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Polaron variational methods in the particle representation of field theory:
II. Numerical results for the propagator

R. Rosenfelder
Paul Scherrer Institute, t H-5282 Villigen PSI, Switzerland

A. W. Schreiber
Paul Scherrer Institute, CH-5282 Villigen PSI, Switzerland'

and TRIUMF, $00$ Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A8
(Received 27 March 1995)

For the scalar Wick-Cutkosky model in the particle representation we perform a similar variational
calculation for the two-point function as was done by Feynman for the polaron problem. We employ
a quadratic nonlocal trial action with a retardation function for which several Ansatze are used.
The variational parameters are determined by minimizing the variational function and in the most
general case the nonlinear variational equations are solved numerically. We obtain the residue at the
pole, study analytically and numerically the instability of the model at larger coupling constants,
and calculate the width of the dressed particle.

PACS number(s): 11.80.Fv, 11.10.St, 11.15.Tk

I. INTRODUCTION

l: =
2 (8„4) + 2Mo4 + 2 (0„&p) + 2m (p —gO |p.

Here, Mo is the bare mass of the nucleon, m is the mass
of the meson, and g is the (dimensionful) coupling con-
stant of the Yukawa interaction between them. In the
quenched approximation the meson Beld can be inte-
grated out and one ends up with an effective action for
the nucleons only

P 2

G7 X d7$
2 2

S,tr [x(r)] =

de
d' g 'q-t ~C~i) —~(~2)j

(2vr)4 q2+ m2

(2)
Note that this is formulated in terms of trajectories x(r)
of the heavy particle ("particle representation") which

The need of nonperturbative methods in quantum
physics is obvious considering the many problems where
strong coupling and/or binding effects render perturba-
tion theory inadequate. In nonrelativistic many-body
physics variational methods are widely used under these
circumstances while this is not the case in relativistic
field theory. However, Feynman's successful treatment
of the polaron problem [1] shows that variational meth-
ods may also be used for a nonrelativistic Beld theory
provided that the fast degrees of freedom can be inte-
grated out and their effects properly taken into account
in the trial action. In a previous paper [2] [henceforth re-
ferred to as (I)], we have extended the polaron variational
method to the simplest scalar Beld theory which describes
heavy particles ("nucleons" ) interacting by the exchange
of light particles ("mesons"). In Euclidean space-time
the Lagrangian of the Wick-Cutkosky model is given by

are parametrized by the proper time v and obey the
boundary conditions x(0) = 0 and x(P) = z. To ob-
tain the two-point function, one has to perform the path
integral over all trajectories and to integrate over P from
zero to infinity with a certain weight. It is, of course, im-
possible to perform this path integral exactly and, again
following Feynman, we have approximated it variation-
ally by a retarded quadratic two-time action. In (I) we
have proposed various parametrizations for the retarda-
tion function which enters this trial action and derived
variational equations for the most general case when its
form was left free.

The purpose of the present paper is to investigate nu-
merically these parametrizations as well as to solve the
variational equations. This Bxes the variational param-
eters which will be used to calculate physical observ-
ables in forthcoming applications. One quantity which
we evaluate in the present paper is the residue on the
pole of the propagator. Another one is related to the
well-known instability [3] of the Wick-Cutkosky model:
although the effective action (2) is very similar to the
one in the polaron model the ground state of the system
is only metastable. This does not show up in any order
of perturbation theory but, as we have demonstrated in
(I), the variational approach knows about it. Indeed an
approximate solution of the variational equations has re-
vealed that there are no real solutions beyond a certain
critical coupling. In the present paper we will Bnd exact
numerical values for this critical coupling and calulate
the width of the unstable particle for couplings beyond
it.

This paper is organized as follows. The essential points
of the polaron variational approach are collected in Sec.
II, while Sec. III is devoted to the numerical methods
and results. In Sec. IV we investigate the instability
of the Wick-Cutkosky model in our variational method
and determine analytically and numerically the width of
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the dressed particle. The variational principle can also
be applied away from the pole, which is explored in Sec.
V and used to calculate the residue at the nucleon pole.
The main results of this work are summarized in the Sec.
VI.

V = — do. du

( %Mph', o.
(

II. POLARON VARIATIONAL APPROACH
1——e(mv a, 0, u) (io)

Following Feynman's treatment of the polaron problem
we have performed in (I), a variational calculation of the
two-point function with the quadratic trial action

Here, we use the abbreviations

( s~ 1 —u
e(s, t, u) = exp

~

——
2 u 2 )

s, [x] =
P

O'T —X +
2

X X 7y —X'T2

d71 d~g f (7.i —~g)
and

4 1 sinz (Eo./2)
7r o A(E) Ez (12)

Si ——) Ai, b„,
k=0

(4)

where the bi, are the Fourier components of the path z(w)
and the Fourier coeKcients Ap are considered as varia-
tional parameters. The variational treatment is based on
the decomposition of the action S ff into S,ff —Sg + LS
and on Jensen's inequality

Here, f(~i —~q) is an undetermined "retardation func-
tion" which takes into account the time lapse occurs when
mesons are emitted and reabsorbed on the nucleon. In
actual calculations we rather have used the Fourier space
form

Because pz(rr) behaves like o and 0/Ao for small and
large o., respectively, we have called it a "pseudotime. "
Note that in Eq. (10) the particular renormalization
point pp = 0 has been used to regularize the small-u
behavior of the integrand. As we have shown in (I) the
total result is, of course, independent of p0.

The profile function A(E) is linked to the retardation
function f(rr) by

8 2 Eo.
A(E) = 1 + do. f(0)sin.

0 2

In (I) we have studied the following parametrizations.
"Feynman" parametrization:

—AS) ~ —(AS) (5) fF(rr) = u
V —tU

2 2

e (14)

Near p = Mphys ) the two-point function should behave
like

Gg(p )
Z

P2+ MP2hy
(6)

where 0 ( Z ( 1 is the residue. As was shown in (I) this
requires the proper time P to tend to infinity. One then
obtains the inequality

which leads to

v2+E
AF(E) =

"Improved" parametrization:

V —tU 1
fr(~) =

(15)

where

M2

2A 2

g A
My —Mp ln

4+2 m2

is a finite mass into which the divergence of the self-
energy has been absorbed and A a variational parameter.
For p -+ oo, all discrete sums over Fourier modes Ag turn
into integrals over the "profile function" A(E = km/P)
and one finds

which entails

V —QJ
Ar(E) = 1+2 arctan —— 1n~ 1+

(17)

In both cases v, m are variational parameters whose
values have to be determined by minimizing Eq. (7).

As well as the above parametrizations, it was possible
not to impose any specific form for the retardation func-
tion but to determine it &om varying equation (7) with
respect to A and A(E). This gave the relations

as well as

OO

dE ln A(E')

g2 g 2

1 + ciao8' p, (o.)

AMpi, y, o.
x duue

~
mp(o), "',u

~

o E
'

v(~)
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4vr' Ez o p4(o) o

2 u 2p 0'

Together with Eq. (12), they constitute a system of cou-
pled variational equations which have to be solved. As-
suming p (a) o and m 0 we have found in (I) an
approximate solution which had the same form of the
retardation function as the "improved" parametrization
and exhibited the instability of the system beyond a crit-
ical coupling constant. In the general case we can read
off the variational retardation function from Eq. (19):

g 1
32z' y,4(o)

1 m 2 1 —tL
2

du 1+ p (cr)
2 'll

(20)

Obviously, it has the same 1/cr2 behavior for small relative times as the "improved" parametrization (16). Finally,
we mention that by means of the variational equation (19), one can find an expression for the the "kinetic term" 0
defined in Eq. (9) as

g
~var =

8a2

1 m 2 1 —Q2

du 1+ p (0.)2 tL

A'Mph', ~r' P AMphr, a ) 0 I' o

2S'(~) &

'
V(~)

' ) ~~ &~'(~))
u e ~my(o, '",u~

This is demonstrated in the Appendix and will be used
in Sec. IV. That the kinetic term 0 can be combined
with the "potential term" V is a consequence of the virial
theorem for a two-time action [4] which the variational
approximation fulfills.

III. NUMERICAL RESULTS

In this section we will compare numerically the various
parametrizations for the retardation function. Because
we are primarily interested in an eventual application
in pion-nucleon physics, we have chosen the masses and
coupling constants appropriately. Of course, the model
does not really give a realistic description of the pion-
nucleon interaction as spin and isospin degrees of freedom
as well as chiral symmetry are missing.

In short, we use

m = 140 MeV, (22)
Mph', ——939 MeV, (23)

and the results are presented as functions of the dimen-
sionless coupling constant

g 1
(24)4vrM h,

The relevant quantity for the physical situation is the

&2

4z' (2Mphr )
where g' /47r = 14 is the pion-nucleon coupling. In the
Wick-Cutkosky scalar model the corresponding strength
is just the dimensionless coupling constant o. that we have
defined in Eq. (24). It should also be remembered that
a Yukawa potential only supports a bound state [6] if

m
o; ) 1.680 —= 0.2505.

M
We have minimized [cf. Eq. (7)]

—Mi & (A —2A) M2q, +. 2 (0 + V)

(26)

(27)

with the "Feynman" ansatz (15) and the "iinproved"
ansatz (17). This minimization was perforined numer-
ically with respect to the parameters A, v, m by using the
standard CERN program MINUIT. The numerical inte-
grations were done with typically 2 x 72 Gauss-I egendre
points after mapping the in6nite-range integrals to 6nite
range. For the "improved" retardation function we had
to calculate p (0) and 0 numerically. Tables I and II

I

strength of the Yukawa potential between two nucleons
because of one pion exchange [5], which is approximately
given by (depending on the spin-isospin channel)

TABLE I. Variational calculation for the nucleon self-energy in the Wick-Cutkosky model using
the "Feynman" parametrization (15) for the profile function. The parameters v, ui obtained from
minimizing Eq. (27) are given as well as A and the intermediate renormalized mass Mi [see Eq.
(8)]. The last column lists A(0) = v /ui .

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

v v [MeV]
1850
1805
1756
1702

1569
1477
1325

~ui [MeV]
1845
1794
1739
1678
1608
1527
1424
1254

0.97300
0.94400
0.91250
0.87773
0.83843
0.79223
0.73355
0.63714

Mi [MeV]
890.23
839.73
787.29
732.69
675.70
616.09
553.93
490.60

A(O)
1.0120
1.0257
1.0417
1.0606
1.0838
1.1142
1.1582
1.2485
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TABLE II. Same as in Table I but using the "improved" parametrization (17) for the profile
function.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

~v [Mev]
677.2
661.4
640.8
613.7
596.?
570.4
534.3
468.2

~m [MeV]
674.6
656.0
632.3
601.9
581.2
550.7
509.2
434.5

A

0.97297
0.94390
0.91223
0.87715
0.83741
0.79040
0.72996
0.62429

Mi [MeV]
890.25
839.78
787.43
732.97
676.20
616.97
555.45
493.44

A(0)
1.0158
1.0338
1.0548
1.0808
1.1109
1.1514
1.2118
1.3482

A(")
[

—
~

= A("= ) (E) (28)

We are working in the "proper time gauge" K, = 1. In a
general "gauge" v the variational parameters v, m then
obviously are different [see Eqs. (15, 17)],

v~"~ = Kv, (29)

but A(0) = v /iv and A are gauge invariant.
For both parametrizations, no minimum of Eq. (27)

was found beyond

a)o. , (30)

where

0.824
0.817

("Feynman" ),
("improved") .

This value of the critical coupling is surprisingly close
to the value n, z./4 which we obtained from the ap-
proximate solution of the variational equations in (I). On
the other hand, when the parameter A is fixed to A = 1,
i.e. , a less general trial action for "momentum averaging"
[see (I)] is used, then a minimum is found for all values
of o.. This points to the important role played by this
parameter. Indeed, in the approximate solution of the
variational equations found in (I) the branching of the
real solutions into complex ones is most clearly seen in
the approximate solution for A. We can also trace the
instability to the inequality (7) for the physical mass: a
clear minimum as a function of A exists only as long as
the coeflicient of I/A, i.e., Mi/2 + 0 + V stays posi-

give the results of these calculations. We also include the
value of Mi although it does not have a physical meaning:
finite terms (which, for example, arise when a different
renormalization point is chosen) can be either grouped
with Mi or with V. However, from the variational in-
equality (27) we see that Mi is a measure of the quality
of the variational approximation: the larger the Mi, the
better the approximation.

Although the value of the parameters v and m are
rather different for the Feynman and the "improved"
parametrization, the parameter A and the value of the
profile function at E = 0 are very close. This is also rea-
sonable when we study the behavior of these quantities
under a reparametrization of the particle path: it can be
shown that a rescaling of the proper time P ~ P/~ leaves
the variational functional invariant if

tive. However, with increasing coupling, Mi shrinks and
V becomes more negative until at the critical coupling
the collapse finally occurs.

We have also solved the coupled nonlinear variational
equations (18) and (19) together with (12) numerically.
This was done by the following iterative method: we first
mapped variables with infinite range to finite range, e.g. ,

h, tan8,
1

0 =
phys

tan

(32)

(33)

and then discretized the integrals by the standard Gauss-
Legendre integration scheme, with typically 72 or 96
Gaussian points per integral. The functions A(8), p (@),
as given by the variational equations, were then tabu-
lated at the Gaussian points using as input the values
of A, A(0), p (@) from the previous iteration. We started
with the perturbative values

A
' =A(0, )(') =. 1,

p'(@,)( ) =, tan@;
phys

(34)

and monitored the convergence with the help of the
largest relative deviation

( [A&") —A&"—')
~

[A(O, )~"& —A(0 )
&"—'&

~

A(0;)(-)

p2 (@.) (n) (35)

Note that the variational solution is also reparametrization
invariant: Equations (19) and (12) are consistent with the
condition (28).

Some numerical results are given in Table III. Comparing
with Table II we observe a remarkable agreement with
the values from the "improved" parametrization. It is
only near o, = 0.8 that the variational solution is ap-
preciably better as demonstrated by the numerical value
of Mi which measures the quality of the corresponding
approximation.

This may also be seen in Figs. 1—3 where the dif-
ferent profile functions and pseudotimes are plotted for
o, = 0.2 and o. = 0.8. One can also confirm from the
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TABLE III. The variational parameter A, the renormal-
ized mass Mq, and the value of the profile function at E = 0
from the solution of the variational equations.

1.000

0.995

O. l
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.97297
0.94389
0.91223
0.87718
0.83738
0.79030
0.72968
0.62262

Mi [MeVj
890.25
839.78
787.43
732.97
676.20
616.98
555.47
493.55

A(0)
1.0151
1.0322
1.0520
1.0755
1.1044
1.1421
1.1972
1.3188

0.990

0.985

0.980

0.975

0.970
4

cr+M

a = 0.815 ( "variational" ) (36)

is reached. Finally, beyond o, ) o. , only a minimal rela-
tive accuracy can be reached and the deviations increase
again with additional iterations.

How the critical coupling depends on the meson mass
is shown in Fig. 5. It turns out that the good agreement
of the approximate value of n, = vr/4 with the numerical
value obtained for m = 140 MeV was an accidental one:

graphs that the numerical results indeed have the limits
for o E either small or large which we expect from the

C(analytical analysis. Furthermore, it is clear that the im-
proved" parametrization of the trial action is, in general
extremely close to the "variational" one, while the "Feyn-
man" parametrization deviates much more. Finally, it is
interesting to note that the profile function of the "vari-
ational" calculation has a small dip near E = 0 which is
a result of the additional terms in the retardation func-
tion (20). These rather innocent-looking deviations will
become important if an analytic continuation back to
Minkowski space is performed in which physical scatter-
ing processes take place.

Examples for the convergence of the iterative scheme
are shown in Fig. 4. It is seen that for small coupling con-
stant we have rapid convergence which becomes slower
and slower as the critical value

at m = 0 we have o; = 0.641. There is also a surpris-
ingly strong but nearly linear m dependence which we
cannot reproduce &om an approximate solution of the
variational equations when taking m g 0 but still assum-
ing p2(o. ) = o.

IV. INSTABILITY' AND WIDTH
OF THE DRESSED PARTICLE

In all parametrizations of the profile function A(E)
which we investigated numerically in the previous sec-
tion, it turned out to be impossible to find a (real) so-
lution of the variational equations or the variational in-
equality for coupling constants above a critical value o. .
This is a signal of the instability of the model which is
already seen in the classical "potential"

V()(4 ) =-M 4' + -m y —g@ p (37)

and tells us that the physical mass of the dressed particle
becomes complex

. I'
Mp ——M —i —.phys (38)

FIG. 2. Ratio of pseudotime p, (cr) to proper time rr for
o. = 0.2 . The labeling of the curves is as in Fig. 1. An
expanded view of the small-o region is shown in the inset.

1.035

1,030

1.025

1.020

1.015

In the following we take the real part of the nucleon mass
to be M = 939 MeV and try to determine the width I'.

1.4

n = 0.8

1.010

1.005

1.000
0 2 3 4 5 6 7 8

E/M'

FIG. 1. Profile function A(Z) as function of R for the
"Feynman" parametrization (15) (dotted line), the "im-
proveroved" parametrization (17) (dashed line), and the "varia-
tional" solution (solid line). The dimensionless coupling con-
stant is n = 0.2.

1.0

0.9

0.8

0.7
4

E/M or a*M2

FIG. 3. A(E) and p (cr) for n = 0.8. The labeling of the
curves is as in Fig. 1.
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a=0.85

0

4 a=0.5

a=0.2

10
I

20

a 4fa
~ k g 4 4~ ~ +4J4g44++

~ ~4 ~ ~ ~ ~0 ~ ~
0 ~ ~

0 ~, a=0.8
~ ~ ~ ~4 0 0 0 ~ ~ ~ ~ ~ ~ ii

M2 —2gC ) 4g2$2/m2, i.e. , it contains a (nonanalytic)
step function. Therefore, all proper one-loop Green func-
tions (which are generated by the efFective action) carry
no sign of the instability.

In contrast, the variational approach for the two-point
function knows about the instability if we allow the pa-
rameter A in the trial action to vary. Since the approx-
imate solution of the variational equation for A in (I)
clearly showed the impossibility to obtain a real solution
beyond o. , we will first study the width of the state us-
ing similar approximative methods before turning to the
exact numerical evaluation.

FIG. 4. Convergence of the iterative solutions of the vari-
ational equations as functions of the number of iterations n.
The convergence measure b,„ is defined in Eq. (35).

A. Approximate analytical treatment

In order to discuss complex solutions of the variational
equations it is useful to introduce the complex quantity

Note that in a perturbative calculation no sign of the
instability shows up: the one-loop self-energy

( = %Mph',

and to write it in the form

(41)

g2 p2 g2
Z(p2) = — ln, +, du

4' 2 m2 4+2

p2 M02 uxln 1+ 2 +
fA fA 1 —tL

(42)

It is a phase y g 0 which will lead to the complex pole
(38) of the two-point function. With the same approxi-
mation m = 0 and p2(o. ) = o, which was used before,
we now obtain

is perfectly well behaved. Also the one-loop efFective po-
tential [7, 8] is not very indicative: in the quenched ap-
proximation it is given by

1 aM2
1 + (43)

(y) 1 d p 4g C
V,~ (4, p) = — ln 1—

1
X 2p2 + Mo —2gp —Xe

(4o)

A detailed analysis shows that the quantum correc-
tions lower the barrier which makes the ground state
metastable in V( l(4, y) but do not remove it. In ad-
dition, the one-loop efFective potential develops an imag-

inary part but it is easy to see that Im V,& vanishes for

g
4+2M2 (44)

Because of Eq. (21) the kinetic term vanishes under the
same approximation

0~~p ~ 0

and the potential term becomes

g
2

Svr 2

(45)

Here, the dimensionless coupling constant is defined in
terms of the real part of the physical mass

1.2

1.0

m21 —u
x exp~—

2 u

( m'1 —u—exp ]—

(2
0 ——DO

2 )

0.9
g2 i (2 u2

du ln 1+8+2 m 1 —u
(46)

0.8

0.7

0.6
100 200 300

m (Mev)
400 500

PIG. 5. Critical coupling constant as a function of the
meson mass m. The nucleon mass is fixed at M = 939 MeV.
The crosses indicate the points at which the critical coupling
has been calculated, the line through them being drawn to
guide the eye.

These are rather drastic sixnplifications but the exact nu-
merical calculations show that the imaginary part of 0 is
indeed smaller (by a factor of 5) than Im V. Note that V
is not infrared stable, i.e., it diverges if the meson mass
m is set to zero. With the above approximations, the
stationarity equation (7) then reads

(2 ) 2 n 2
' (2 u

M, =
~

——1~/ ——M duln 1+
) 7r o m 1 —tl

(47)
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Using Eq. (43) this is equivalent to This should be valid near the critical coupling constant.

=Mi — M +—M
7r 7r

2 2tt
du ln 1+

m 1 —tc
B. Numerical results

(48)

If we take the imaginary part of this equation, it is pos-
sible to set m = 0 and we obtain

(o sin2y = 20,'
X. (49)

I' o. M
M —i —= j+—

2 7r
(5o)

The real and imaginary parts of this equation allow us
to express (o and the width as functions of the phase y.
A simple calculation gives

How do we determine the width of the unstable state?
We take the defining equation (41) for (, eliminate A by
means of Eq. (43), and use Eq. (38). This gives

For the numerical solution of the complex variational
equations we follow the approximate analytical solution
as closely as possible. However, some of the relations
used previously do not hold exactly. For example, the
quantity

(2L=—
2

OO 2

80
~'(~)

i
du u e

~
my, (cr), , u

~

(58)

= M, — M I + 2(A + V). (59)

would be unity for m = 0, p2 (0 ) = o but has some com-
plex value in the exact treatment. Similarly, 0 g 0 and
V deviate from the approximate value (46). Without
invoking the simplifying assumptions, Eq. (48) changes
to

2cos+

and the width is

4o.1+ 1 — cos2 y (51) Following the same steps as in the approximate treat-
ment, we obtain

4o.I' = 2M tan y 1 — cos2 y. (52) 2 cos g
4o.1+ 1— cos y Re (Le'&) (60)

We have chosen the root which results in a positive width
for 0 ( y ( 7r/2. Finally, substituting Eq. (51) into Eq.
(49) gives the transcendental equation which determines
the phase y. After some algebraic transformations, we
obtain it in the form

which replaces Eq. (51) and

[ Re (Le'&) + K cos y ]

which supersedes Eq. (53). Here,

(61)

2g SlIl 2g
0', =7r

(2y+ sin2y)' cos'y 4
(53) K= . Im L —— (A+V)

2 7r 1

sin 2y O. M2 (62)

It is easy to see that the function h(y) grows monoton-
ically from h(0) = 1 to h(vr/2) = oo. Solutions y(n),
therefore, only exist for

Instead of Eq. (56), one can show that the width itself
has now the exact form

7r) O.c
4

(54)
K sing —Im (Le'x)
K cos y + Re (Le'~) (63)

which is the same critical value of the coupling constant
at which previously the real (approximate) solutions of
the variational equations ceased to exist. It is also easy
to find solutions for the transcendental equation (53) for
small y: from h(y) = 1+y + O(y ) we find

We have solved the coupled complex equations by spec-
ifying a value for the phase y and determining the cor-
responding value of the coupling constant o. by means of
Eq. (61). Of course, this could be done only iteratively
by starting with

O. —O.c

c
(55)

L = 1, K = 2y/sin2y,
X~'&(Z) = 1.

where, of course, n, = vr/4 should be used. Since the
expression (52) for the width can be transformed into

2g —sin 2gI' = 2M tang 2y+ sin2y (56)

we obtain the following nonanalytic dependence of the
width on the coupling constant

3/2

)

Typically, 20—25 iterations were needed to get a relative
accuracy of better than 10 5. Table IV gives the re-
sults of our calculations. It is seen that the width grows
rapidly after the coupling constant exceeds the critical
value. In Fig. 6 this is shown together with the approx-
imate (small-y) behavior predicted by Eq. (57). After
the critical coupling constant in this formula has been
shifted to the precise value, one observes a satisfactory
agreement with the exact result.

Finally, Figs. 7 and 8 depict the complex profile
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TABLE IV. The width I' of the unstable state from
the complex solution of the variational equations for) n = 0.815. The width is given as a function of the
phase y which determines the corresponding coupling con-
stant a according to Eq. (61). The complex value of the
profile function at E = 0 is also listed.

x
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

0.818
0.827
0.843
0.865
0.893
0.929
0.972
1.024
1.084
1.153
1.232
1.323
1.425
1.540

I' [MeVj
0.13
1.05
3.54
8.42
16.5
28.6
45.5
68.2
97.6
134
180
235
301
379

A(O)
1.405 + 0.045 i
1.396 + 0.088 i
1.382 + 0.130 i
1.362 + 0.169 i
1.338 + 0.205 i
1.309 + 0.236 i
1.277 + 0.263 i
1.243 + 0.285 i
1.207 + 0.301 i
1.171 + 0.313 i
1.134 + 0.319 i
1.099 + 0.320 i
1.065 + 0.316 i
1.032 + 0.307 i

A. The residue

To calculate the residue it is most convenient to use
the "momentum averaging" scheme developed in (I) be-

function A(E) and the complex pseudotime p (cr) for

y = 0.5, i.e. , o. = 1.153. Compared to the real solu-
tions below n, (cf. Figs. 1—3), one does not notice any
qualitative change in the real part of A(E) as one crosses
the critical coupling.

V. THE TWO-POINT FUNCTION
AWAY FROM THE POLE

Up to now we only have determined the variational
parameters on the nucleon pole. However, the variational
principle also applies to p g —M h, . This forces us
to consider subasymptotic values of the proper time P.
We first deal with the residue at the pole which gives us
the probability to find the bare nucleon in the dressed
particle.

1.0

Re p2(o)/cr
0.8

0.7
2 3 4

E/M~ or o eM~

FIG. 7. Real part of the profile function and of the ratio
of pseudotime to proper time for o. = 1.153.

cause in this approach there are only a few subasymptotic
terms. To be more specific the quantity P, (o, T) intro-
duced in Eq. (I.98) has an additional term which exactly
cancels the 1/P term which arises from application of the
Poisson summation formula. With exponential accuracy
we, therefore, have

4 1 sin (Eo /2)
A(E) E (64)

A(p) =— dE lnA(E) + 1

lnA(0) +1 1

We recall from (I) that the two-point function may be
written near the pole as

This is a big advantage as we do not have to expand the
potential term ((Si)) in. Eq. (I.97) in inverse powers of
P. The only source of subasymptotic terms in ((Si)) is
then from the T integration from cr/2 to P —o/2 which
simply gives a factor P cr Ap—ply. ing the Poisson formula
to the kinetic term 0 defined in Eq. (I.100), we obtain,
again with exponential accuracy,

400
0.4

0.3
n = 1.153

0.2

0.1

0
0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

a

0.0

—0.1

-0.2

Im p, '(0)/a

FIG. 6. Width of the unstable state as a function of the
coupling constant as obtained from the solution of the com-
plex variational equations (see Table IV). The dashed line
shows the approximate solution (57).

E/M or as M

FIG. 8. Imaginary part of the profile function and of the
ratio of pseudotime to proper time for n = 1.153.
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1
&2(P) =

2
dP exp — F—(P, p )2

(66)

Fo(p ) = p + Mo —p (1 —A) + 20
g2 dcr ' ( iApcr—

(68)
is what we have used before on the nucleon pole (p =
iM~h„, ) and

Collecting all nonexponential terms, the function
F(P, p2) therefore has the large-P expansion

2
F(& p') = Fo(p') +

g
Fi(p')

where

D= 1 —(1 —A) — A

X
v'(~)

Acr Mph',duu e
I mV(~),

~(~)
' )

where

1
%o ——exp

~

—ln A(0) + 1—
AO p'

g 0
%i -——exp — dcr

(73)

(74)

Fi(p ) =lnA(0) + + d
1 —A(0) g2

A 0 8~2

-iApo.
x due

~
mp(rr), , u

~

.
o & S ~ ) (69)

In the last line the stationarity equation (18) for A was
used to simplify the denominator D. Note that this also
applies to the case where one parametrizes the profile
function A(E). This demonstrates that

Z= (76)

exp Fl(™,'„„.)
(71)

where the prime denotes difI'erentiation with respect to
p2. Explicitly, we find

No Ng

D

Note that the potential term in Fo(p ) develops a small-
0. singularity which renormalizes the bare mass Mo but
F, (p2) is finite.

Neglecting the exponentially suppressed terms and
performing the proper time integration, we thus obtain
the expression for the two-point function

~
—+1 (J ')

G2(p') =, = exp —lnFo(p') —Fi(p')= F.(p')
=

(70)

It is now very easy to calculate the residue Z at the
pole [see Eq. (6)j by expanding around the point p

Mp as w here Eo vanishes. We obtain

dcr du (1 —u)

& ~m' I —u
x exp

2 u

1
1—

8vr2

"'u +O(g )

du + O(g ).u(l —u)
M2h, u2 + m2(l —u)

(77)

This coincides with what one obtains from the perturba-
tive result for the self-energy (39) in the usual way.

Table V contains the numerical values of the residue
obtained with diferent parametrizations as well as the
perturbative result from Eq. (77):

is always positive. It seems to be more difFicult to prove
in general that Z & 1, although all numerical calcula-
tions clearly give this result. Finally, it is again useful to
check the variational result in perturbation theory. With
A(0) = 1 + O(g ), one sees that Ko ——1 + O(g4). Sim-
ilarly, (1 —A)2 = 1+ O(g4). Expanding Ni and 1jA to
order g, we obtain

TABLE V. Residue at the pole of the two-point function for diferent parametrizations of the
profile function. The heading "Feynman" gives the result in the Feynman parametrization whereas
"Improved" refers ta the improved parametrization fram Eq. (17). The residue calculated with the
solution of the variational equations is denoted by "Variational. " For comparison, the perturbative
result is also given.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

"Feynman"
0.96090
0.91934
0.87467
0.82600
0.77184
0.70940
0.63216
0.51086

"Improved"
0.96087
0.91914
0.87418
0.82494
0.76996
0.70610
0.62597
0.49187

"Variational"
0.96087
0.91918
0.87428
0.82521
0.77036
0.70672
0.62697
0.49284

Perturbative
0.96200
0.92399
0.88599
0.84798
0.80998
0.77198
0.73397
0.69597
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Zp g b: 1 0 38004 Cl (78)

It is seen that for n near the critical value appreciable
deviations from the perturbative result occur. For exam-
ple, at o. = 0.8 perturbation theory says that there is a
probability of nearly 70%%uo to find the bare particle in the
dressed one whereas the variational results estimate this
probability to be less than 50%%uo. It should be also noted
that the residue is not an infrared stable quantity, i.e. , for
m —+ 0, Z also vanishes. From the variational equations
one can deduce that

Z const. x m"
m —+0

(79)

with K = o./(mA ). For massless mesons the residue at
the nucleon pole must vanish because it is well known
(e.g. , from quantum electrodynamics) that in this case
the two-point function does not develop a pole but rather
a branch point at p = —M h, .

h Ep(p ) + Pp(p ) hI'r(p ) = 0. (8o)

Note that on mass shell, where P0 vanishes, the previous
variational equations follow. We will not elaborate on Eq.
(80) further but only point out that the perturbative self-
energy (39) is not obtained from the ofF-shell variational
equations (80). In the limit p (o) —+ o, A(E) ~ 1, A -+ 1,
one rather finds

~var (p )
g2 A2

ln
4' 2 m2

g
2

4~2
du ln 1—p 2 /Q 2

m 1 —tl

g
47t-2

p'+- M'
dQ Q

m2 (1 —u) —p2u2 (81)

which is an expansion of Eq. (39) around p = —Mp
(or Mi which is the same in lowest order perturbation
theory). The reason for this somehow unexpected result
is the neglect of exponentially suppressed terms in Eq.
(70). Indeed, it is easy to see that one obtains the correct
perturbative self-energy only if the upper limit of the 0
integral is kept at P and not extended to infinity as we
have done in deriving Eq. (70). The difFerence is one
of the many exponentially suppressed terms which we
have neglected. Thus, the off-shell variational equations
(80) only hold in the vicinity of the nucleon pole and in
order to investigate variationally the two-point function
far away [say near the meson production threshold p
—(Mzh„, +m) ], one has to include consistently all terms
which are exponentially suppressed in P. This is beyond
the scope of the present work.

VI. DISCUSSION AND SUMMARY

In the present work we have performed variational cal-
culations for the "Wick-Cutkosky polaron" following the

B. Variational equations for the off-mass-shell case

It is also possible to apply the variational principle
away from the pole of the two-point function by varying
equation (70). This gives

approach which was developed previously [2]. We have
determined different parametrizations as well as the full
variational solution for the retardation function which
enters the trial action. Since the nucleon mass is fixed on
the pole of the two-point function the value of the func-
tional which we minimize is of no physical significance
but only a measure of the quality of the corresponding
ansatz. This is in contrast with the familiar quantum-
mechanical case where an upper limit to the ground-state
energy of the system is obtained. However, our calcula-
tion fixes the variational parameters with which we then
can calculate other observables of physical interest.

One of these quantities was the residue on the pole of
the propagator for which we have compared numerically
the results of the variational calculations to first-order
perturbation theory in Table V. For small couplings all
results for the residue agree, since in this case the varia-
tional approach necessarily reduces to perturbation the-
ory independent of the value of the variational parame-
ters. What is rather remarkable is that for larger cou-
plings the three parametrizations of the profile function
in our variational approach yield rather similar results,
which are now, of course, different from the perturba-
tive calculation. As we have seen, the "improved" and
"variational" actions have the same singularity behav-
iors, for small relative times, as the true actions, so here
one might expect some similarity in the results. This
is, however, not true for the "Feynman" parameteriza-
tion which has a rather different form, so its agreement
with the other two is not preordained. This similarity is
also exhibited in Tables I and II for A and A(0), but of
course not for the parameters v and m which enter the
respective profile functions and which are "gauge" (i.e. ,
reparametrization)-dependent quantities. Also, the crit-
ical coupling at which real solutions ceased to exist was
nearly identical in all three parametrizations. The simi-
larity of the results for the different Ansatze presumably
indicates that these results are not too far away from the
exact ones.

We were not only able to determine the critical cou-
pling but also to deduce qualitatively and quantitatively
the width which the particle acquires beyond the critical
coupling. This was achieved by finding complex solutions
of the variational equations, first approximately by an an-
alytic approach and then exactly by an iterative method
which closely followed the analytic procedure. Although
the present approach does not describe tunneling (which
we expect to render the system unstable even at small
coupling constants but with exponentially small width
[9]), the polaron variational method is clearly superior to
any perturbative treatment in this respect.

We have concentrated mostly, although not exclusively,
on the on-shell two-point function, i.e. , the nucleon prop-
agator. This corresponds to the limit where the proper
time goes towards infinity. It is possible, however, to go
beyond the on-shell limit. This was necessary, for ex-
ample, for the calculation of the residue of the two-point
function in Sec. V A. Nevertheless, the residue is a quan-
tity which is calculated at the pole and thus only requires
off-shell information from an infinitesimal region around
it. This has the effect that the variational parameters for
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AC KNO%VLED CMENTSthe calculation of the residue are the same as those for the
on-shell ones. As one moves a finite distance away from
the pole, the variational parameters themselves become
functions of the off-shellness p (see Sec. VB).

In conclusion, we think that the present variational
approach has yielded nonperturbative numerical results
which look very reasonable and are encouraging. We,
therefore, believe it worthwhile to try to extend it in
several ways. First, in a sequel to this work we will gen-
eralize the present approach to the case with n external
mesons and thereby study physical processes such as me-
son production or meson scattering from a nucleon. This
can be done by employing the quadratic trial function
whose parameters have been determined in the present
work on the pole of the two-point function. Such a "ze-
roth order" calculation is similar in spirit to a quantum-
mechanical calculation in which wave functions deter-
mined from minimizing the energy functional are used
to evaluate other observables. More demanding is the
consistent "first-order" variational calculation of higher-
order Green functions as this requires the amputation of
precisely the nonperturbative nucleon propagators which
have been determined in the present work. That this is
indeed possible will be demonstrated in another paper in
this series [13].

Of course, finally we would like to apply these nonper-
turbative techniques to the theories which are of a more
physical nature. Among these one may mention scalar
QED, the Walecka model [10, 11], or QED. The latter
two will require introduction of Grassmann variables in
order to deal with spin in a path integral. As such, this
should not pose a fundamental problem. A greater chal-
lenge, however, is to extend such an approach beyond
the quenched approximation or to non-Abelian theories
where the light degrees of freedom cannot be integrated
out analytically.

Tote added. After completion of this work we became
aware of the pioneering work by Mano [12] in which sim-
ilar methods are applied to the Wick-Cutkosky model
with zero meson mass. Mano uses the proper time for-
mulation, the quenched approximation, and the Feynman
parametrization for the retardation function to derive a
variational function for the self-energy of a scalar nucleon
[the expression following his Eq. (6.18)] which is identi-
cal with our Eq. (7) after proper identification of quan-
tities is made. However, for minimizing the variational
function, Mano sets (in our nomenclature) v = iv(1+ e),
expands to second order in e, and finds an instability
of the ground state for gM2 „ /87rM ) 0.34. Note that
gM „=~mg so that this translates into a critical cou-
pling n —0.22 which is much smaller than the value
which we obtain kom the exact minimization. In ad-
dition, in the present work we consider nonzero
masses, employ more general retardation functio
calculate residue and width of the dressed partic

We would like to thank Dina Alexandrou and Yang
Lu for many helpful discussions and Geert Jan van Old-
enborgh for encouragement and a careful reading of the
manuscript.

APPENDIX: AN ALTERNATIVE
EXPRESSION FOR 0

Here, we derive Eq. (21) for the kinetic term 0 when
the variational equations are satisfied. We first perform
an integration by parts in the definition (9) of O. The
slow fall off of the variational profile function with E,

sin (Eo-/2)
dO + '')A(E - 1+ g 1

47r2 E2

g 1
(A1)

leads to a contribution at E = oo:

A'(E) 1 —A(E)
A(E) A(E)

(A2)

g
OO

~var = +-
8m2

We then write the variational equation (19) for A(E) in
the form

1 g2 sin (Eo./2) 1

A(E) 4~ E A(E) ~ (

where

2 v, 2p o'

(A4)

The integration over E can now be performed giving a
factor np (o)/4 because of Eq. (12). Therefore, we have

2 oo 1
do X(o.)167r o p2 o

1

A(E)

(A5)

which is just one term in the expression (A2) for B. To
get the other one, we differentiate the variational equa-
tion for A(E) with respect to E and observe that

B . , KEo) cr B . 2 /'Err)
BE i2 j EBo q2)

A'(E) g2

A(E) 4n. 2
sin (Eo/2) ( BEdE

E2A(E)

meson One has to be careful not to interchange the E integra-
ns, and tion and the o differentiation. We therefore perform an-
le.

[

integration by parts and obtain

sin (Eo /2)
~'(~)

g
2

16m
—lim + do, ~2+ o ~X(o)

o-A (o.) 1 t' B
~-+o IJ2 o o p2 o ( Bo (A7)
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Note that the boundary term at o = 0 gives a contribution because of A (0) = 1. This contribution exactly cancels
the term g /8' in Eq. (A2). Combining both terms for 0 [which do not exist separately because of the slow fallofF
of A(E)], we obtain

A'(E) 1 —A(E) g2

A(E) A(E) 16~

g
16'

—1+ do
~

1 — cr
~

X(o)
1 t' 0

p /J, o' ( ojo

—1+ der%(o)
~

1+o( ci)
0 Bo) p2 a (A8)

from which Eq. (21) follows. In the last line, again an integration by parts has been performed but this time there is
no contribution &om the boundary terms.
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