy and Drug Delivery of the Medicinal Pigment Curcumin in Molecular Assemblies

Takaaki Harada

Department of Chemistry

The University of Adelaide

This dissertation is submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy

July 2015

Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

> Takaaki Harada July 2015

Acknowledgements

First and foremost, I would like to express my appreciation to my supervisor, A/Prof. Tak W. Kee, who has supported my PhD projects with his enthusiasm, encouragement, advice and immense knowledge. He has also got me interested in ultrafast spectroscopy and excited state dynamics. I would also like to thank for giving me the opportunities to work not only in Physical Chemistry but also in other disciplines. I believe I have gained important skills as a researcher.

I would also like to express my gratitude to Prof. Lincoln and his research group members. I have learnt a lot about how to write research manuscripts and data presentations through our publications. Special thanks go to Dr. Duc-Truc Pham for his support and advice during my polymer syntheses. I would not be able to accomplish my PhD projects without the fancy host molecules and polymers synthesised in his laboratory.

I would like to appreciate Dr. Grant Buchanan and his research group members, especially, Dr. Eleanor F. Need, Dr. Lauren Giorgio, Dr. Damien A. Leach, and Ms. Tiffany Harris, in School of Medicine at the University of Adelaide, who have given me enormous support to achieve a publication. As a Chemistry researcher, it was great opportunities to work with them and learn different skills for *in vitro* experiments. I also appreciate A/Prof. Brendon Coventry in Discipline of Surgery at the University of Adelaide, for his support and engagement with Dr. Grant Buchanan and his research group members.

I would also like to thank A/Prof. David Beattie and his research group members, at Ian Wark Research Institute at University of South Australia, for access to an experimental instrument which has provided insight into the macromolecular spectroscopic properties in a publication.

I wish to thank Mr. Philip Clements for his support on two-dimensional NMR experiments. Furthermore, I appreciate Mr. Matthew Bull, Mr. Graham Bull, Mr. Peter Apoefis, and Mr. Gino Farese for their support to build and repair instruments and other equipments. Without their contributions, I would not be able to make good progress in research.

I would like to thank friends, Postdocs, PhD candidates, and Honours students for their advice and the happy working environment. Special thanks go to Dr. Scott N. Clafton for his support and training on the ultrafast laser systems.

Finally, I would like to thank my parents for their financial support which has led to the opportunity to be awarded a PhD. I hope they will understand and acknowledge what I have achieved in the past few years. Last but not the least, I would like express appreciation to my girlfriend / lab buddy, Dr. Mandy H. M. Leung. Throughout our PhD life, she have encouraged and supported me, and we share good and bad outcomes. Thank you!

Abstract

Curcumin is a natural pigment extracted from turmeric. It is well known as a spice and herbal medicine in east Asia. The medicinal effects of curcumin have been demonstrated for cancer, inflammation, Alzheimer's disease, and cystic fibrosis. Recent studies have explored a number of delivery systems to suppress rapid aqueous degradation of curcumin and improve its bioavailability. Previously, we have demonstrated that diamide linked γ -cyclodextrin dimers, namely 66γ CD₂su and 66γ CD₂-ur, suppress the degradation of curcumin by forming strong 1:1 cooperative binding complexes under physiological conditions. This result indicates the potential for 66- γ CD₂su and 66γ CD₂ur as curcumin delivery systems.

As a part of the thesis work, both $66\gamma CD_2 su$ and $66\gamma CD_2 ur$ are used as molecularscale delivery agents for curcumin in potential treatment of cancer. Cellular viability assays and gene regulation in human prostate cancer (PC-3) cells show an antiproliferative effect of curcumin complexed with $66\gamma CD_2 su$ and $66\gamma CD_2 ur$, which is comparable with that of curcumin alone. Both $66\gamma CD_2 su$ and $66\gamma CD_2 ur$ carriers show a lack of toxicity to the cells. Fluorescence studies show the intracellular delivery of curcumin by $66\gamma CD_2 su$ and $66\gamma CD_2 ur$. Our results strongly suggest the potential of these carriers for future studies involving animal models.

To further understand the properties of curcumin, particularly its photo-therapeutic effect, ultrafast dynamics of curcumin complexed with 66γ CD₂su and 66γ CD₂ur are investigated using femtosecond transient absorption spectroscopy. Both curcumin complexes show only an excited state absorption (ESA) band without any stimulated emission signals. The ESA decay kinetics reveals the non-radiative relaxation of curcumin through solvent reorganization, excited state intramolecular hydrogen atom transfer, and other slow dynamics of inclusion molecules and flexibility of the γ -CD moieties of 66γ CD₂su and 66γ CD₂ur. In addition, transient absorption anisotropy studies reveal slow rotational motions of the curcumin complexes due to their large hydrodynamic volumes.

Hydrophobically modified polyacrylates are also potential delivery systems for curcumin because they suppress its degradation under physiological conditions. The 3 % octadecyl randomly substituted polyacrylate, PAAC18, shows a remarkable ability to suppress the degradation of curcumin, which is attributed to strong hydrophobic interactions between curcumin and the octadecyl substituents of PAAC18 within the micelle-like aggregates and the hydrogel. In contrast, the 3 % dodecyl randomly substituted polyacrylate, PAAC12, shows a negligible effect on slowing the degradation of curcumin, which is consistent with the dodecyl substituents being insufficiently long to capture curcumin in an adequately hydrophobic environment.

The ultrafast dynamics of water molecules and curcumin in the PAAC18 hydrogel are also studied using ultrafast spectroscopic techniques. The solvation dynamics (reorganization) of water molecules in the PAAC18 hydrogel exhibit a triexponential characteristic, as shown using femtosecond fluorescence upconversion spectroscopy. We attribute the slow solvation dynamics to the confinement of water molecules in the three-dimensional cross-linking network of the octadecyl substituents of PAAC18. Moreover, non-radiative relaxation processes of curcumin were investigated using femtosecond transient absorption spectroscopy.

List of Publications

The following publications are presented as a part of the thesis work.

- Leung, M. H. M.[†]; Harada, T.[†]; Kee, T. W., Delivery of Curcumin and Medicinal Effects of the Copper(II)-Curcumin Complexes. *Curr. Pharm. Des.* 2013, 19, 2070-2083 (Published in April 2013). [†]These authors contribute equally to this review article. Reprinted by permission of Eureka Science Ltd. Copyright (2013) Eureka Science Ltd.
- Harada, T.; Giorgio, L.; Harris, T. J.; Pham, D.-T.; Ngo, H. T.; Need, E. F.; Coventry, B. J.; Lincoln, S. F.; Easton, C. J.; Buchanan, G.; Kee, T. W., Diamide Linked γ-Cyclodextrin Dimers as Molecular-scale Delivery Systems for the Medicinal Pigment Curcumin to Prostate Cancer Cells. *Mol. Pharmaceutics* 2013, 10, 4481-4490 (Published in December 2013). Adapted with permission from this journal article. Copyright (2013) American Chemical Society.
- Harada, T.; Pham, D.-T.; Lincoln, S. F.; Kee, T. W., The Capture and Stabilization of Curcumin Using Hydrophobically Modified Polyacrylate Aggregates and Hydrogels. *J. Phys. Chem. B* 2014, 118, 9515–9523 (Published in July 2014). Adapted with permission from this journal article. Copyright (2014) American Chemical Society.
- Harada, T.; McTernan, H. L.; Pham, D.-T.; Lincoln, S. F.; Kee, T. W., Femtosecond Transient Absorption Spectroscopy of the Medicinal Agent Curcumin in Diamide Linked γ-Cyclodextrin Dimers *J. Phys. Chem. B* 2015, 119, 2425-2433 (Published in September 2014). Adapted with permission from this journal article. Copyright (2015) American Chemical Society.

The following publication is presented as a part of the thesis work and will be submitted to a journal article.

 Harada, T.; Pham, D.-T.; Lincoln, S. F.; Kee, T. W., Ultrafast Dynamics of the Medicinal Pigment Curcumin and Solvation Dynamics of Water in Octadecyl Substituted Polyacrylate Hydrogel (In preparation).

Contents

De	eclara	tion	i
A	cknow	vledgements	ii
Li	st of l	Publications	vi
Co	ontent	ts	vii
Li	st of A	Abbreviations	xiv
1	Intr	oduction - Medicinal Pigment Curcumin	1
	1.1	Abstract	3
	1.2	History and Biosynthesis of Curcumin and Curcuminoids	4
	1.3	Physical Properties of Curcumin	5
	1.4	Solubility and Stability of Curcumin	7
1.5 Curcumin Encapsulation by Micelles, Liposomes and Polymer Nar		Curcumin Encapsulation by Micelles, Liposomes and Polymer Nanopar-	
		ticles	8
	1.6	Curcumin Binding with Protein Micelles and Plasma Proteins	10
	1.7	Stabilisation of Curcumin by Cyclodextrins and Diamide Linked γ -	
		Cyclodextrin Dimers	11
	1.8	Medicinal Activities of Curcumin	13
		1.8.1 Wound Healing and Anti-Inflammatory Activities of Curcumin	13
		1.8.2 Anti-Cystic Fibrosis Activities of Curcumin	13
		1.8.3 Alzheimer's Disease and Activities of Curcumin	14
		1.8.4 Anti-Cancer Activities of Curcumin	15
	1.9	References	16
2	Diar	nide Linked γ -Cyclodextrin Dimers as Molecular-Scale Delivery Sys-	
	tems	s for the Medicinal Pigment Curcumin to Prostate Cancer Cells	25
	2.1	Abstract	29

2.2	Introduction	. 30
2.3	Experimental Section	. 33
	2.3.1 Materials	. 33
	2.3.2 Synthesis of Diamide Linked γ -CD Dimers	. 33
	2.3.3 Measurement of Cell Viability	. 33
	2.3.4 Curcumin Target Gene Expression in PC-3 Cells	. 34
	2.3.5 Qualitative and Quantitative Cellular Uptake of Curcumin .	. 35
	2.3.6 Statistical Analyses	. 36
2.4	Results	. 37
	2.4.1 PC-3 Viability in the Presence of Curcumin and Encapsulated	
	by Diamide Linked γ -CD Dimers \ldots	. 37
	2.4.2 Curcumin-Induced Gene Expression in the PC-3 Cell Line .	. 37
	2.4.3 Qualitative and Quantitative Cellular Uptake Studies of Cur-	
	cumin	. 40
2.5	Discussion	. 43
2.6	Conclusions	. 47
2.7	References	. 48
TIL		
	afast Spectroscopy and Excited-State Dynamics	56
3.1	Introduction to Ultrafast Spectroscopy 2.1.1 Exerct excerned Leven Deleven	. 57
	3.1.1 Femtosecond Laser Pulses	. 57
2.2	3.1.2 Time-resolved Spectroscopy	. 62
3.2	Femtosecond Transient Absorption Spectroscopy	. 65
	3.2.1 Experimental Setup	. 65
	3.2.2 Excited State Absorption	. 6/
	3.2.3 Stimulated Emission	. 68
2.2	3.2.4 Excited State Absorption Anisotropy	. 68
3.3	Femtosecond Fluorescence Upconversion Spectroscopy	. 70
	3.3.1 Experimental Setup	. 70
2.4	3.3.2 Fluorescence Lifetime and Solvation Dynamics	. 70
3.4	References	. 74
Fem	ntosecond Transient Absorption Spectroscopy of the Medicinal Ager	ıt
Cur	cumin in Diamide Linked γ -Cyclodextrin Dimers	75
4.1	Abstract	. 78
4.2	Introduction	. 79
43	Experimental Section	82
	2.2 2.3 2.4 2.4 2.5 2.6 2.7 Ultr 3.1 3.2 3.3 3.4 Ferr 4.1 4.2 4.3	 2.2 Introduction

		101		0.0
		4.3.1		. 82
		4.3.2	Steady-State UV-Visible Absorption and Fluorescence Spec-	0.0
		100		. 82
		4.3.3	Femtosecond Transient Absorption Spectroscopic Studies	. 83
	4.4	Result	s and Discussion	. 84
		4.4.1	Steady-State Absorption and Fluorescence Spectra of Cur-	
			cumin Complexed in $66\gamma CD_2$ su and $66\gamma CD_2$ ur	. 84
		4.4.2	Femtosecond Transient Absorption of Curcumin Complexed	
			in $66\gamma CD_2$ su and $66\gamma CD_2$ ur	. 86
		4.4.3	Excited State Dynamics of Curcumin Complexed in $66\gamma CD_2$ -	
			su and $66\gamma CD_2 ur$. 88
		4.4.4	Anisotropy of Curcumin Complexed in 66γ CD ₂ su and 66γ -	
			CD_2ur	. 91
	4.5	Conclu	usions	. 96
	4.6	Refere	ences	. 97
_	TI	Ct		
5	i ne		e and Stabilisation of Curcumin Using Hydrophobically Mod	102
			rylate Aggregates and Hydrogels	105
	5.1	Abstra	ict	. 106
	5.2	Introd		. 107
	5.3	Experi		. 109
		5.3.1	Materials	. 109
		5.3.2	Syntheses of Hydrophobically Modified Polyacrylates	. 109
		5.3.3	UV-Visible Absorption Spectra of Curcumin in Aqueous So-	
			lutions of PAAC18, PAAC12 and 10%-PAAC12, and the Half-	
			Lives of Curcumin Degradation	. 110
		5.3.4	Binding Constant of the PAAC18-Curcumin Complex	. 110
		5.3.5	2D NOESY ¹ H NMR Spectra of Curcumin in PAAC18 and	
			10%-PAAC12	. 111
		5.3.6	3D Molecular Illustration and Molecular Size Estimation of	
			Curcumin in PAAC18 and PAAC12	. 111
		5.3.7	Dynamic Light Scattering and Zeta Potential Measurements	
			on PAAC18, PAAC12 and 10%-PAAC12	. 112
	5.4	Result	s and Discussion	. 113
		5.4.1	Degradation of Curcumin in Phosphate Buffer and Stabilisa-	
			tion Effects of Hydrophobically Modified Polyacrylates	. 113

		5.4.3	2D NOESY ¹ H NMR Study of PAAC18-Curcumin Complex	. 119
		5.4.4	Hydrodynamic Diameters of PAAC18, PAAC12 and 10%-	
			PAAC12 Micelle-Like Aggregates	. 120
		5.4.5	Zeta Potentials of PAAC18, PAAC12 and 10%-PAAC12 Mi-	
			celle-Like Aggregates	. 122
	5.5	Concl	usions	. 124
	5.6	Refere	ences	. 125
6	Ultr	afast D	Ovnamics of the Medicinal Pigment Curcumin and Solvatio	n
Ū	Dvn	amics of	of Water in Octadecyl Substituted Polyacrylate Hydrogel	131
	6.1	Abstra	act	. 133
	6.2	Introd	uction	. 134
	6.3	Exper	imental Section	. 137
		6.3.1	Materials	. 137
		6.3.2	Synthesis of Octadecyl Substituted Polyacrylate Hydrogel .	. 137
		6.3.3	Steady-State UV-Visible Absorption and Fluorescence Spec-	
			tra of Curcumin in PAAC18 Hydrogel	. 137
		6.3.4	Femtosecond Time-Resolved Fluorescence Measurements .	. 138
		6.3.5	Femtosecond Transient Absorption Spectroscopic Studies .	. 139
	6.4	Result	ts and Discussion	. 140
		6.4.1	Steady-State Absorption and Fluorescence Spectra of Cur-	
			cumin in PAAC18 Hydrogel	. 140
		6.4.2	Solvation Dynamics of Water in PAAC18 Hydrogel	. 141
		6.4.3	Femtosecond Transient Absorption and Excited-State Kinet-	
			ics of Curcumin in PAAC18 Hydrogel	. 146
	6.5	Concl	usions	. 151
	6.6	Refere	ences	. 152
Aŗ	opend	lix A		160
Ar	mend	lix B		169
t	- r - mu			

— x

List of Abbreviations

BBO	β -Barium borate
10%-PAAC12	10% Dodecyl randomly substituted polyacrylate
10%-PAAC18	10% Octadecyl randomly substituted polyacrylate
PAAC12	3 % Dodecyl randomly substituted polyacrylate
PAAC18	3 % Octadecyl randomly substituted polyacrylate
66γCD ₂ su	N,N '-Bis(6 ^A -deoxy- γ -cyclodextrin-6 ^A -yl)succinamide
$66\gamma CD_2 ur$	N, N' -Bis(6 ^A -deoxy- γ -cyclodextrin-6 ^A -yl)urea
DMPC	1,2-Dimyristoyl-sn-glycero-3-phosphocholine
DHAQ	1,8-Dihydroxy-9,10-anthraquinone
NMP	1-Methyl-2-pyrrolidone
6γCDN ₃	6^{A} -Azido- 6^{A} -deoxy- γ -cyclodextrin
6γCDTs	6^{A} - O -(4-methylbenzenesulfonyl)- γ -cyclodextrin
AOT	Aerosol OT
AR	Analytical Reagent
BSA	Bovine Serum Albumin
BRCA2	Breast Cancer 2 gene
CTAB	Cetyltrimethylammonium bromide
CMOS	Complementary Metal-Oxide-Semiconductor
CW	Continuous Wave

CD	Cyclodextrin
COX-II	Cyclooxygenase-II
CFTR	Cystic Fibrosis Transmembrane Conductance Regulator
DNA	Deoxyribonucleic acid
DCC-FBS	Dextran-Coated Charcoal Stripped Fetal Bovine Serum
DCC	Dicyclohexylcarbodiimide
DMSO	Dimethyl sulphoxide
DPSS	Diode-Pumped Solid State
DTAB	Dodecyltrimethylammonium bromide
eq	Equation
ESA	Excited State Absorption
ESIHT	Excited-State Intramolecular Hydrogen atom Transfer
FBS	Fetal Bovine Serum
FDA	Food and Drug Administration
FWHM	Full Width at Half Maximum
GVD	Group Velocity Dispersion
GADD45A	Growth Arrest and DNA-Damage-inducible protein alpha gene
IC50	Half maximal inhibitory concentration
HMOX1	Heme Oxygenase 1 gene
HPLC	High Pressure Liquid Chromatography
PC-3	Human Prostate Cancer
HSA	Human Serum Albumin
H/D exchange	Hydrogen/Deuterium exchange
IgG	Immunoglobulin G

LBO	Lithium triborate
mp	melting point
mRNA	messenger Ribonucleic acid
Mw	Molecular weight
NIR	Near Infra-Red
Nd:YLF	Neodymium-doped yttrium lithium fluoride
Nd:YVO ₄	Neodymium-doped yttrium vanadate
<i>n.s.</i>	not significant
NFĸBIA	Nuclear Factor κ light polypeptide gene enhancer in B-cells Inhibitor, Alpha gene
NRF2	Nuclear Factor like 2
NMR	Nuclear Magnetic Resonance
NOESY	Nuclear Overhauser Effect Spectroscopy
OD	Optical Density
OC	Output Coupler
PPAR	Peroxisome Proliferator-Activated Receptor
PRF	Phenol Red-Free
PBS	Phosphate Buffer Saline
PD	Photodiode Detector
PC	Pockels Cell
PLGA	Poly(lactic- <i>co</i> -glycolic acid)
QPCR	Quantitative Real Time Polymerase Chain Reaction
RI	Refractive Index
SPM	Self Phase Modulation

SDS	Sodium dodecyl sulphate
SD	Standard Deviation
SEM	Standard Error of the Mean
SE	Stimulated Emission
Mw/Mn	The Weight Average Molecular Weigh over The Number Average Molecular Weight
Ti:sapphire	Titanium-doped sapphire
TX-100	Triton-X 100
TNFRSF10B	Tumour Necrosis Factor Receptor Superfamily, member 10B gene
UV-Vis	Ultraviolet-Visible
VRR	Vertical Retro-Reflectors