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Abstract 

Riverbank collapse is a natural and expected phenomenon associated with the 

evolution of rivers worldwide and has been studied extensively over the last 

two decades and remains an active research topic. The evolution of riverbank 

stability analysis has followed closely the developments in analytical 

methods, investigation tools, stabilisation methods and data acquisition 

technology. Furthermore, the stability of riverbanks is a multifaceted issue 

which involves the study of geology, topography, stratigraphy, hydrology, 

climate, spatial variation and geotechnical engineering.  

 

The River Murray is one of the only river systems in the world that can fall 

below sea level due to the barrages preventing the inflow of sea water during 

periods of low river flows. Over the last few years, an unprecedented period 

of dry conditions and low flows between 2005 – 2010 led to more than 162 

reported riverbank collapse-related incidents along the Lower River Murray, 

in South Australia (downstream of Lock 1 at Blanchetown to Wellington). 

Those collapse-related incidents threatened public infrastructure, private 

property and the safety of river users, and also provide significant challenges 

for environmental and river management. From the inventory of the South 

Australian Department of Environment, Water and Natural Resources 

(DEWNR), riverbank collapse, erosion, cracking, tree leaning and collapse 

and levee problems are the main forms of the recorded incidents. 

 

Geographical information systems (GIS) is well known for its efficient and 

cost-effective spatial data processing capabilities, which include spatial data 

collection, manipulation and analysis, and has been widely used in riverbank 

instability research. As a significant feature of this thesis, GIS, incorporating 

high-resolution spatial data, such as aerial photographs and LIDAR (light 

detecting and ranging) images, facilitates the assessment of riverbank 

instability in several ways. Firstly, the actual location of the historical collapse 

can be determined and verified by the use of high-resolution aerial image 

comparison and interpretation to facilitate accurate back-analyses. Secondly, 
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the 2D and 3D geometry of the riverbank is able to be readily extracted from 

the LIDAR digital elevation models (DEMs). Thirdly, the dimensions of the 

predicted collapsed regions can be validated against high-resolution aerial 

images, and finally, the influencing factors are able to be manipulated and 

mapped with GIS to predict regions susceptible to riverbank collapse. 

 

This thesis aims to: (1) examine the failure mechanisms affecting riverbank 

collapse along the Lower River Murray and identify the most relevant 

mechanism; (2) identify potential triggers for riverbank collapse events that 

should be monitored and managed in the future; (3) develop a framework, 

incorporating spatial information, GIS and geotechnical data, to facilitate the 

prediction of riverbank collapse along the Lower River Murray (between 

Blanchetown and Wellington, South Australia); and (4) develop a framework, 

based on GIS and geotechnical data, to identify regions susceptible to high 

risk of riverbank collapse along the Lower River Murray. 

 

 In order to realise these aims, numerical analyses have been performed using 

two commercially available software programs, ArcGIS and SVOffice, which 

integrate the limit equilibrium method, back-analysis of collapse incidents, 

transient unsaturated flow modelling, steady state modelling, and DEMs and 

high-resolution aerial images within a GIS framework. The modelling has 

been informed by a series of geotechnical investigations undertaken at various 

sites along the River Murray. 
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