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Abstract

In order to understand how hadrons acquire their physical properties from their
constituents, we must resort to the underlying theory of the strong interaction,
Quantum Chromodynamics (QCD). However, the non-perturbative nature of
this theory in the relevant energy scales renders the standard perturbative
methods ineffective. The formulation of QCD on a discrete space-time lattice
allows for a first principles, non-perturbative approach to studying the strong
interaction, in a manner well suited to numerical computation.

Over the past decade, the use of variational techniques has provided an
effective framework for spectroscopic studies of the full hadron spectrum.
Herein we generalise the use of the variational approach to hadron form factor
calculations and examine its use in a number of different hadronic systems. As
such an approach allows for the isolation of terms relevant to a single eigenstate
or eigenstate transition, we show that this method is both an effective way to
remove excited state contamination from the study of ground state systems and
an effective framework through which one can study the structure of hadronic
excitations.

We begin with an evaluation of the nucleon axial charge, gA, to investigate
the improvement offered through this method and consider the role that excited
states play in the discrepancy observed between lattice determinations and
experiment. This is followed by a determination of the ρ-meson electromagnetic
form factors GC , GM and GQ, and the corresponding radiative transition form
factor GM1 using near physical masses. We then turn our attention to the
electromagnetic form factors of the two lowest-lying negative parity nucleons,
where such techniques are required to disentangle the contributions of these two
near degenerate states. Here we present the first evaluation of the elastic form
factors GE and GM for both these low-lying states.

Finally, through careful consideration of the Nγ → N∗ vertex, we develop an
innovative formalism that allows one to evaluate radiative transition form factors
for all spin-1/2 nucleon excitations. This novel formalism is implemented to
provide the world’s first examination of the odd-parity transitions of the nucleon
in lattice QCD.
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Chapter 1

Introduction

The confining nature of the strong interaction constrains all colour-charged
particles to reside in colourless bound states. These bound states, called hadrons,
present some of the most diverse and complex systems within our universe.
To understand the nature of such states we must resort to the fundamental
description of the strong interaction embodied within the underlying field
theory, Quantum Chromodynamics (QCD). Upon examining these systems,
both experimentally and through QCD, one finds that many of their physical
properties, such as mass and spin, do not come directly from their underlying
constituents, rather they arise from the complex interactions of these constituents,
both between each other and with the physical vacuum. As hadrons form much
of the observable matter within the universe, understanding their structure and
subsequent dynamics from the perspective of these constituent particles, the
quarks and gluons, is both an important and an interesting problem.

Hadrons exist across a wide range of energies from the pion, with a rest mass
of 0.135 GeV, up to the bottomonium states with masses in excess of 10 GeV.
At the fundamental level, QCD describes all of these systems; however these
systems exhibit markedly different physics. Here we shall consider states which
exist at the lower end of this scale, where the constituents are highly relativistic
and the approximate chiral symmetry of QCD imbues these states with many
interesting and non-trivial properties. At these energies, the standard method of
forming perturbative series breaks down and so, in order to extract meaningful
results, one must resort to other, non-perturbative techniques. To date the only ab
initio approach to the study of QCD in this regime is to formulate the theory on a
finite Euclidean space-time lattice, which acts a natural regulator for the theory.
Through this formulation, one can establish a fundamental connection with
statistical mechanics and consequently build a framework where the correlation
functions describing the dynamics of the theory can be evaluated numerically
using Monte Carlo techniques.

Given the scale and complexity of the calculation, lattice simulations require
vast amounts of computing resources. Historically, in order to extract any results
the earliest calculations were forced to operate with parameter sets well-removed
from the physical situation. However access to ever-increasing compute power
and breakthroughs in algorithmic design have allowed the community to edge
ever-closer to the physical regime. Within the last decade, simulations have been
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2 Introduction

able to examine hadrons at physical quark masses and consequently produce the
ground state spectrum consistent with experiment [1]. While this is an important
result, these ground states represent only a small fraction of the hadron spectrum.
The extended hadron spectrum presents many interesting insights into the nature
of hadrons and the strong interaction. Of particular interest are those states which
lie outside of the expected patterns observed generally within the spectrum, and
exotic states, which are entirely permissible by QCD but have yet to be observed.
The answer to such questions lies deeply within QCD, and Lattice QCD presents
us with the ideal means through which to extract them.

Hadron spectroscopy on the lattice has been an active focus of the community
for many years now and the techniques employed are well established. The most
popular and successful of these techniques is the so-called variational method.
The underlying principle of this approach is to access excitations via optimised
operators, formed as linear combinations of basis operators determined via a
variational procedure such that they effectively couple to individual energy
eigenstates. Utilising the variational approach, we have been able to map
out much of the hadron spectrum and consider its associated quark mass
dependence. However, if we wish to gain insight into the make-up and structure
of such states or the matrix elements associated with their production or decay,
we must consider how the variational approach can be utilised in the context of
hadron structure calculations.

As we shall see, the generalisation developed herein is effective and provides
a robust and general method for the determination of hadron matrix elements.
In particular, this approach provides a framework through which one can
both remove excited state contributions from the determination of ground state
properties and access the corresponding quantities for hadronic excitations on
the lattice.

In this thesis, we examine the application of the variational method to a
range of hadron structure calculations. The objective is to present a framework
that provides systematic control over excited states, allowing for an accurate
determination of hadronic matrix elements in the light-quark regime. Its use
in the extraction of matrix elements for the excitations of the lightest QCD
eigenstates, specifically the nucleon, pion and ρ meson is explored. We begin in
Chapter 2 with a brief discussion of hadrons in the context of the standard model
and the insights offered through the constituent quark model. This is followed by
an introduction to Quantum Chromodynamics and hadron structure. In Chapter
3 we present the foundations of Lattice QCD and the basic building blocks
that one requires in order to study hadrons on the lattice. Chapter 4 outlines
the method for evaluating hadron correlation functions and consequently how
one can access the desired information from these quantities. This leads into a
discussion of the variational method and the new extensions required for its use
in the evaluation of hadronic matrix elements.

We then proceed with a presentation of the calculations and subsequent
results. We begin in Chapter 5 with an evaluation of the nucleon axial charge,
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gA, to examine the improvement this method offers over conventional techniques
in handling excited state contamination. Chapter 6 is devoted to the evaluation
of the electromagnetic form factors for the π and ρ mesons and their lightest
excitations, with a particular focus on extracting these quantities for the ρ meson
with near physical quark masses. We follow this up in Chapter 7 with an
evaluation of the ρ → πγ transition form factor. In Chapter 8, we shall examine
the electromagnetic form factors of the two lightest negative parity nucleons seen
on the lattice and finally, in Chapter 9 we establish a new formalism for the
extraction of the electromagnetic transition form factors for nucleon excitations,
encompassing transitions between all possible parity states. The consideration of
negative parity transitions in lattice QCD is novel. The formalism is implemented
to provide a first look at the predictions of QCD and facilitate the interplay
between theory and experiment in generating new knowledge.





Chapter 2

Quarks, Hadrons and the Strong
Interaction

Our understanding of the universe on the sub-nuclear scale is embodied in the
standard model of particle physics. This theory collectively describes the strong,
weak and electromagnetic interactions and classifies all elementary particles into
four fundamental classes: quarks, leptons, the force mediators and the Higgs
Boson. Quarks and leptons, sometimes collectively called matter particles, form
the basis for all directly observable1 matter in the universe. The force mediators
are responsible for facilitating the interactions between particles through the
exchange of energy and momentum. The remaining ingredient, the Higgs
boson, is the resultant scalar particle stemming from the spontaneous symmetry
breaking of the electroweak interaction via the Higgs field (a unified description
of the electromagnetic and weak interactions) through which massless fields are
able to acquire mass. With the discovery of the Higgs boson in 2012 by the ATLAS
and CMS experiments [2, 3], all of the elementary particles in this framework
have been verified.

If we consider how we observe most matter in the universe, the vast majority
of what we see is bound states. The properties and patterns observed in
such bounds states can be understood from the properties of the underlying
constituents and the governing interactions. As summarised in Table 2.1, the
constituent particles, the quarks and leptons, are both spin-1/2 fermions, with
six distinct types, that can be grouped according to their charge and relative
mass. The key feature that differentiates quarks and leptons is in their ability
to interact via the strong interaction; quarks are able to undergo such interactions
while leptons are not. Remarkably, this simple defining property gives rise to
the most important and notable difference between these particles: quarks are
not observed in isolation. The exact mechanism for this confining property
remains poorly understood; however its consequence is quite simple. In the
low-moderate energy regime, quarks can only exist within colour-neutral bound
states, which we call hadrons.

1On the basis of astrophysical observations, there is now a general consensus that Dark Matter
exists in our universe. Though massive neutrinos are certainly a candidate for such matter, the
number observed is insufficient to generate the required mass, thus hinting at some other, yet-to-
be observed, matter in our universe. Accounting for such matter would require extensions to the
Standard Model.

5



6 Quarks, Hadrons and the Strong Interaction

Table 2.1: Summary of the matter particles within the framework of the standard
model. Within both the lepton and quark families, there exists a clear trend of
increasing mass between identically-charged states, which further orders these
states into groups called generations. Masses are quoted in units of GeV/c2 and
electric charges as multiples of the magnitude of the electron’s charge |e|. Quark
masses are quoted in the MS scheme at a scale of 2 GeV/c2.

Quarks Leptons

flavour Q mass flavour Q mass

up (u) +2⁄3 0.002 electron (e) -1 5.1 × 10−4

down (d) -1⁄3 0.005 e-neutrino (νe) 0 < 2 × 10−8

charm (c) +2⁄3 1.28 muon (µ) -1 0.105

strange (s) -1⁄3 0.095 µ-neutrino (νµ) 0 < 1.9 × 10−4

top (t) +2⁄3 173 tau (τ ) -1 1.78

bottom (b) -1⁄3 4.18 τ -neutrino (ντ ) 0 < 0.018

To understand the spectrum of hadrons, we label states by their total angular-
momentum, parity and where possible charge conjugation (JPC). In doing
this one finds two fundamentally different families of hadrons, the mesons and
baryons. The mesons are particles of integer spin, while the baryons are particles
of half-integer spin. To truly understand the observed spectrum of hadrons
requires a comprehensive understanding of how the structure and dynamics of
hadrons arises from the underlying interactions of quarks. For this one needs
to consider Quantum Chromodynamics (QCD), the quantum field theory that
describes the strong interaction. However, many of the general features and
patterns in the observed hadron spectrum can be understood in the context of
constituent quark models. Before delving into underlying details of QCD, we
shall take the time to consider how the hadron spectrum arises from the simple
rules that govern the formation of hadrons from quarks.

2.1 The Quark Model of Hadrons

A careful examination of the lightest hadron states reveals clear patterns in the
spectrum. For both baryons and mesons, one can identify distinct groupings
of particles nearly degenerate in mass, differing only in their electric charge.
Historically these were referred to as isospin multiplets and were understood
to arise from an apparent SU(2) symmetry in the Hamiltonian of the strong
interaction. Other approximate groupings can be identified where members
differ in their strangeness. By combining these symmetries Gell-Mann and
Neeman independently put forward the so called ”8-fold way” [4, 5] which
explained the observed hadron multiplets as different dimensional representa-
tions of SU(3). Fig. 2.1 highlights the lowest lying meson and baryon multiplets.
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This observation was an important step forwards, however within the physical
spectrum, it appeared that only a select number of representations were realised.
All of this hinted at some overarching structure and it was this rationalisation
that led Gell-Mann [6] to posit some fundamental entity, which he called quarks.

Within this framework, quarks are assigned to the fundamental representa-
tion of SU(3) and anti-quarks to the conjugate representation, with the elements
of these vectors understood to be the quark flavours u, d and s. The observed
dimensionality for the multiplets seen in the spectrum arise naturally if baryons
are considered qqq states and mesons as qq̄

qqq : 3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10 ,

qq̄ : 3⊗ 3̄ = 1⊕ 8 .

However, if quarks are taken to be physical entities, the absence of free quarks
leads one to conclude that the issue of select representations remains. A more
troubling issue arises when one attempts to couple spin to this model. When
considering the ∆++, the spin-flavour wave function for this state is found to be
completely symmetric, contrary to that required for fermions, which obey Fermi-
Dirac statistics. A solution to this problem came from Greenberg who proposed
that quarks are parafermionic [7]. If the quarks were to carry an additional
quantum number, say colour charge, and the wave function were anti-symmetric
in this new degree of freedom, then the ∆++ would be rendered anti-symmetric
as required. It was further realised that if this new charge were to transform
under SU(3) rotations, one could now understand why qqq and qq̄ states are
observed while others such as q and qq states are not: any combination must
produce a colour-singlet representation in order to be physical. This requirement
is the manifestation of the aforementioned colour confinement.

Finally, incorporating these key elements with the quark’s spin, one arrives
at the SU(6) quark model. Here the SU(3)-flavour symmetry group is promoted
to an SU(6) spin-flavour symmetry. The vectors q now encode the spin-flavour
elements u ↑, u ↓, d ↑, d ↓, s ↑ and s ↓. As highlighted by the ∆++, the final
requirement is that the baryon spin-flavour wave function be entirely symmetric.
In this way we can completely understand the resultant ground state meson and
baryon spectrum from

qqq : 6⊗ 6⊗ 6 = 56⊕ 70⊕ 70⊕ 20 ,

qq̄ : 6⊗ 6̄ = 1⊕ 35 .

For the mesons, the situation becomes clearer upon writing the 35-plet in terms
of flavour-spin elements,

35 = (8, 1)⊕ (8, 3)⊕ (1, 3) , 1 = (1, 1) .

Here we find the pseudoscalar nonet (8, 1) ⊕ (1, 1) and the vector nonet (8, 3) ⊕
(1, 3) presented in Fig. 2.1. For the baryons, the elements belonging to the 56-
plet have the required spin-flavour symmetry properties. Again, expressing this
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Figure 2.1: The pseudoscalar (top left) and vector (top right) meson nonets and
the baryon octet (bottom left) and decuplet (bottom right). Hadrons are plotted
with the third component of isospin in the horizontal direction and strangeness
in the vertical direction.

representation in terms of flavour-spin elements we find

56 = (8, 2)⊕ (10, 4) ,

which are the baryon octet and decuplet respectively, again presented in Fig. 2.1.

2.1.1 The SU(6)×O(3) Quark Model

So far we have seen how the ground state spectrum arises naturally within
the SU(6) quark model, however this is only a small fraction of the observed
spectrum. Given that there are six flavours of quarks, one can naturally increase
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the symmetry group to include further flavours, however the remaining flavours
are significantly larger and so the additions to the spectrum sit considerably
higher. Much of the remaining spectrum can be understood when we recognise
that the underlying quarks are interacting. Without resorting to, or historically,
having QCD to completely describe these interactions one can instead place
the quarks in some potential; the simplest choice being the harmonic oscillator.
Through the spherical symmetry of this potential, the quarks are able to acquire
orbital angular momentum, ℓ, and so the spectrum of hadrons can be built up by
combining the resulting spatial and spin-flavour wave functions to form hadronic
excitations. This extension is called the SU(6)×O(3) quark model [8].

For baryons, we require the flavour-spin-position wave function to be sym-
metric to ensure that the resulting full wave function including colour satisfies
Fermi-Dirac statistics. In the case of the ground state, the spatial wave function is
understood to be s-wave and so necessarily symmetric, thus permitting only the
symmetric 56-plet. For non-trivial angular momenta, non-symmetric position-
space wave functions are possible providing access to other baryon spin-flavour
symmetry groups. For mesons, the addition of orbital angular momentum
gives rise to a strict relation between angular momentum, parity and charge
conjugation,

P = (−1)ℓ+1

C = (−1)ℓ+s

}

CP = (−1)1+s .

As the only available meson spins are s = 0, 1, these relations induce distinct
patterns in the JPC . The most striking feature of the resulting meson spectrum is
its inability to form particular PC combinations,

JPC = 0+−, 1−+, 2+−, . . .

often known as forbidden, or exotic states.

2.1.2 Limitations of the Quark Model

It is clear that the quark model provides us with a natural explanation to the
plethora of states that constitute the hadron spectrum. Using only qqq and qq̄
structures we can understand the lowest lying meson and baryon multiplets.
Furthermore, when coupled with orbital angular momentum, we can generate
a diverse range of hadron excitations. However, examining the physical hadron
spectrum one quickly finds that the quark model is far from complete. Within
the excited baryon spectrum, the position of the lightest positive parity nucleon
state, the N∗(1440) (otherwise known as the Roper resonance) and the lightest
negative parity baryon, the Λ(1405), are much lighter than can be consistently
explained using conventional quark models [9, 10]. Furthermore, the presence
of light scalar mesons below 1 GeV strongly suggests the need for exotic states
with quark content beyond the qq̄ structure [11]. The existence of exotic states



10 Quarks, Hadrons and the Strong Interaction

has all but been confirmed with the recent discovery of the Z−(4430) at LHCb
[12]. While it is possible to include extended quark content and refinements
to the interaction potential such as spin-dependent effects, all fail to properly
explain the small mass of the pion relative to all other hadron states. Such a short-
coming stems from the failure to properly describe the underlying dynamics of
the strong interaction. For this we will need to resort to the underlying field
theory that governs the strong interaction, Quantum Chromodynamics (QCD).
Nonetheless, the quark model does a remarkably good job and certainly serves
as a good benchmark, especially in the limit of heavy quark mass. Indeed, we will
use this as a first comparison with our lattice results in the heavier quark-mass
regime.

2.2 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the non-Abelian gauge theory that de-
scribes the strong interaction. This theory is formulated on the requirement of
local gauge invariance for fields carrying colour charge under the non-Abelian
Lie group SU(3). Through this theory, the strong interaction is understood as
the interaction of quarks through the exchange of particles called gluons. In
structure, this theory shares many similarities with Quantum Electrodynamics,
the gauge field theory describing the electromagnetic interaction. However due
to the non-Abelian nature of the underlying gauge group, the force mediators
(gluons) undergo self-interactions leading to vastly different dynamics and
ultimately, the non-perturbative nature of QCD. The necessary framework for
non-Abelian gauge theories was first laid out by Yang and Mills [13].

The free Lagrangian density for a quark (a spin-1/2 particle carrying colour
charge) is given by

L(0)
F (x) = ψ̄(x)

(

i/∂ −m
)

ψ(x) , (2.1)

where ψ(x) is colour 3-vector of spinor fields (for readability we have suppressed

the colour label). Under a global SU(3) transformation Ω = ei θa
λa
2 (θa is a constant

phase and λa
2

the group generators),

ψ(x)→ Ωψ(x), ψ̄(x)→ ψ̄(x) Ω−1 ,

and so the Lagrangian remains invariant. However, the corresponding local
transformation (obtained by taking θa → θa(x)) does not leave the Lagrangian
invariant due to the non-invariance of the derivative,

∂µ(Ω(x)ψ(x)) 6= Ω(x) ∂µψ(x) . (2.2)

This non-invariance stems from the fact that the derivative relates fields at two
different spacial locations,

nµ∂µ = lim
ǫ→0

1

ǫ
{ψ(x+ ǫn)− ψ(x)} ,
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which ultimately live in separate vector spaces and so transform differently. To
make sense of the derivative, we need to introduce some operator, U(y, x), that
will allow us to transport a vector in the vector space of point x to a corresponding
vector in the vector space at point y. To achieve this, the operator will require the
following transformation property,

U(y, x)→ Ω(y)U(y, x) Ω−1(x) , (2.3)

which ensures that U(x+ ǫn, x)ψ(x) transforms in the same fashion as ψ(x+ ǫn).
Redefining the derivative with this addition, we obtain the covariant derivative
Dµ which transforms as

Dµ → Ω(x)Dµ Ω
−1(x) , (2.4)

ensuring that Dµψ is consistent with ψ. The device, U(y, x), that allows one to
transport the field vector at x to the corresponding field vector at y is the Wilson
line,

U(y, x) ≡ Pei g
∫ y

x
Aa

µ(z)
λa

2
dz . (2.5)

For points that are arbitrarily close we are able to make the expansion

U(x+ ǫn, x) = 13 + i g ǫ nµAaµ(x)
λa

2
+O(ǫ2) ,

from which it follows that the covariant derivative Dµ can be expressed as

Dµ(x) = ∂µ − i g Aaµ(x)
λa

2
.

The required transformation property of the Aµ(x) ≡ Aaµ(x)
λa

2
field for Dµ to

transform covariantly is

Aµ(x)→ Ω(x)Aµ(x) Ω
−1(x)− i

g
(∂µΩ(x)) Ω

−1(x) .

Replacing ∂µ in (2.1) by Dµ = (∂µ − i g Aµ(x)) makes the resulting Lagrangian
invariant under both local and global gauge transformations, however the
Lagrangian remains incomplete as there are no kinematic terms present for Aµ.
AsAµ(x) is a vector field, the necessary addition is of the form 1

2
tr[GµνG

µν ] where

−igGµν = [Dµ, Dν ] . (2.6)

Using Eq. (2.4) and the definition of Gµν it is easy to see that this term is gauge
invariant. Thus the complete2 QCD Lagrangian is given by

LQCD(x) = ψ̄(x)
(

i /D −m
)

ψ(x)− 1

2
tr[Gµν G

µν ] . (2.7)

2The term θ g2

16π2 tr[Gµν G̃
µν ], where G̃µν = 1

2
ǫµνστGστ , is admissible under the requirements

of renormalisability, however this term explicitly violates CP-symmetry.
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To elucidate the underlying interactions encoded in Eq. (2.7), we expressAµ(x)
as Aaµ(x)

λa

2
in Eq. (2.6). The field-strength tensor Gµν takes the explicit form

Gµν =
(

∂µA
a
ν − ∂νAaµ + g fabcAbµA

c
ν

) λa
2
, (2.8)

=
(

G(0) a
µν + g fabcAbµA

c
ν

) λa
2
, (2.9)

where G
(0) a
µν = ∂µA

a
ν − ∂νAaµ is the kinetic term for Aaν . The quadratic terms arise

from the non-Abelian nature of the Lie-Algebra for SU(3),

[

λa

2
,
λb

2

]

= fabc
λc

2
.

Substituting the expanded form of the covariant derivative and the field-strength
tensor into Eq. (2.7), we can decompose the Lagrangian as

LQCD(x) = L(0)
F (x) + L(0)

G (x) + LI(x) ,

where

L(0)
F (x) = ψ̄(x)

(

i/∂ −m
)

ψ(x) ,

L(0)
G (x) = −1

2
tr[G(0)

µν G
(0)µν ] ,

are the Lagrangians for a free quark field and massless vector boson, while the
remaining terms

LI(x) = +g ψ̄(x)Aµ γ
µ ψ(x)− g fabc ∂µAaν Ab µAc ν −

g2

4
fabc fadeAbµA

c
ν A

dµAe ν ,

encode the interaction vertices. Unlike in Quantum Electrodynamics (QED), the
force mediators themselves carry charge and so are able to interact at tree level.
All of the non-trivial dynamics of the strong interaction stem from these self-
interactions resulting in a highly non-linear and non-trivial field theory.

Two of the most distinguishing properties of QCD are asymptotic freedom
and confinement. Both give rise to distinctly different features of the strong
interaction. The first of these, asymptotic freedom, is the identification that at
high energies (short distance scales) the strong coupling constant is small and
so perturbative methods are permissible. However, the scaling behaviour of the
strong coupling constant results in an increasing value with decreasing energy
and so perturbative series break down in the low energy regime. The mechanism
through which this happens is well understood and stems from the anti-screening
effect induced by the gluon fields. The origin of confinement on the other hand is
still on open question. From our observations of the strong interaction, it is clear
that there is some underlying mechanism that prohibits the existence of coloured
states, at least in the realm of low energy and low density. Therefore the natural
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state of a quark is to be bound. Thus treatment of the system as perturbations
from a free particle state fail to properly describe the system. This argument
is further enhanced with the realisation that the underlying chiral symmetry of
QCD induces a change in the vacuum in which the lowest energy configuration
is non-empty. It is apparent that in order to consider the underlying dynamics of
a hadronic system, a non-perturbative treatment of QCD is required.

2.3 Hadron Structure and Form Factors

For a truly fundamental understanding of the hadron spectrum, we require
a detailed understanding of how their underlying structure arises from quark
and gluon degrees of freedom. Having arrived at the theory describing the
interactions between these constituents in the previous section, one could argue
that we are in a position to answer such questions. However, without a practical
approach to evaluating the necessary amplitudes via QCD, it seems that we lack
the machinery to work from the level of constituents to build up to a hadron.
Nonetheless, it is still possible to learn a great deal by operating from the level
of the hadron. Unsurprisingly, the framework and language used in mapping
out hadron structure in this fashion was developed well before we had any
knowledge of the underlying mechanism of the strong interaction.

The approach we take is to treat the hadron as a phenomenological quantity
whose interaction with an external current is described by matrix elements of the
form

〈α, p′, s′ | O(0) | β, p, s 〉 = ūα(p
′, s′)Γ(p′, p)uβ(p, s) , (2.10)

where the terms uα(p, s) are relevant mathematical structures that properly
describe the JPC of the state α carrying momentum p and spin s. We note that
in general the incoming and outgoing states need not be the same; in such a case
the matrix element describes the transition amplitude between states through
the current corresponding to O. Matrix elements described by Eq. (2.10) can be
represented by diagrams given in Fig. 2.2.

All of the dynamics describing the interaction with the current are encoded
within the vertex function, Γ(p′, p), and so contain all the information pertaining
to the hadron’s underlying structure. In particular, we can identify all of the
possible Lorentz covariant structures consistent with the current, and to each of
these assign a scalar function called a form factor which describes the hadrons
underlying structure. It turns out that the only independent scalar invariant
variable is the squared momentum transfer, q2, where q = p′ − p. In this fashion,
we can rewrite the matrix element as,

〈α, p′, s′ | O(0) | β, p, s 〉 = ūα(p
′, s′)

[

∑

i

XiFi(q2)
]

uβ(p, s) ,
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Figure 2.2: Diagrams expressing the matrix elements describing the interaction of
a hadron with an external current. The diagram on the left is for elastic processes
while the diagram on the right is for transitions. It is possible to describe the
underlying structure and dynamics for such processes in terms of invariant scalar
functions of the squared momentum transfer, called form factors. These functions
can be considered as describing by how much the hadron differs from a point-like
structure.

where Xi are the Lorentz covariant structures. In this form, it is often possible
to eliminate terms through considerations of symmetries, such as parity or time-
reversal, or properties required for conservation of particular quantities, such
as Ward identities. A key benefit of this approach is its strong connection with
experiment. As quarks are bound particles, the states experimentalists must work
with are the hadrons themselves. Therefore the measurements that they make,
such as cross-sections and scattering amplitudes, can be related to these form
factors.



Chapter 3

Lattice QCD

For the energy scales that make up much of our universe, QCD is inherently
non-perturbative. In order to extract results in this regime, we need a strategy
that either re-expresses the theory in terms of the relevant degrees of freedom,
the hadrons, or approach the problem in an entirely non-perturbative way. The
appeal of the first method is that by re-expressing QCD as an effective theory,
it is possible to perform perturbative expansions in powers of momenta when
equipped with a suitable power counting scheme. These theories can provide a
tremendous degree of insight into the underlying chiral dynamics of QCD and
do a remarkably good job at describing QCD at low energies. However, for
energy scales on the order of 0.5 GeV, the perturbative series begin to display
poor convergence and render such methods useless. As the majority of hadron
states lie above this threshold, accurate descriptions of such systems require non-
perturbative techniques.

There exist several non-perturbative approaches to solving problems in QCD,
however the only direct systematic approach that exists is that of Lattice QCD.
First proposed by Kenneth Wilson [14] as a means to demonstrate the confining
behaviour of QCD, the theory allows for the evaluation of observables directly
from QCD. By formulating QCD on a finite, discretised piece of space-time (a lat-
tice), the theory acquires a natural and non-perturbative regularisation scheme.
Furthermore, by operating in Euclidean space, the path integrals that describe
quantum process take on a form reminiscent of the Boltzmann distribution from
statistical mechanics. Together these features render the phase space sampled
by the path integral finite and so one can employ Monte-Carlo techniques to
evaluate the observables. Given the scale of the problem, the only practical
approach to this formulation is to perform such calculations numerically. In
this chapter we shall consider the basic principles upon which Lattice QCD is
formulated and present the simplest discretisation of the QCD action, the Wilson
action. From here we shall briefly examine improvement schemes and finally
consider the machinery required to probe the underlying structure of a hadronic
system.

15
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3.1 Path Integrals

An alternate prescription to the canonical formulation of a quantum field theory
is that of the path integral. The underlying principle of this approach is
that a quantum process can be represented as the sum over all possible field
configurations, whereby each configuration’s contribution to the amplitude is
weighted by a phase set by the action evaluated for that configuration. It follows
that the fundamental quantity is the generating functional,

Z =
∏

i

∫

Dφi e+iS[φ1,φ2,...,φn] (3.1)

which describes the make-up and evolution of the physical vacuum for the
theory. Here φi are the field variables, with the action S[φ1, φ2, . . . , φn] obtained
from the Lagrangian density,

S[φ1, φ2, . . . , φn] =

∫

L(φ1, φ2, . . . , φn; x) d
4x

and the measure defined as

Dφi =
∏

x

dφi(x) .

To extract vacuum expectation values, one simply includes the relevant operator
into the integrand and re-evaluates the normalised integral

〈O〉 = 1

Z
∏

i

∫

DφiO[φ1, φ2, . . . , φn] e
+iS[φ1,φ2,...,φn] . (3.2)

By offering an alternate method to the evaluation of amplitudes, the path
integral has furthered our understanding of field theories, especially when the
canonical approach has seemed intractable. Of particular importance is the
strong connection this approach provides us to statistical mechanics. Up to the
fact that the exponential weight is complex, the form of Eq. (3.1) is reminiscent
of the partition function from statistical mechanics. If we re-express the theory in
Euclidean space through a Wick rotation,

t→ −itE ,

the action is mapped to the Euclidean action,

S → −iSE ,

and the generating functional takes the correct form for a partition function,

Z =
∏

i

∫

Dφi e−SE [φ1,φ2,...,φn] .
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This in turn allows for a re-interpretation of vacuum expectation values as the
weighted ensemble average over all of the allowed field configurations. From
such a definition, if we wish to obtain an estimate for some vacuum expectation
value, all we need do is generate a sub-ensemble of field configurations which is
sampled from the full ensemble by the probability factor

P [Φi] = e−SE [Φi] ,

where Φi = (φi1, φ
i
2, . . . , φ

i
n) denotes a given field configuration. The estimate for

operator expectation values is then given by the average of the relevant operator
evaluated over the N sub-ensembles,

〈O〉 ≃ 1

N

N
∑

i=1

O[Φi] .

In the absence of an analytic approach to generating suitable gauge field con-
figurations, the next step to a practical approach would be to perform some
discretisation of space-time. In doing this for the QCD action, we arrive at Lattice
QCD.

3.2 Discretising the QCD Action

Discretisation of space-time is achieved by the simple transformation,

xµ → anµ ,

where a is the spacing between lattice sites and nµ are integer valued coordinates
that enumerate the vertices of our lattice. We will also define eµ to be the unit
vector for a given space-time dimension specified by the index µ. We then restrict
ourselves to a finite volume of space-time, V = L4 = (Na)4, where N is the
number of lattice sites in a given direction. In order to solve the equations of
motion one must also impose boundary conditions. For gauge field generation,
periodic boundary conditions are the common choice. By limiting space-time
to a finite hypercube lattice, we have rendered our field operators finite entities
and reduced the phase space of possible gauge configurations from an infinite
to finite number. As such, lattice field theories allows us to employ Monte Carlo
sampling techniques to generate the sub-ensemble of gauge fields. In this fashion,
the problem is well suited to numerical computation.

In formulating QCD on the lattice, we place the fermion fields on the lattice
sites and replace derivatives by finite-differences and integrals over space-time
by sums over the lattice volume,

∂µψ(x)→ δµψ(x) =
1

2a
(ψ(x+ aeµ)− ψ(x− aeµ)) ,

∫

d4x→ a4
∑

n

.
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Figure 3.1: The lattice discretisation upon which Lattice QCD is formulated
herein. The quark fields, ψ(x), occupy the sites while the gauge fields are
represented by the links between lattice sites, Uµ(x).

The final element we require is the discretised analogue of the gauge field, Aµ.
In the continuum, the gauge field arose naturally through our need to restore the
gauge transformation properties of the derivative. Following a similar vein, we
can see that our finite difference operator fails to transform covariantly under a
local gauge transformation, Ω(x), now restricted to the lattice sites. In Section 2.2
we saw that the introduction of the Wilson line was the crucial element that
allowed us to relate the vector spaces at different locations and thus construct
meaningful derivatives. In the continuum case we would use

Uµ(x) ≡ U(x + aeµ, x) = Pei g
∫ y
x
Aa

µ(z)
λa

2
dz ≃ ei a g Aµ(x) . (3.3)

Rather than work with gauge fields Aµ, on the lattice we choose instead to work
directly with the Uµ fields. In this manner we simply require these fields to satisfy
the lattice analogue of Eq. (2.3),

Uµ(x)→ Ω(x)Uµ(x) Ω
−1(x+ aeµ) , U †

µ(x)→ Ω(x+ aeµ)U
†
µ(x) Ω

−1(x) . (3.4)

We can then define the covariant finite difference operators as

∇µψ(x) =
1

2a

(

Uµ(x)ψ(x+ aeµ)− U †
µ(x− aeµ)ψ(x− aeµ)

)

.

This field Uµ(x) is effectively the minimal transport operator on the lattice that
relates one site to an adjacent site, as shown in Fig. 3.1. For this reason, we often
refer to these fields as link variables. It is useful to further define the transport
operators,

Tµψ(x) = Uµ(x)ψ(x+ aeµ) , T †
µψ(x) = U †

µ(x− aeµ)ψ(x− aeµ)

which allow us to write the covariant finite difference operator succinctly as,

∇µ =
1

2a

(

Tµ − T †
µ

)

.



§3.2 Discretising the QCD Action 19

Figure 3.2: The closed product of links that give rise to the plaquette, Pµν(x).

Having identified the lattice analogues of our continuum fermion and gauge
fields, we now seek a discretisation of the QCD action which in the limit of taking
the lattice spacing to zero, a→ 0, restores the continuum QCD action.

3.2.1 Gauge Fields on the Lattice

Here we shall consider a discretised version of the gauge field action,

SG[A] =
1

2

∫

d4xTr [GµνGµν ] . (3.5)

It is worth noting that we no longer need to delineate covariance and contravari-
ance of terms as we are now operating in Euclidean space. In section 2.2, we
arrived at this expression through considerations of gauge invariance. Following
a similar motivation here, we seek a quantity composed entirely of gauge fields
that satisfies gauge invariance. On the lattice, the simplest such quantity is given
by the trace of the path-ordered product of links around a 1 × 1 loop shown in
Fig 3.2,

Pµν(x) = Uµ(x)Uν(x+ aeµ)U
†
µ(x+ aeν)U

†
ν(x) . (3.6)

This quantity is referred to as a plaquette. Expressing this in terms of gauge field
variables we have,

Pµν(x) ≃ ei a g Aµ(x)ei a g Aν(x+aeµ)e−i a g Aµ(x+aeν)e−i a g Aν(x) .

Given these are exponentials of non-Abelian objects, combing them into a
single exponential requires the use of the Baker-Campbell-Hausdorf identity

eAeB = eA+B+ 1
2
[A,B]+... .

Applying this identity and making use of the forward difference operator we can
re-express the shifted gauge field as

Aµ(x+ aeν) = Aµ(x) + a δ+ν Aµ(x) +O(a2) ,
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and so arrive at
Pµν = ei (a

2 g Gµν(x)+O(a3)) .

Finally if we consider the power series definition of this exponential, we can
obtain the required product of field strength tensors via

(

I3 −
1

2

(

Pµν + P †
µν

)

)

=
a4 g2

2
Gµν Gµν +O(a6) . (3.7)

We can then write down the simplest discretisation of the gluon action,

SG[U ] = c
∑

x

∑

µ>ν

Tr

[

I3 −
1

2

(

Pµν(x) + P †
µν(x)

)

]

, (3.8)

with the constant c to be determined such that we obtain the correct normalisa-
tion. In this expression

∑

µ>ν ensures that each plaquette contributes once only.
We can promote this to a sum over all values in µ and ν provided we account
for the double counting. With this adjustment and substituting Eq. (3.7) into our
expression we arrive at a form that is remarkably close to Eq. (3.5),

SG[U ] =
g2c

2
· 1
2
a4
∑

x

(

Tr [Gµν Gµν ] +O(a2)
)

, (3.9)

where the repeated indices are now summed over. Taking the continuum limit,
we obtain the continuum expression if we choose c = 2

g2
. Substituting this

value into Eq. (3.9) we obtain the desired discretisation, often referred to as the
Wilson gauge action. It is common practice to write this expression in the slightly
modified from

SG[U ] = β
∑

x

∑

µ>ν

(

1− 1

3
ReTr [Pµν(x)]

)

, (3.10)

where the value β = 6
g2

.

3.2.2 Fermions on the Lattice

Having arrived at a suitable discretisation for the gauge action of QCD, we now
consider the fermionic portion

SF[ψ, ψ̄, A] =

∫

d4x ψ̄(x)
(

/D +m
)

ψ(x) . (3.11)

Using the lattice analogue of the covariant derivative defined in Section 3.2, we
can immediately write down a discretisation of Eq. (3.11)

SF[ψ, ψ̄, U ] = a4
∑

x

(

1

2a
ψ̄(x) γµ Uµ(x)ψ(x+ aeµ)

− 1

2a
ψ̄(x) γµU

†
µ(x− aeµ)ψ(x− aeµ) +mψ̄(x)ψ(x)

)

.

(3.12)
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In order to show that this takes the required form, we take the power series
expansion for the links

Uµ(x) = I3 + i a g Aµ(x) +O(a2) ,
U †
µ(x− aeµ) = I3 − i a g Aµ(x) +O(a2) ,

and again make use of the forward difference operator, this time for the fermion
fields,

ψ(x+ aeµ) = ψ(x) + a δ+µ ψ(x) +O(a2) ,
ψ(x− aeµ) = ψ(x)− a δ+µ ψ(x) +O(a2) ,

which gives

SF[ψ, ψ̄, U ] = a4
∑

x

(

ψ̄(x) γµ
(

δ+µ + i g Aµ
)

ψ(x) +O(a2)
)

.

Though this appears to take the correct form in the continuum limit, this naı̈ve
approach has a serious flaw – it produces unphysical fermion species, often
referred to as fermion doublers.

To understand the origin of these extra fermions, we consider the propagator
for a free fermion field in both the continuum and lattice formulations. Beginning
with the continuum case, we note that the fermion propagator being the Green’s
function for the fermion matrix,

(

/p+m
)

S(p) = 1 ,

takes the form

S(p) =
/p−m
p2 −m2

.

For a massless fermion, we see that this operator has a single pole at the origin.
In the case of the lattice, it suffices to consider the central difference operator in
momentum space,

δµψ(x)
F→ i

a
sin(apµ) ψ̃(p) .

In the case of massless fermions, the zeros of this operator correspond to the poles
in the lattice propagator. Once again we find zero at the origin, however we also
find there now exist further zeros at p = π

a
(k1, k2, k3, k4) where ki ∈ {0, 1}. It is

these extra zeros that correspond to the spurious fermion species. So the question
is how can we remove these zeros and in such a way that our discretised fermion
action still recovers the continuum action in the limit that the lattice spacing tends
to zero.
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The solution, courtesy of Wilson, is to include extra terms to the action which
will remove these unwanted zeros at finite lattice spacing and vanish in the
continuum limit. By including the so called Wilson term,

∆ =
1

a2

4
∑

µ=1

2− Tµ − T †
µ ,

we arrive at the Wilson fermion action:

SF[ψ, ψ̄, U ] = a4
∑

x

ψ̄(x)
(

/∇+
ra

2
∆ +m

)

ψ(x) , (3.13)

where the parameter r is called the Wilson parameter and is generally set to unity.
It is common practice to scale the fermion fields via

ψ → ψ√
2κ

where κ =
1

2ma+ 8r
,

after which the fermion action reads

SF[ψ, ψ̄, U ] = a4
∑

x,y

ψ̄(x)M(x, y)ψ(y) ,

with the Wilson fermion matrix

aM(x, y) = δxy − κ
∑

µ

[

(r − γµ)Uµ(x)δy,x+aeµ + (r + γµ)U
†
µ(x− aeµ)δy,x−aeµ

]

.

The parameter κ couples the fermion field at a given site to its nearest neighbours
and for this reason is called the hopping parameter. To understand how this term
resolves the issues of fermion doublers, we consider its Fourier transform to give
its momentum space representation,

∆ψ(x)
F→ 2

a2

4
∑

µ=1

(1− cos(apµ)) .

This term contains the necessary zero at the origin and remains non-zero for the
remaining p = π

a
(k1, k2, k3, k4). Combining this with the finite difference operator

we remove the unwanted zeros leaving us with a single physical fermion field.
Unfortunately the addition of this term results in O(a) discretisation errors and
explicitly breaks chiral symmetry. Though we can make improvements to the
action, as will be discussed in the following section, the issue of chiral symmetry
stems from the No-Go theorem of Nielsen-Ninomiya [15–17]. Here they were
able to establish that when using a lattice regularisation scheme, it is not possible
to formulate chirally symmetric theory that is free of fermion doublers. It is
possible to invoke a generalisation of chiral symmetry on the lattice through
the Ginsparg-Wilson relation [18]; however the computational expense of the
resulting formulation limits its use to calculations where chiral symmetry is of
particular importance.
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3.2.3 Path Integrals in QCD

Here we shall consider the Euclidean definition of the path integral applied
explicitly to QCD. We begin with the Euclidean definition of the QCD Lagrangian
density on a lattice,

LEu
QCD(x) = ψ̄(x)M(x, y)ψ(y) +

1

2
tr[Gµν(x)G

µν(x)] ,

where we note that the fermionic portion can be described by the operator
M(x, y) discussed in the previous section. Integrating these densities over
Euclidean space-time results in the action having two pieces,

SQCD[ψ, ψ̄, U ] = SF[ψ, ψ̄, U ] + SG[U ] .

The fermionic portion SF, is a function of both the quark fields ψ and ψ̄, and the
gluon field Uµ, while the gauge portion SG, is a function of the gluon fields only.
The corresponding QCD partition function is

Z[ψ, ψ̄, U ] =

∫

DψDψ̄DUe−SQCD[ψ,ψ̄,U ] .

A nice feature of the fermion fields is that to satisfy Fermi-Dirac statistics,
they must behave as Grassmann variables. Grassmann numbers possess some
properties that allow one to evaluate the fermionic integral explicitly. Here
we will simply state the result, however a detailed discussion can be found in
Ref. [19]. Performing the integration one finds

∫

DψDψ̄e−
∑

x,y ψ̄(x)M(x,y)ψ(y) = det (M) . (3.14)

As a result we are able to integrate out the fermion fields reducing the partition
function to

Z[ψ, ψ̄, U ] =

∫

DU det (M[U ]) e−SG[U ]

=

∫

DU e−Seff [U ] ,

where we can define an effective action, Seff [U ] = SG[U ]− ln (det (M[U ])). A sim-
ilar procedure can be applied to the expression for operator expectation values,
however care must be taken in the presence of operators that include fermion
fields (O = O[ψ, ψ̄, U ]) as the integrand has now changed from Eq. (3.14). For the
operators considered in this work, in performing the necessary integration, we
obtain effective operators, defined in terms of the gauge fields U and the inverse
of the fermion matrix (the fermion propagator), M−1[U ],

〈O〉 = 1

Z

∫

DU Oeff [U,M
−1[U ]]e−Seff [U ] .
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Therefore if one wishes to examine hadrons using the Euclidean path integral,
it suffices to generate an ensemble of gauge field configurations, evaluate the
fermion propagators for these configurations and finally evaluate the expectation
value of the operator over the ensemble.

3.3 Improving the Lattice Action

As with any discretisation procedure, the choice is somewhat arbitrary. Provided
the continuum theory is restored in the limit that the spacing tends to zero,
one has a valid discretisation. Nonetheless, the choice of discretisation has
a significant impact upon the resulting discretisation error. In arriving at the
Wilson action for QCD, we found that discretisation errors are O(a2) for SG and
O(a) for SF. In principle, one can simulate over a large range of lattice spacings
a and perform the continuum extrapolation in which these discretisation effects
fall out. However this is general an expensive task, particularly given the poor
convergence properties of this fermion action. A more practical approach is to
improve the convergence properties of the discretised theory. Generally this
improvement scheme will involve the addition of higher dimensional operators
which can be tuned to cancel out the leading order discretisation errors.

The Symanzik improvement scheme [20, 21] is a systematic approach in which
correction terms are incorporated into the QCD action order-by-order in operator
dimension,

S =

∫

d4x
(

L(0)(x) + aL(1)(x) + a2 L(2)(x) + . . .
)

.

HereL(0) is the QCD Lagrangian, L(1) the Lagrangian composed of all dimension-
5 operators, L(2) Lagrangian composed of all dimension-6 operators and so on.
These higher dimensional terms are called irrelevant operators as they do not
contribute to the action in the continuum limit. At a given order we can tune
the coefficients of these higher order terms in such a way that we cancel out
the leading order discretisation error. In the case of the Wilson gauge action,

we require the addition of dimension-6 operators U
(i)
loop (shown in Fig. 3.3) to

eliminate the leadingO(a2) error,

SG[U ] =
2

g2

3
∑

i=0

ci(g
2)
∑

x

ReTr
[

I3 − U (i)
loop(x)

]

, (3.15)

where we impose the additional constraint c0(g
2)+8c1(g

2)+8c1(g
2)+16c3(g

2) = 1
to ensure that SG has the correct normalisation. General considerations of such
an action led Lüscher and Weisz [22] to conclude that the most general choice of
coefficients at tree-level are,

c0(0) =
5

3
− x, c1(0) =

−1
12

+ x, c2(0) = 0, c3(0) = x ,
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Figure 3.3: The higher order terms that contribute to the Lüscher Weisz improved
action [22].

with the free-parameter x restricted to values that yield a positive action. As there

are more possible orientations for the operator U (3)
loop than U (1)

loop, all of which must
be summed over, it is most advantageous to work with x = 0. This results in the
Lüscher-Weisz gauge action,

S imp
G [U ] =

β

3

∑

x

∑

µ>ν

(

5

3
ReTr[I3 − Pµν(x)]

− 1

12
ReTr[I3 − R1×2

µν (x)]− 1

12
ReTr[I3 −R2×1

µν (x)]

)

,

which at tree-level has O(a4) discretisation error. In the presence of non-
trivial gauge fields, the coefficients are renormalised away from their tree-level
values, indicated in Eq. (3.15) by the fact the coefficients are functions of g2. In
order to maintain the leading order improvement, the renormalised coefficients
must be used. Estimates of the renormalised coefficients ci(g

2) can be obtained
perturbatively by determining the loop corrections. Alternatively, one can
perform a non-perturbative determination by matching, to all orders in g2, a
given observable to its physical value.

An alternate approach to improving the action is to use Renormalisation
Group Techniques. These methods use a lattice prescription of the Renormali-
sation Group equations to give non-perturbative estimates for the coefficients of
selected irrelevant operators. This results in an action that lies closer to that on
the renormalised trajectory, resulting in improved convergence properties. The
Iwasaki action [23], relevant to the PACS-CS configurations [24] used in this work
is one such action

S iwasaki
G [U ] = β

∑

x

∑

µ>ν

(

c0Tr[Pµν(x)] + c1Tr[R
1×2
µν (x)]

)

,

where c0 = 1− 8 c1 and c1 = −0.331. For further discussion of RG techniques, we
refer the reader to Ref. [25].
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Figure 3.4: The plaquettes that contribute to the clover term, Cµν(x) used in the
evaluation of field-strength tensor Gµν(x).

3.3.1 The Wilson Clover Action

Improvement of the fermion action is achieved in much the same way through
the use of the Symanzik improvement scheme, however we are able to form
operators using both fermion fields and link variables. Sheikholeslami and
Wohlert [26] considered the inclusion of dimension-5 operators into the Wilson
action in order to achieve O(a) improvement. There are five possible operators
that have dimension-5, however all but one of these can be absorbed into existing
terms through a redefinition of operator coefficients. Inclusion of this term into
the Wilson action gives the Sheikholeslami-Wohlert, or commonly clover, action

SF[ψ, ψ̄, U ] = SWilson −
iga5CSWr

4

∑

x

ψ̄(x)σµνGµν(x)ψ(x) .

The name clover comes from the common choice for the lattice evaluation of the
field strength tensor,

ga2Gµν =
1

2i

(

Cµν(x)− C†
µν(x)

)

,

with the clover terms,

Cµν(x) =
1

4
(Pµν(x) + Pν−µ(x) + P−µ−ν(x)P−νµ(x)) ,

depicted in Fig. 3.4. The parameterCSW is tuned to removeO(a) errors, taking the
value CSW = 1 at tree-level. Renormalised determinations of CSW can be obtained
in the same fashion as the gauge-field coefficients ci, with non-perturbative
determinations the preferred choice as they achieve O(a) improvement to all
orders in g2.
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3.4 Propagators

A comprehensive picture of a hadron amounts to a complete description of its
underlying quark content. As we saw in Section 3.2.3, upon integrating out the
fermion fields from the path integral, one is left with an expression involving
the gauge fields, Uµ, and the fermion propagator, S. Therefore the fundamental
building block for hadrons on the lattice is the quark propagator. We can define
the propagator as the Wick contracted correlation function

〈Ω|qf,aα (x)q̄f,bβ (y)|Ω〉 = Sf, abαβ (x, y) ,

which describes the propagation of a quark of flavour f from y, where it has
colour charge b and Dirac-index β, to x where it now carries colour charge a and
Dirac-index α. In order to evaluate this quantity, we make use of the Grassmann
intergation result. The fermion propagator is the Green’s function of the fermion
matrix

M
a′a
α′α(z, x)S

ab
αβ(x, y) = δa

′b δα′β δ(z, y) . (3.16)

For the Wilson discretisation of the fermion action, we found that the resulting
matrix contained local and nearest neighbour interactions only. Consequently
this allows us to make use of standard sparse matrix inversion methods to
efficiently solve Eq. (3.16). However to obtain the full propagator that couples all
lattice sites x to y, all colours a to b and spin-polarizations α to β would require
3× 4× nV inversions for each gauge-field configuration, where nV is the number
of lattice sites on our discretised space-time volume. Even for a small lattice, this
is prohibitively expensive. Fortunately, for our purposes it suffices to consider
propagation from a single space time point, which we shall label 0 to all other
lattice sites x and so reduce this down to a total of 12 inversions per gauge field
configuration. 1

3.4.1 Smeared Sources

Despite being the simplest choice, the delta function source is not a realistic
representation for the distribution of a quark field within a hadron and so
one finds that interpolating fields constructed with such sources tend to have
a significant overlap with a large range of states. In order to study a given
eigenstate, one needs to tune the interpolating field to have maximal overlap
with the state in question. In Chapter 4, we shall consider the general framework
for which this can be achieved for any eigenstate, however here we shall consider
the standard approach to optimising ground state overlap. This can be done by
generalising Eq. (3.16) to an arbitrary source vector ηa

′

α′(z),

M
a′a
α′α(z, x)S

ab
αβ(x, y) = ηa

′

α′(z) . (3.17)

1In some situations, particularly when considering scattering states on the lattice, all-to-all
propagators are required. In such situations, one can make use of stochastic techniques [27, 28]
or the distillation method [29] to obtain an estimate of the all-to-all propagator.
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To maximise the overlap of the resulting interpolator, we want a source vector
that reflects the quark wave function for the system in question. In the absence
of interactions, we would expect some extended, spherically symmetric source
vector peaked at the origin would be an appropriate representation for the
ground state wave function. One possible approach would be to take our
delta function source and perform some operation which smears the source
symmetrically in the spatial directions. Through repeated applications of the
smearing operator, one could effectively control the width of the source to
optimise overlap with the ground state. The use of Jacobi smearing in this fashion
gives Gaussian shaped sources. Generalising this to a covariant formulation
gives rise to the standard source smearing procedure, gauge-invariant Gaussian
smearing [30]. Starting with our point source

η(0)a
′

α′(z) = δa
′b δα′β δ(z, y) ,

we iteratively apply the operator F (x, x′),

η(i)(x) =
∑

~x′

F (x, x′) η(i−1)(x′) , (3.18)

where

F (x, x′) = (1− α) δx,x′ +
α

6

3
∑

µ=1

{

Uµ(x) δx′,x+aeµ + U †
µ(x− aeµ) δx′,x−aeµ

}

. (3.19)

The smearing fraction α determines the degree of smearing on each application
of the operator F (x, x′), while the number of sweeps of smearing n determines
the width of the resulting source.

3.4.2 Coupling to an External Current

To study the underlying structure of a hadron requires some external probe to
interact with the underlying quark fields. On the quark level, we would need to
consider correlation functions of the form

〈Ω|qf,aα (x) j(y) q̄f,bβ (z)|Ω〉 = Ŝf,abαβ(x, y, z) , (3.20)

where we can write a general current coupling to a quark as

j(y) = q̄δ(y) (ΓO)δγ qγ(y) . (3.21)

The choice of bilinear operator ΓO couples the relevant spin and colour degrees
of freedom of the incoming and outgoing quark fields for the corresponding
interaction vertex. Substituting this into Eq. (3.20), we can perform the relevant
quark contractions using Eq. (3.4) to express the correlator in terms of two-point
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Figure 3.5: The two distinct quark flow contractions that contribute to three-
point correlation functions. The term on the left is referred to as the discon-
nected contribution, while the term on the right is the connected contribution.
These skeleton graphs are dressed by gluons. Disconnected contributions are
exceptionally difficult to evaluate and so often neglected or subtracted through
consideration of isovector quantities.

quark propagators. One finds two distinct contractions, which we represent
diagrammatically in Fig. 3.5.

The first of these two diagrams corresponds to the external current coupling to
a sea quark and contains an all-to-all two-point propagator of the form S(x1, x1).
Evaluating these disconnected contributions is a significantly challenging en-
deavour [31–33] requiring huge statistics to overcome the background gauge
noise and for this reason are often neglected or, where possible, subtracted
through consideration of isovector quantities. The second diagram represents the
current coupling directly to a valence quark and it is such contributions we shall
consider in this work. Expressing this explicitly in terms of two point propagators
and performing a Fourier transform over x1 to impart a momentum transfer of ~q
through the current, we arrive at the three-point propagator,

ŜfO
ac
αγ(x2, x1, 0; ~q) =

∑

~x1

ei~q·~x1
(

Sf(x2, x1) ΓO S
f(x1, 0)

)ac

αγ
. (3.22)

Expressed in this form, the propagator includes another all-to-all propagator and
so appears beyond our reach using standard inversion techniques. Fortunately,
this system can be evaluated through the use of sequential source techniques
(SST) [34]. This method makes use of the Green’s function properties of the
propagator S(x2, x1) to express Eq. (3.22) as

M
a′a
α′α(z, x2) Ŝ

f
O
ac
αγ(x2, x1, 0; ~q) =

∑

~x1

ei~q·~x1 δ(z, x1) (ΓO)
a′b
α′β S

f bc
βγ(x1, 0) .

In this form, we can treat the RHS as a source for the propagator ŜfO
ac
αγ(x2, x1, 0; ~q)

and solve the resulting linear system. SST-propagators obtained in this manner
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require us to fix the momentum ~q, however the source and sink are left free
allowing us to reuse these propagators for any number of hadron interpolators.
An alternate construction in which the inversion is done through the sink requires
one to fix the source and sink interpolator as well as the sink momentum. The
advantage of this approach is that the current momentum is outside of the
inversion allowing one to construct a range of momentum transfer ~q, albeit for
a single hadron state only. We refer the reader to Ref. [35] for a discussion and
comparison of both methods.

As with any quantity determined via a quantum field theory, one must
consider the issue of renormalisation in order to facilitate meaningful comparison
between results, particularly with experimental measurements. To do this, we
assign a factor ZO to our quantity in order to account for the renormalisation
associated with the current. In this fashion, we can define our renormalised
quantities as

Xrenorm =
1

ZO
Xlatt .

Determination of the renormalisation constants can be estimated using lattice-
perturbation theory or evaluated non-perturbatively using techniques such as the
Schrödinger functional [36–38] or Rome-Southampton method [39, 40]. However,
in certain situations we can invoke symmetries of continuum theory through
the corresponding Ward Identities. Using a Noether construction it is possible
to form currents that satisfy the Ward identities and restore the corresponding
symmetry. For the electromagnetic current central to this work, one can replace
the naı̈ve vector current, jµ(x) = q̄(x)γµq(x), with the conserved vector current for
which the renormalisation constant is unity. For our calculations, we use anO(a)-
improved conserved vector current using the method presented in Refs. [41, 42]

jCIµ (x) = jCµ (x) +
r

2
a
∑

ρ

∂ρ(q̄(x) σρµ q(x)) ,

where jCµ (x) is the conserved current for the Wilson action

jCµ (x) =
1

4
(q̄(x)(γµ − r)Uµ(x)q(x+ aeµ)

+ q̄(x+ aeµ)(γµ + r)U †
µ(x)q(x)

+ q̄(x− aeµ)(γµ − r)Uµ(x− aeµ)q(x)
+ q̄(x)(γµ + r)U †

µ(x− aeµ)q(x− aeµ)
)

,

and
∂µ(q̄(x) q(x)) ≡ q̄(x)

(←−∇µ +
−→∇µ

)

q(x) ,

with the forwards and backwards derivatives defined as,

−→∇µ q(x) =
1

2a

(

Uµ(x) q(x+ aeµ)− U †
µ(x− aeµ)q(x− aeµ)

)

,

q̄(x)
←−∇µ =

1

2a

(

q̄(x+ aeµ)U
†
µ(x)− q̄(x− aeµ)Uµ(x− aeµ)

)

.
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3.5 The U + U∗ trick

The invariance of the QCD action under U → U∗ implies that the link variables
{U} and {U∗} are gauge field configurations of equal weight. We can therefore
account for both configurations in our ensemble without biasing the determina-
tion of our observables. Naı̈vely one could simply re-evaluate all the propagators
across the {U∗} configurations, however due to the nice property of the fermion
matrix

M({U∗}) =
(

C̃M({U})C̃−1
)∗

, (3.23)

it follows that the U∗ propagator can be evaluated directly from the U propagator,

S(x, 0; {U∗}) =
(

C̃S(x, 0; {U})C̃−1
)∗

,

eliminating the need for further inversions. We note that C̃ = Cγ5. In the case of
SST-propagators, care must be taken in how the current transforms when using
Eq. (3.23). Applying the identity to Eq. (3.22), we have

(

C̃ŜO(x2, x1, 0; ~q, {U})C̃−1
)∗

=
∑

x1

e−i~q·~x1
(

C̃S(x2, x1; {U})C̃−1 C̃ΓOC̃
−1 C̃S(x1, 0; {U})C̃−1

)∗

=
∑

x1

e−i~q·~x1S(x2, x1; {U∗})
(

C̃−1 C̃ΓOC̃
−1
)∗
S(x1, 0; {U∗}) .

In order to express this in terms of the U∗ SST-propagator, we require that the
operator describing the current vertex has the following properties,

(

C̃ ΓO C̃
−1
)∗

= sC ΓO ,

where sC is ±1 and is dependent upon the choice of representation of the γ-
matrices. For the numerical evaluation of propagators and correlators we choose
to work with the Pauli Representation used by Sakurai in Ref. [43]. For this basis,
this constant is unity for the vector current and so we obtain the corresponding
SST-propagator for the {U∗} configuration from,

Ŝµ(x2, x1, 0;+~q, {U∗}) =
(

C̃Ŝµ(x2, x1, 0;−~q, {U})C̃−1
)∗

.

From this expression, we can clearly see that in order to use both U and
U∗ configurations in the determination of three-point correlation functions, we
require both ~q and −~q SST-propagators.

An important consequence of evaluating correlators over both U and U∗ is
that we enforce parity symmetry onto our correlators, leading to significant
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reduction in the statistical fluctuation [44]. In particular, for a correlator with
parity sP ,

〈G(~p, t)〉 = sP 〈G(−~p, t)〉 ,
one can show that,

1

2
(〈G(~p, t; {U})〉 + 〈G(~p, t; {U∗})〉)

=
1

2
(〈G(~p, t; {U})〉+ sP 〈G(−~p, t; {U})〉∗) . (3.24)

and consequently, as outlined in Ref. [45], renders the correlator completely real.



Chapter 4

Studying Hadrons on the Lattice

As with any field theory, the information of the system under study is contained
entirely within the correlation function. It is therefore important to understand
how this information is encoded within and consequently how one can extract it.
On the lattice we are particularly interested in the two-point correlator

G(~p, t) =
∑

~x

e−i~p·~x 〈Ω|χ(x) χ̄(0)|Ω〉 , (4.1)

which describes how the system propagates from 0 to x, and the three-point
correlator

G(~p ′, ~p, t2, t1) =
∑

~x2,~x1

e−i~p
′·~x2 ei(~p

′−~p)·~x1 〈Ω|χ(x2)O(x1) χ̄(0)|Ω〉 , (4.2)

which describes how the system reacts to an external probe, induced through
the operator O. As we shall see, the first of these provides us with insight into
the spectral and dispersive properties of the system, while the latter provides a
glimpse at the underlying internal structure. In general, these correlators contain
information for the full spectrum of states consistent with the quantum numbers
specified by the interpolator, χ. It is thus important that we carefully examine
the correlation function, both at the quark level and at the hadronic level, to
understand how we evaluate the correlator on the lattice and how we can extract
hadronic properties. In doing so, we will ultimately arrive at the variational
method which provides us with a systematic framework for accessing any energy
eigenstate.

4.1 Interpolating Fields

The starting point for the evaluation of any correlation function on the lattice is
the selection of an appropriate interpolating field. Due to the complex dynamics
of QCD, identifying an appropriate interpolator for a particular eigenstate a-priori
is not possible. As we shall see towards the end of this chapter, techniques have
been developed that allow one to produce “optimised” interpolators that effec-
tively couple to individual eigenstates, however to understand this construction
we must first examine the standard approach.

33
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In general, interpolators used to access QCD eigenstates must satisfy two
requirements. The first is that the interpolator be gauge invariant. This amounts
to coupling the quarks so as to form colour singlet objects, ensuring there are
no explicit colour degrees of freedom. The second requirement is that the
interpolator carry the quantum numbers for the state of interest. Particularly,
the interpolator must transform with the corresponding JPC for the state in
question as well as contain the same valence quark content encoded in the flavour
quantum numbers.

As baryons have non-integer spin, we require that the interpolating field
transform as a spinor. If we consider baryon states as simply local qqq systems,
the most general choice for our baryon interpolator is a linear combination of
terms of the following form

χ(x) = ǫabc
(

qaT1 (x)CΓ1 q
b
2(x)

)

Γ2 q
c
3(x) , (4.3)

where a, b and c are colour labels and C is the charge conjugation matrix. The
operators Γ1,2 are combinations of γ-matrices that couple the quark spins so as
to give the desired JPC . In particular, to ensure that the interpolator transforms
correctly under a Lorentz transformation, we require Γ2 to be one of either γ5 or
I . Similarly, if we treat meson states as simply local qq̄ systems, the most general
choice for our meson interpolator is a linear combination of terms of the following
form

χ(x) = q1(x) Γ1 q2(x) . (4.4)

These interpolators form the standard set of operators used to access ground state
hadrons on the lattice.

As highlighted in our discussion of the quark model, there exist states in
the hadron spectrum that do not agree with quark model predictions using just
conventional qqq and qq̄ structures. More exotic quark content such as qqqqq̄ and
qq̄qq̄ may be required to properly describe such states [46, 47]. Furthermore,
there may exist states containing explicit gluonic content. Such states are able
to acquire JPC forbidden by the quark model and so to access them using
conventional methods requires extensions to the structures above by allowing for
chromoelectric and chromomagnetic fields within the Γ1 operator of Eq. (4.4) [48].
Finally, though the above operators can have overlap with scattering states, there
is strong evidence that to properly access such systems requires non-local, multi-
hadron interpolators so as to project out the relative momenta for the hadron
states [49–52]. Though such extensions are expected to play an important role
in fully describing the hadron spectrum, for our purposes it is sufficient to limit
ourselves to the standard operators defined by Eqs. (4.3) and (4.4).

4.2 Correlation Functions at the Quark Level

As QCD is a theory based on quark and gluon degrees of freedom, an ex-
amination of the correlation function at the quark level provides one with
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the expressions from which to evaluate the correlation function on the lattice.
Beginning from the definition given by Eq. (4.1)

G(~p, t) =
∑

~x

e−i~p·~x 〈Ω|χ(x) χ̄(0)|Ω〉 ,

we insert our interpolating field χ(x) (done here for a generic baryon field) to
give

G(~p, t) =
∑

~x

e−i~p·~x〈Ω|ǫabc
(

qaT1 (x)CΓ1 q
b
2(x)

)

Γ2 q
c
3(x)

ǫa
′b′c′ q̄c

′

3′(0) Γ̄2′

(

q̄b
′

2′(0)Γ̄1′ q̄
a′

1′ (0)
)

|Ω〉 , (4.5)

where Γ̄i = γ0Γ
†
iγ0. As demanded by the Grassmann integration we then

perform all possible Wick contractions of the quark fields, replacing each with the
corresponding quark propagator given by Eq. (3.4). Doing this generally for the
above expression gives rise to six distinct terms, each corresponding to a separate
contraction

G(~p, t) =
∑

~x

e−i~p·~x ǫabc ǫa
′b′c′ (4.6)

{

Γ2 S
cc′

33′(x, 0) Γ̄2′ Tr
[

Γ1 S
bb′

22′(x, 0) Γ̄1′ (S
aa′

11′ (x, 0))
T
]

δ11′ δ22′ δ33′

+ Γ2 S
cc′

33′(x, 0) Γ̄2′ Tr
[

ΓT1 Sbb
′

12′(x, 0) Γ̄1′ (S
aa′

21′ (x, 0))
T
]

δ12′ δ21′ δ33′

+
(

Γ2 S
cc′

32′(x, 0) Γ̄1′ (S
bb′

21′(x, 0))
T ΓT1 Saa

′

13′ (x, 0) Γ̄2′

)

δ32′ δ21′ δ13′

+
(

Γ2 S
cc′

32′(x, 0) Γ̄1′ (S
bb′

11′(x, 0))
T Γ1 S

aa′

23′ (x, 0) Γ̄2′

)

δ32′ δ11′ δ23′

+
(

Γ2 S
cc′

31′(x, 0) Γ̄
T
1′ (S

bb′

22′(x, 0))
T ΓT1 Saa

′

13′ (x, 0) Γ̄2′

)

δ31′ δ22′ δ13′

+
(

Γ2 S
cc′

31′(x, 0) Γ̄
T
1′ (S

bb′

12′(x, 0))
T Γ1 S

aa′

23′ (x, 0) Γ̄2′

)

δ31′ δ12′ δ23′
}

.

(4.7)

The Kroneker delta, δij′ , describes which contractions are allowed for the given
interpolator χ and are non-zero only when the ith and (jth)′ quark fields are
of the same flavour. The above expression is effectively a matrix product of
propagators, γ-matrices and Levi-Cevita tensors, from which we can obtain the
correlator in a practical fashion. It is worth noting that for any given expression,
it may be possible to reduce the number of independent terms through the
use of trace cyclicity and other similar properties or identities, thus reducing
the number of terms required to evaluate the correlator. This is particularly
important for systems with large quark content such as nuclear and multi-hadron
systems now being considered by many groups [53, 54].

Performing the same procedure with a meson field, one finds that the
correlation function

G(~p, t) =
∑

~x

e−i~p·~x〈Ω|q̄a1(x)Γ1 q
a
2(x) q̄

a′

1′ (0)Γ̄1′ q
b′

2′(0) |Ω〉 , (4.8)
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reduces to two terms,

G(~p, t) =
∑

~x

e−i~p·~x
{

Tr [Saa21 (x, x) Γ1 ] Tr
[

Sa
′a′

2′1′ (0, 0) Γ̄1′

]

δ21 δ2′1′

−Tr
[

Sa
′a

2′1 (0, x) Γ1 S
aa′

21′ (x, 0) Γ̄1′

]

δ2′1 δ21′
}

. (4.9)

In this case, due to the presence of both quark and anti-quark fields in the
interpolator, we have contractions that result in both loop propagators, S(x, x),
and backwards propagators, S(0, x). As is clear from the delta-function, the
first term is only present in the case where both the quark and anti-quark fields
for each term in the interpolator are of the same flavour. Thus by considering
states that have non-zero projected-isospin (I3), only the second term is possible.
However, in the case of exact isospin symmetry one finds that the disconnected
contributions only contribute to isosinglet states. In this work we shall only work
with states that have non-zero isospin content and so only need consider the
second term when evaluating meson correlation functions. For the backwards
propagator, we are able to make use of γ5-Hermiticity of the fermion matrix to
re-express this in terms of the corresponding forwards propagator,

Sabαβ(0, x) =
(

γ5 S
ba(x, 0) ∗γ5

)

βα
.

4.2.1 Coupling to an External Current

In section 3.4, we saw how we can couple the quark fields to an external
current through the use of sequential source techniques. Thus all that remains
to understand is how we evaluate correlators of the form

G(~p ′, ~p, t2, t1) =
∑

~x2,~x1

e−i~p
′·~x2 ei(~p

′−~p)·~x1 〈Ω|χ(x2)O(x1) χ̄(0)|Ω〉 ,

at the quark level. Inserting our interpolating fields (again for a baryon) and the
current defined by Eq. (3.21), we arrive at an expression that, like Eq. (4.5), is
entirely in terms of quark fields and fermion bilinears,

G(~p ′, ~p,t2, t1) =
∑

~x2,~x1

e−i~p
′·~x2 ei(~p

′−~p)·~x1

〈Ω| ǫabc
(

qaT1 (x2)CΓ1 q
b
2(x2)

)

Γ2 q
c
3(x2)

q̄di (x1) ΓO qdi (x1) ǫ
a′b′c′ q̄c

′

3′(0) Γ̄2′

(

q̄b
′

2′(0) Γ̄1′ q̄
a′

1′ (0)
)

|Ω〉 . (4.10)

Performing the contractions now in the presence of the current, we find two
topologically distinct classes. The first results when we perform the same
contractions as was done for the two-point function along with the additional
contraction of the current-coupled quark fields with themselves. These terms
take the form of the two-point function weighted by an additional trace

Tr
[

Sddii (x1, x1) ΓO
]

, (4.11)
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and encode the vacuum contributions to the amplitude. These vacuum contri-
butions are of the disconnected type discussed in Section 3.4.2 and will not be
considered in this work. The remaining class are of the connected type and
result from sandwiching the current-coupled quark fields between each of the
paired quark fields that give rise to Eq. (4.6). It follows that the three-point
correlator can be evaluated by replacing each two-point propagator in Eq. (4.6)
by the corresponding SST-propagator, each in turn [42, 55]. This results in three
times the number of terms in the three-point correlator relative to the two-point
expression given by Eq. (4.6).

Following the same procedure for meson fields, we begin with the uncon-
tracted expression

G(~p ′, ~p,t2, t1) =
∑

~x2,~x1

e−i~p
′·~x2 ei(~p

′−~p)·~x1

〈Ω| q̄a1(x2) Γ1 q
a
2(x2) q̄

d
i (x1) ΓO qdi (x1) q̄

a′

1′ (0) Γ̄1′ q
b′

2′(0) |Ω〉 , (4.12)

and consider all possible contractions. We can again contract the current quark
fields to themselves to obtain the vacuum contribution; once more these terms
are given by the two-point expression weighted by Eq. (4.11). As was stated for
the baryon case, we shall not consider such terms here. The remaining terms
can all be obtained by replacing the two-point propagators in Eq. (4.9) by the
corresponding three-point propagator, each in turn. Doing this for the first term,
we access a new class of diagrams given by the three-point propagators

(

Sad(x2, x1) ΓO Sda(x1, x2)
)

βα
and

(

Sda
′

(0, x1) ΓO Sda
′

(x1, 0)
)

β′α′

.

Such terms are connected loop contributions. Accordingly, the propagator on
the right can be expressed in terms of standard two-point propagators, while
the propagator on the left once again requires all-to-all propagators. Fortunately
however, following the same arguments as the for the two-point correlator, such
contributions only arise when considering isosinglet quantities, or when isospin
symmetry is explicitly broken.

Finally, we obtain the remaining two terms by replacement of the two-point
propagators in the second term of Eq. (4.9); one in which the current is coupled
to the forward propagating quark, the other with the current coupled to the
backwards propagating quark:

− Tr
[

Sa
′a

2′1 (0, x2) Γ1 S
ad
2i (x2, x1) ΓO Sda

′

i1′ (x1, 0) Γ̄1′

]

, and,

− Tr
[

Sa
′d

2′i (0, x1) ΓO Sdai1 (x1, x2) Γ1 S
aa′

21′ (x2, 0) Γ̄1′

]

.

For this first term, the three-point propagator is consistent with our SST-propagators
and so simple to evaluate. For the second term, we could once again make use
of γ5-hermiticity to re-express the backwards propagating quark fields in terms
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of forward propagating quarks. However, through considerations of charge
conjugation, it is possible to express this term in a form matching the first. After
some manipulation, one finds this second term can be written

−Tr
[

Sa
′a

2′1 (0, x2)
(

C† Γ1 C
)T

Sad2i (x2, x1)
(

C† ΓO C
)T

Sda
′

i1′ (x1, 0)
(

C† Γ̄1′ C
)T
]

.

For the vector current we have
(

C† γµC
)T

= −γµ , and Qf̄ → Qf .

Since
Qf̄

Qf
= −1 the two factors combine to leave the contribution invariant.

Considering quark sectors of unit charge, the d contribution to the π− equals the
d̄ contribution to the π+. To calculate the hadronic form factor, one need only
include the charges of the quark and anti-quark composing the meson.

For the two remaining bilinears, all are eigenstates of the charge conjugation
operator and encounter factors of plus or minus one.

q̄(x) Γi q(x)
C→ ±q̄(x) Γi q(x)⇒

(

C† Γi C
)T

= ±Γi .

In the case that the source and sink interpolators are the same, the factors
multiply to one.

4.3 Correlation Functions at the Hadronic Level

Having outlined how one evaluates the correlation function on the lattice, we
now consider how the information pertaining to the hadron is encoded within.
Once again we begin with Eq. (4.1)

G(~p, t) =
∑

~x

e−i~p·~x 〈Ω|χ(x) χ̄(0)|Ω〉 .

Taking the view point that the operator χ̄(0) creates a hadron state with the
relevant quantum numbers, while χ(x) annihilates a state in the same fashion,
we naturally expect the two-point correlator to encode the properties governing
the propagation of the hadron. Furthermore, as the operator should couple to
any state consistent with the given quantum numbers, it should contain the
corresponding information for all these states.

We begin by inserting the completeness relation for the QCD Hamiltonian

I =
∑

α,p̃,s

|α, p̃, s〉〈α, p̃, s| ,

between the operators χ(x) and χ̄(0) to give

G(~p, t) =
∑

α,p̃,s

∑

~x

e−i~p·~x〈Ω|χ(x)|α, p̃, s〉〈α, p̃, s|χ̄(0)|Ω〉 . (4.13)
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Invoking operator translation

χ(x) = e+iHt e−i
~P ·~x χ(0) e−iHt e+i

~P ·~x ,

the overlap 〈Ω|χ(x)|α, p′, s〉 can be simplified, reducing Eq. (4.13) to

G(~p, t) =
∑

α,p̃,s

∑

~x

e−i~p·~x 〈Ω|e+iHt e−i ~P ·~x χ(0) e−iHt e+i
~P ·~x|α, p̃, s〉〈α, p̃, s|χ̄(0)|Ω〉

=
∑

α,p̃,s

∑

~x

e+i(~̃p−~p)·~x e−iEα(~̃p)t 〈Ω|χ(0)|α, p̃, s〉〈α, p̃, s|χ̄(0)|Ω〉

=
∑

α,s

e−iEα(~p)t 〈Ω|χ(0)|α, p, s〉〈α, p, s|χ̄(0)|Ω〉 ,

where in the final line we have made use of the identity
∑

~x

e+i(~̃p−~p)·~x = δ~̃p~p .

Finally adopting a Euclidean time formulation

tM → −itE ,

we arrive at the following expression

G(~p, t) =
∑

α,s

e−Eα(~p)t 〈Ω|χ(0)|α, p, s〉〈α, p, s|χ̄(0)|Ω〉 . (4.14)

Expressed in this form, it is clear that the correlator has contributions from all
eigenstates consistent with the quantum numbers of the interpolating field. Each
term is the product of an exponential, which encodes the time dependence, and
operator overlap factors which can be parameterised as

〈Ω|χ(0)|α, p, s〉 = Zα(~p)× {spin-terms} ,

with the factor Zα(~p) encoding the coupling strength of the operator χ(0) to the
eigenstate |α, p, s〉. As the argument in the exponential is the energy of the state,
in the large Euclidean time limit all contributions will be suppressed relative to
the ground state. Therefore by examining the correlator at large times, one is
able to access the inertial properties to the lowest lying state in the channel under
consideration. In particular, by forming the ratio of the correlator at successive
times with the hadron at rest, we can access the eigenstates mass

m = log

(

G(0, t)

G(0, t+ 1)

)

.

Following a similar process, one is able to work towards a similar expression
for Eq. (4.2)

G(~p ′, ~p, t2, t1) =
∑

~x2,~x1

e−i~p
′·~x2 ei(~p

′−~p)·~x1 〈Ω|χ(x2)O(x1) χ̄(0)|Ω〉 .
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Again treating χ̄(0) and χ(x) as creation and annihilation operators, this cor-
relator should encode the reaction of a state to the external current O. Thus
we should expect to find somewhere in our expression matrix elements of the
form 〈β, p′, s′|O(0)|α, p, s〉. Again invoking the completeness relation, this time
between both our pairs of operators,

G(~p ′, ~p, t2, t1) =
∑

β,p̃′,s′

∑

α,p̃,s

∑

~x2,~x1

e−i~p
′·~x2 ei(~p

′−~p)·~x1

× 〈Ω|χ(x2)|β, p̃′, s′〉〈β, p̃′, s′|O(x1)|α, p̃, s〉〈α, p̃, s|χ̄(0)|Ω〉 ,
invoking operator translation and moving to Euclidean time we arrive at the
corresponding expression for the three-point correlation function,

G(~p ′, ~p, t2, t1) =
∑

α,β

∑

s′,s

e−Eβ(~p
′)(t2−t1) e−Eα(~p)t1

× 〈Ω|χ(0)|β, p′, s′〉〈β, p′, s′|O(0)|α, p, s〉〈α, p, s|χ̄(0)|Ω〉 . (4.15)

We can see that this has a form similar to Eq. (4.14), with three significant
differences. Firstly, there are now two exponential terms with one dependent on
the temporal separation between source and current, t1, and the other dependent
on the sink–current separation, t2 − t1. By using the completeness identity twice
in the same expression, there now exists that possibility that the asymptotic states
differ. And most importantly, we find the matrix element 〈β, p′, s′|O(0)|α, p, s〉, as
expected.

Once more, the exponential acts to suppress all terms relative to the ground
state in the large Euclidean time limit. However in evaluating the SST-propagator
one is required to fix either t1 (fixed current) or t2 (fixed sink). In order to ensure
that excited state contributions are sufficiently suppressed one should work
with large time separations between source, current and sink. Unfortunately,
for large Euclidean times the correlator drops below the threshold of statistical
noise leading to poor signal and large statistical errors. Thus one must find a
window whereby excited state contributions are sufficiently suppressed while
maintaining good signal quality.

Having identified a suitable regime where the correlator is dominated by
ground state, extraction of the matrix element proceeds with the construction
of a suitable ratio of two- and three-point correlation functions. The ratio is
chosen such that all time-dependence of the correlator is completely eliminated,
as well as the operator couplings Z(~p).We choose to work with the ratio defined
in Ref. [56],

R(p′, p) =

√

〈G(~p ′, ~p, t2, t1)〉〈G(~p, ~p ′, t2, t1)〉
〈G(~p ′, t2)〉〈G(~p, t2)〉

. (4.16)

This construction is a symmetrised version of that presented in Ref. [44], namely

R(p′, p) =

√

〈G(~p ′, ~p, t2, t1)〉〈G(−~p,−~p ′, t2, t1)〉
〈G(~p ′, t2)〉〈G(~p, t2)〉

. (4.17)
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The benefit of Eq. (4.16) over Eq. (4.17) is that by using (p′, p) and (p, p′) over
(p′, p) and (−p,−p′) we do not rely on the approximate symmetry Z(−~p) ≃ Z(~p)
in order to achieve cancellation of the overlap factors, leading to an improved
statistical uncertainty of the ratio. Though this choice requires both ~q and−~q SST
propagators, if one chooses to average over the U and U∗ configurations as we
shall in the majority of this work, there is no additional cost. It is worth noting
that if one chooses to use both U and U∗ configurations working with Eq. (4.17),
the symmetry Z(−~p) = Z(~p) is exact and so both formulations are equivalent.

4.4 The Variational Method

As we saw in the previous section, the correlation functions do not simply
contain information about a single hadron, rather all hadrons consistent with the
quantum numbers in question. Through sampling the correlator at sufficiently
large times we are able to obtain the contributions relevant to the ground state.
But if we are instead interested in a state other than the ground state, how would
we go about obtaining the corresponding information from the correlator?

This question lies at the heart of hadron spectroscopy on the lattice. The
simplest approach would be to perform a multi-exponential fit to the data,
however such an approach is unstable. Several methods have been developed for
the study of the hadron spectrum. The most robust approach is the variational
method.

The variational method [57, 58] is essentially a prescription to perform a
diagonalisation procedure on a basis of operators {χi | i = 1, . . . , n } in order to
produce a new basis {φα |α = 1, . . . , n } for which operators couple to a single
energy eigenstate

〈Ω|φα|β, p, s〉 ∝ δαβ . (4.18)

The way in which this is achieved is to construct the operators φα as linear
combinations of the original basis operators

φα(x) =
∑

i

vαi χi(x), φ̄α(x) =
∑

j

χ̄j(x) u
α
j , (4.19)

and then determine the weights vαi and uαj which satisfy Eq. (4.18). Beginning
with the matrix of two-point correlation functions

Gij(~p, t) =
∑

~x

e−i~p·~x 〈Ω|χi(x) χ̄j(0)|Ω〉 ,
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we can establish a recurrence relation by considering Gij(~p, t+ δt) uαj

Gij(~p, t + δt) uαj =
∑

~x

e−i~p·~x 〈Ω|χi(x) (χ̄j(0) uαj )|Ω〉

=
∑

~x

e−i~p·~x 〈Ω|χi(x) φ̄α(0)|Ω〉

=
∑

β

e−Eβ(~p)(t+δt) 〈Ω|χi(0)|β, p, s〉〈β, p, s|φ̄α(0)|Ω〉

= e−Eα(~p)δt

(

∑

β

e−Eβ(~p)t 〈Ω|χi(0)|β, p, s〉〈β, p, s|φ̄α(0)|Ω〉
)

= e−Eα(~p)δt

(

∑

~x

e−i~p·~x 〈Ω|χi(x) φ̄α(0)|Ω〉
)

= e−Eα(~p)δt

(

∑

~x

e−i~p·~x 〈Ω|χi(x) (χ̄j(0) uαj )|Ω〉
)

= e−Eα(~p)δtGij(~p, t) u
α
j ,

where we have made use of Eq. (4.18) in order to establish that the only non-zero
term in the sum is that of the state α, allowing us to factor out the exponential;
an analogous expression can be obtained for vαi Gij(~p, t + δt). It follows that the
required weights to form the operators φα and φ̄α are the eigenvector solutions to
the following generalised eigenvalue equations

vαi Gij(~p, t0 + δt) = e−Eα(~p)δt vαi Gij(~p, t0) , (4.20a)

Gij(~p, t0 + δt) uαj = e−Eα(~p)δt Gij(~p, t0) u
α
j . (4.20b)

An important point to note is that Eqs. (4.20a) and (4.20b) are evaluated for a
given 3-momentum ~p and so the corresponding operators satisfy Eq. (4.18) for a
given momentum only. With this in mind, one can form the correlator for the
state |α, p, s〉 by projecting the relevant eigenvectors onto the correlation matrix

G(~p, t;α) = vαi (~p)Gij(~p, t) u
α
j (~p) .

Generalising to the case of three-point functions follows simply. Beginning
with the matrix of three-point correlation functions

(GO)ij(~p
′, ~p, t2, t1) =

∑

~x2,~x1

e−i~p
′·~x2 ei(~p

′−~p)·~x1 〈Ω|χi(x2)O(x1)χ†
j(0)|Ω〉 ,

we can express this in the expanded form given by Eq.(4.15)

(GO)ij(~p
′, ~p, t2, t1) =

∑

α,β

∑

s′,s

e−Eβ(~p
′)(t2−t1) e−Eα(~p)t1

〈Ω|χi(0)|β, p′, s′〉 〈β, p′, s′|O(0)|α, p, s〉 〈α, p, s|χ̄j(0)|Ω〉 .
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In doing so we can see that by projecting with the eigenvector carrying the
correct source/sink momenta, the overlap terms satisfy Eq. (4.18). Therefore one
can obtain the projected three-point correlation function by projecting with the
eigenvectors taken from Eqs. (4.20a) and (4.20b) with the required momentum,

GO(~p
′, ~p, t2, t1;α) ≡ vαi (~p

′) (GO)ij(~p
′, ~p, t2, t1) u

α
j (~p) .

This applies equally well to hadron transitions (α
O→ β) where one simply projects

with the relevant eigenvectors for differing source (α) and sink (β) eigenstates

GO(~p
′, ~p, t2, t1;α→ β) ≡ vβi (~p

′) (GO)ij(~p
′, ~p, t2, t1) u

α
j (~p) .

Having obtained the correlators relevant to the particular eigenstate, extraction
of the desired information follows in the same fashion as in the case of the ground
state, where one now works with the projected correlators.

4.4.1 Interpolating Fields Again

The key to the successful use and application of the variational approach stems
from the initial choice for the basis of operators. Ideally one requires operators
that have a range of overlaps with the states of interest so as to ensure that they
sufficiently span the eigenspace. For the standard operators discussed in Section
4.1, different choices of the Γ matrices in Eqs. (4.3) and (4.4) which maintain the
desired JPC gives rise to different operators. In the case of the nucleon, there are
three independent operators that one can form, these being

χ1(x) = ǫabc
(

uaT (x)Cγ5 d
b(x)

)

I uc(x) ,

χ2(x) = ǫabc
(

uaT (x)C db(x)
)

γ5 u
c(x) ,

χ4(x) = ǫabc
(

uaT (x)Cγ5γ0 d
b(x)

)

I uc(x) .

Each of these will have different overlap with the nucleon and its excitations. For
example, the quark fields in the brackets for χ1(x) and χ4(x) couple to form a
scalar di-quark structure while those in χ2(x) form a vector di-quark structure,
and so we expect them to have very different overlap with a given eigenstate.

Unfortunately, there are only a finite number of operators formed in this way
with each JPC limited to around 2 or 3 independent operators which in turn limits
us to the lowest couple of eigenstates. To perform comprehensive and robust
studies of the hadron spectra, one must consider alternate ways of forming new
operators. There are many ways in which one can go about doing this, however
two methods in particular have grown in popularity: displaced operators and
smeared interpolators. The first of these methods is to work with operators that
can couple quark fields at different spatial locations [59]. This can be achieved
replacing one or more quark fields in Eqs. (4.3) and (4.4) by spatially-displaced
quark fields,

Ti ψ(x) = Ui(x)ψ(x+ aeµ) .
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From this basis, operators with the desired quantum numbers are then formed
as linear combinations with the relevant Clebsch-Gordon coefficients [60]. Un-
fortunately, by working on a lattice, the full 3-dimensional rotational symmetry
is reduced down a cubic symmetry. Consequently, due to the finite extent of
the underlying symmetry group, the infinite tower of irreducible representations
that correspond to distinct JPC mix down into the finite irreps of the reduced
symmetry group. Therefore, in order to have operators that couple to distinct
JPC , one must disentangle these from across the irreps of the octahedral group
[50, 51, 61]. The appeal of such an approach is that by considering larger
displacements, particularly in various directions, one has access to an extremely
large basis of operators which can in principle access any JPC . Unfortunately,
using standard propagators one requires inversions for each source orientation
considered. Even with two displacements, the number of possible orientations
begins to get rather large. The common approach for construction of correlators
that make use of these operators is to use the distillation method. Though
expensive in its own right, the distillation method provides one with an effective
all-to-all propagator which, once obtained, allows for consideration of any
number of displacements without the need for inversion [50, 62].

The other approach and that which we choose to use in this work is that
of smearing. As was discussed in section 3.4.1, smearing is used to produce a
source or sink that is a truer representation of the physical state. By varying the
degree of smearing assigned to the quark fields in an interpolator, one varies
the overlap the interpolator has with the various eigenstates. Therefore, one can
extend a basis of operators by using multiple levels of smearing for each local
interpolator. For a given Dirac structure, combinations of the interpolators with
increasing smearings would be expected to lead to the formation of nodes in the
resultant operator. Examination of the wave functions for the nucleon and its
excitations [63] using such a basis confirms this behaviour. It is thus expected
that our operators should have strong overlap with radial excitations.

4.4.2 Extensions to the Variational Method

Evaluation of Eqs. (4.20a) and (4.20b) in the case of near degenerate eigenstates
raises an important question: How does one properly identify eigenstates
between the various sub-ensembles used in the calculation? Simply identifying
states by their ordering in energy is clearly insufficient. The key is in how
we form a given state. As the eigenvectors describe the operator make-up
for a given eigenstate, they can be considered as a fingerprint for that state.
Therefore, equipped with a suitable measure it is possible to identify eigenstates
between sub-ensembles in a consistent fashion. Working with vectors, the scalar
product would seem a good choice. Unfortunately however, the eigenvectors
obtained from Eqs. (4.20a) and (4.20b) lack orthogonality. Thus there exists
the possibility that between sub-ensembles, a given eigenvector can have large
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overlap with multiple vectors in the reference basis, giving rise to a potential
source for eigenstate misidentification. A second issue is that the components
of the eigenvectors can differ significantly in magnitude. This stems from the
potentially large variation in the overlap factors Zα

i (~p) for the operators in the
variational basis {χi(x)}. Consequently, a small number of components can
dominate the scalar-product limiting its effectiveness as a discriminator between
eigenvectors.

Equipped with an orthonormal basis, the scalar-product is the ideal dis-
criminator. Therefore the key to addressing this issue lies in changing our
basis in such a way as to render the eigenvectors orthonormal. As discussed
in Ref. [64], through a normalisation and symmeterisation procedure, one can
express Eqs. (4.20a) and (4.20b) as a real-symmertic eigenvalue problem. The
first step is to work with the normalised correlation matrix defined as follows

1
√

Gii(~p, tsrc)
Gij(~p, t)

1
√

Gjj(~p, tsrc)
.

This construction effectively normalises the operators such that their overlap
factors and correspondingly their entries in the correlation matrix are rendered
O(1). In turn, the eigenvector components become O(1), eliminating the second
issue outlined above. In order to use these eigenvectors on the three-point
correlation functions, we must normalise accordingly

1
√

Gii(~p ′, tsrc)
(GO)ij(~p

′, ~p, t2, t1)
1

√

Gjj(~p, tsrc)
.

The next step is to re-express the eigenvalue equation in a symmetric form. To do
this, we begin by making use of the ensemble average symmetry

Gij(~p, t) = Gji(~p, t) ,

and instead work with the symmetrised two-point correlation function

Gij(~p, t)→
1

2
[Gij(~p, t) +Gji(~p, t)] ,

which is an improved unbiased estimator for Gij(~p, t). Through this operation,

the matrices G
1/2
ij (~p, t0) and G

−1/2
ij (~p, t0) are well-defined allowing us to rewrite

Eq.(4.20b) as

G
−1/2
ij (~p, t0)Gij(~p, t0 + δt)G

−1/2
ij (~p, t0) G

1/2
ij (~p, t0) u

α
j = e−Eα(~p)δtG

1/2
ij (~p, t0) u

α
j .

Identifying

wαj (~p) = G
1/2
ij (~p, t0) u

α
j (~p) , (4.21)

and
Hij(~p, t0, δt) = G

−1/2
ij (~p, t0)Gij(~p, t0 + δt)G

−1/2
ij (~p, t0) , (4.22)
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we arrive at the symmetric eigenvalue equation

Hij(~p, t0, δt)w
α
j (~p) = e−Eα(~p)δt wαj (~p) . (4.23)

Working with both {U} and {U∗} configurations, the correlators are rendered
real, resulting in Eq. (4.23) being promoted to a real-symmetric eigenvalue
problem, for which the vectors wαj (~p) are guaranteed to be orthogonal. One
can thus use this basis as a means to correctly identify eigenstates across sub-
ensembles.

The need to consistently identify eigenstates extends beyond sub-ensembles.
The key motivation of Ref. [64] for using an orthonormal basis was to have a solid
framework which allowed for eigenstates to be tracked across different quark
masses. Here they found that between successive quark masses, the vectors in
respective bases had dominant overlap with a single vector only and were near
orthogonal to all others in the basis. For our purposes, we require consistent
ordering across different values of momenta. Ideally we seek a similar condition
to that presented in Ref. [64], namely

wαi (~p) · wβi (~p ′) ≃ δαβ . (4.24)

Taking ~p = 0 as a reference set, it was observed that for sufficiently large mo-
mentum ~p ′, Eq. (4.24) no longer held. However, the evolution of the eigenvectors
away from the reference basis was slowly varying such that Eq. (4.24) holds if
the reference set is kept close to the momentum under consideration. Therefore,
selecting an ordering at one momentum, it is possible to have consistent ordering
at all momenta by sorting against adjacent momenta in an analogous fashion to
sorting against adjacent quark masses in Ref. [64].



Chapter 5

Nucleon Axial Charge

The content of this chapter is based on the publication: ”Variational approach to the
calculation of gA” by B. J. Owen et al., Phys. Lett. B723, 217 (2013), [arXiv:1212.4668]

A long standing issue in the realm of hadron structure calculations has been
the discrepancy between the axial charge of the nucleon measured on the lattice
and the experimentally determined value. In principle, the systematics of the
calculation seem relatively simple. Being an isovector quantity, disconnected
loop contributions are absent and as we have direct access to Q2 = 0, we
circumvent the need for extrapolations in Q2. Furthermore, both the incoming
and outgoing states can be taken to be at rest leading to excellent signal to
noise. Despite this, lattice determinations have been consistently lower than the
experimental value by as much as 10–15% [65–67]. In the past it was hoped that
as we begin to probe at or near physical quark masses, the lattice determination
would rise to the experimental value. Unfortunately, as we begin to consider
such masses, it appears that the discrepancy remains. In an effort to account for
these discrepancies, several studies have carefully examined the systematic errors
present in the calculation [35, 68–81].

There is strong evidence to suggest that finite volume effects may play a key
role in this shortfall [65–67, 73, 78], however it has recently been suggested that
excited state contamination may also be a significant contributing factor [65–67,
79, 82]. For this reason there has been an increased effort to understand and
reduce the impact of excited states on form factor calculations. In computing
these quantities, it is well understood that to ensure excited state contributions
to the correlation function are sufficiently suppressed, one needs large Euclidean
time separations between operators. This is made clear if we consider the time-
dependence of the first few terms that contribute to the ratio used to extract the
axial charge

R(t2, t1) = gA +O(e−∆(1) t1) +O(e−∆(1) (t2−t1)) + . . . , (5.1)

where ∆(i) ≡ m(i)−m(0). To choose a suitable time separation one should identify
the time slices where the correlation functions take on their asymptotic form.
Using a fixed current, a suitable current insertion time, t1, can be chosen once
ground-state dominance is observed in the two-point correlator. This ensures
that the exponential in the first sub-leading term of Eq. (5.1) is small enough
to suppress this contribution. As the sink time is free to vary, results are
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extracted once constant behaviour is observed in the ratio, indicating that t2−t1 is
sufficiently large so as to suppress the second sub-leading term. For the fixed sink
method, the situation is somewhat trickier. As it is now the current insertion time
that is free to vary, neither exponential is fixed and so we seek a window whereby
both sub-leading terms are minimised. Effectively one requires knowledge of the
asymptotic behaviour of the three-point correlator a priori. In order to guarantee
minimisation of excited states contributions, one should work with as large a sink
time as possible, but too large a value will lead to poor signal-to-noise. There is
clearly a difficult balance and understandably the desire for improved precision
leads one to choose the earliest sink times for which excited states appear to be
sufficiently suppressed. However, in Refs. [35, 74], it has been shown that for
certain matrix elements, eg. 〈x〉u−d, the source-sink separations often used in the
literature are not sufficiently large to suppress excited state effects. Unfortunately,
as we move ever closer to the physical point one is naturally forced to consider
earlier sink times, or alternately increase statistics, to achieve adequate signal to
noise.

To counter this issue, new techniques are being devised to try and control
the sub-leading terms to the three-point correlator. The use of the summation
method [79, 82–84] has shown improvement upon the conventional approach.
Rather than considering the standard ratio, one instead considers the summed
ratio

S(t2) =

t2
∑

t1=0

R(t2, t1) .

This construction leads to a reduction in the leading order time-dependence [85]

S(t2) = c+ t2

(

gA +O(e−∆(1)t2)
)

.

In the determination of the axial charge, this approach appears to give a value
that is systematically higher than that obtained from a single ratio, however with
a significant increase in uncertainty [79]. Furthermore, one requires multiple
sink times, t2, and so this construction is significantly more expensive than the
standard approach.

Equipped with the variational method, we can approach this problem from
an entirely different perspective. Rather than alter the time-dependence of the
unwanted contributions, we are able to separate and thus remove the unwanted
contributions from the calculation. From a practical perspective, for a basis of n
operators {χi(x) | i = 1, . . . , n }, we can separate out the first n eigenstates and
so ratios constructed using the projected correlators should have the following
asymptotic behaviour

RCM(t2, t1) = gA +O(e−∆(n) t1) +O(e−∆(n) (t2−t1)) + . . . , (5.2)

where we note the first eigenstate, labelled by i = 0, is the ground state. In
order to test the improvement offered by this novel method, we shall evaluate
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the nucleon axial charge using both our variational construction and the standard
approach employing single correlators with smeared sources and sinks.

The remainder of this chapter is organised as follows. We begin with
Section 5.1 where we briefly outline exactly how one isolates the nucleon axial
charge gA, followed by a summary of the calculation details. In Section 5.2,
we carefully compare the Euclidean time-dependence for the ratios used in both
methods to discern their excited state behaviour and evaluate the improvement
offered through the use of the variational method. Section 5.3 is devoted to a cost-
benefit discussion where we consider whether the added cost associated with
this method can be justified. In the context of this discussion we also compare
our variational result with other lattice determinations to ascertain the role that
excited state contamination plays in the systematically low value observed on the
lattice. We conclude with a summary in Section 5.4.

5.1 Calculation Details

To extract the nucleon axial charge, gA, we are interested in the matrix element
describing the weak decay of the neutron into a proton

〈 p(p′, s′) |Audµ |n(p, s) 〉 ,
where Audµ = ūγµγ5d is the flavour changing axial current. This vertex can be
decomposed into two independent form factors, the axial form factor GA(Q

2)
and the induced pseudoscalar form factor GP (Q

2),

〈 p(p′, s′) |Audµ |n(p, s) 〉 =
(

m2

Ep′Ep

)1/2

ūp(p
′, s′)

[

γµ γ5GA(Q
2) + γ5

qµ
2m

GP (Q
2)
]

un(p, s) , (5.3)

where qµ = p′µ − pµ is the current four-momentum and Q2 = − q2, the space-like
momentum transfer. For exact isospin symmetry, one can show that the matrix
element for the flavour-changing current, defined above, is equivalent to that of
the isovector current evaluated between proton states

〈 p(p′, s) |Audµ |n(p, s) 〉 = 〈 p(p′, s) |Au−dµ | p(p, s) 〉 ,
where Au−dµ = ūγµγ5u − d̄γµγ5d. Consequently we choose to evaluate gA using
O = Au−dµ as it eliminates the issue of handling the flavour-changing current.

In order to access this matrix element, we consider the following three-point
function

Gµ(~p
′, ~p, t2, t1) =

∑

~x2,~x1

e−i~p
′·~x2 ei(~p

′−~p)·~x1 〈Ω|χ(x2)Au−dµ (x1) χ̄(0)|Ω〉

t1,t2→∞−−−−−→
∑

s′,s

e−Ep(~p ′)(t2−t1) e−Ep(~p)t1 〈Ω|χ(0)|p(p′, s′)〉

×〈p(p′, s′)|O(0)|p(p, s)〉 〈p(p, s)|χ̄(0)|Ω〉 . (5.4)
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For the nucleon, the overlap factors can be expressed as

〈Ω|χ(0)|p(p, s)〉 = Z(~p)

√

m

E(~p)
up(p, s) ,

where we note that the Dirac spinors are normalised according to

∑

s

u(p, s) ū(p, s) =

(

/p+m

2m

)

.

Substituting in this expression for the overlap factors, along with the vertex given
by Eq. (5.3), we obtain a general expression describing how the form factors are
encoded within the three-point correlator. Here however we are interested in
gA ≡ GA(Q

2 = 0) and so it suffices to consider the case where the incoming and
outgoing momenta are the same. In particular we choose to work in the nucleon
rest frame as this will provide the smallest statistical uncertainties. Applying this
choice of kinematics, we arrive at the following expression

Gµ(0, 0, t2, t1)
t1,t2→∞−−−−−→ e−mt2 Z(0) Z̄(0)

(

γ0 + I

2

)

γµ γ5

(

γ0 + I

2

)

gA ,

where Z̄ is the overlap factor for the interpolator χ̄. To construct the ratio, we also
require the nucleon two-point correlator. Working through the same procedure
for this two-point function, we arrive at the corresponding expression

G(0, t2)
t2→∞−−−→ e−mt2 Z(0) Z̄(0)

(

γ0 + I

2

)

.

For both these expressions, the quantities of interest are encoded within a 4 ×
4 matrix in Dirac space. This is a feature of all baryon correlators and stems
from the fact that interpolators themselves are spinors. Therefore, to extract the
desired quantities we need to project out the relevant terms using some projection
operator

G(~p, t; Γ) = Tr [Γ G(~p, t)] .

In the case of the two-point correlator, we use the standard positive-parity
projector

Γ0 =

(

γ0 + I

4

)

=
1

2

(

I 0
0 0

)

.

For the three-point correlator, the projector is dependent upon the choice of
current-polarisation, µ. In this calculation we choose µ = 3 for which the required
projector is

Γ3 = Γ0 γ3 γ5 =
1

2

(

σ3 0
0 0

)

.

By constructing the ratio from the parity-projected correlation functions, we
obtain the axial charge

R =
G3(0, 0, t2, t1; Γ3)

G(0, t2; Γ0)

t1,t2→∞−−−−−→ gA . (5.5)
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In the case of the variational analysis, we construct the same ratio, however this
time working with the eigenstate projected correlators

G(0)(0, t2; Γ0) = v
(0)
i Gij(0, t2; Γ0)u

(0)
j (0) , (5.6)

G
(0)
3 (0, 0, t2, t1; Γ3) = v

(0)
i (G3)ij(0, 0, t2, t1; Γ3)u

(0)
j (0) , (5.7)

giving

RCM =
v
(0)
i (G3)ij(0, 0, t2, t1; Γ3) u

(0)
j

v
(0)
i Gij(0, t2; Γ0) u

(0)
j

. (5.8)

For this calculation, and those throughout the rest of this thesis, we make
use of the PACS-CS (2+1)-flavour dynamical-QCD gauge field configurations [24]
made available through the ILDG [86]. These configurations are generated using
a non-perturbatively O(a)-improved Wilson fermion action and Iwasaki gauge
action. The value β = 1.90 results in a lattice spacing a = 0.091 fm, determined
via the static quark potential. With lattice dimensions 323 × 64, these ensembles
correspond to a physical spatial volume with a box length L = 2.9 fm. These
2+1 configurations are generated with five values for the light quark mass with
the strange quark mass held fixed. The resulting range in pion mass extends
from 702 MeV down to the near physical mass of 156 MeV. However, as the
intention of this calculation is to examine whether the variational approach is
an improvement upon the standard method, we limit ourselves to a single mass
only. In particular, we choose to work with the second lightest mass where
mπ ≈ 290 MeV. The resulting value of mπL = 4.26 is comparable to the values
used by most groups for similar masses.

A fixed boundary condition is applied in the temporal direction. Our fermion
sources are inserted at t0 = 16 for which it has been verified that reflections
from the temporal boundary are negligible. SST propagators are evaluated
using a local axial current, held fixed at t1 = 21 and projected onto ~q = 0.
This insertion time was determined by the onset of asymptotic behaviour for
the projected two-point correlator. As we are working with the local axial
current, the bare lattice quantities determined from Eqs. (5.5) and (5.8) will need
to be renormalised in order to facilitate the comparison with experiment and
other lattice determinations. The value we use for the the axial renormalisation
constant on these ensembles, ZA = 0.781(20), was determined non-perturbatively
in Ref. [38] using a Schrödinger functional scheme. To distinguish between
the bare and renormalised quantities, we shall refer to them as gA and gRA
respectively. For our error analysis, we use a second-order, single-elimination
jackknife procedure with the χ2

dof obtained via covariance matrix fits.

As we are primarily interested in isolating the ground state, we choose to
work with a small variational basis upon which to perform our correlation
matrix analysis. This basis is comprised of smeared operators of various widths,
constructed using the standard, local proton interpolator

χ1(x) = ǫabc[uaT (x)Cγ5d
b(x)] uc(x) .
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Table 5.1: The rms radii for the various levels of smearing considered in this
work.

Sweeps of smearing rms radius (fm)

16 0.216
35 0.319

100 0.539
200 0.778

The smearing is performed using the gauge-invariant Gaussian smearing proce-
dure outlined in Section 3.4.1. For the smearing fraction of Eq. (3.19), we use the
value α = 0.7. To construct a variety of smearing widths, we iteratively perform
n sweeps of smearing via Eq. (3.18) for a range of values for n, these being 16,
35, 100 and 200, determined in Ref. [87] to give optimal span. In Table 5.1 we
list the rms-radii for this choice of smearing parameters. With this basis we are
able to construct correlation matrices of dimension up to 4 × 4. Finally, we use
variational parameters t0 = 18 and δt = 2, again taken from Ref. [87], where it was
found that this choice produced best balance between systematic and statistical
uncertainties.

5.2 Results

In Fig. 5.1 we present values for gA as a function of Euclidean sink time t2,
using the standard single correlator method, for both point and smeared sinks,
and the variational method. For the standard method we present the datasets
obtained using 35 sweeps of smearing, indicative of smearing radii commonly
used. Between the two methods, we can see significant differences in the
overall time dependence. Beginning with the standard single source method,
the Euclidean time suppression of excited state contributions manifests itself as
a steady increase in the value of gA. Between the two datasets, we see that by
smearing both source and sink, there appears to be a reduction in the impact
of excited states with the increase in the value of gA immediately following the
current. However the steady rise in the data remains. In the case of a point sink, it
is difficult to properly identify a plateau and so we make use of the χ2

dof to inform
us as to a suitable fit window. In doing so we find that the earliest time-slice one
should consider is t2 = 25. Use of the smeared sink leads to improved plateau
quality and allows for earlier fits with suitable χ2

dof obtained at t2 = 24.

For the variational method, we see quite a different situation. Our variational
approach yields extremely clean results with rapid ground state dominance. The
systematic rise in the data is no longer present and the onset of the plateau
is within two time slices of the current insertion. In Fig. 5.2 we overlay the
three datasets to highlight the excited state behaviour between the standard and
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Figure 5.1: Nucleon axial charge, gA, as a function of Euclidean sink time using
the standard single correlator approach and the variational method. The red
dataset (top) is for a smeared source and point sink, the purple dataset (centre)
is for a smeared source and smeared sink while the blue dataset (bottom) is
for the variational method. For the single correlator method, we present the
data obtained using 35 sweeps of smearing, which gives a smearing radius
comparable with that used by many groups. The dashed line represents the time-
slice at which the current is inserted.
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Figure 5.2: Overlay of the results presented in Fig. 5.1. The red squares ( ) are
for the point sink, the purple triangles ( ) for the smeared sink while the blue
circles ( ) are for the variational approach.

variational approach. Here it is clear that some excited state contributions remain,
however this can be understood through Eq. (5.2). As we only have a finite basis,
it is not possible to remove all excited state contributions, however through the
larger mass splitting between the ground state and nth excited state we expect
these unwanted terms to be quickly suppressed. This behaviour is consistent
with that observed in Fig. 5.2.

Continuing with Fig. 5.2, what is most concerning is the lack of overlap
between the results of the standard single source method and those of our
variational analysis in the regions identified by the χ2

dof as suitable fit windows.
To investigate this further, we consider all permissible fits for the three data sets
with the strict criterion that the χ2

dof lie between 0.800 and 1.200. These fits are
listed in Table 5.2. In both data sets employing the standard approach, we can
obtain good fits with small uncertainties if we choose to begin fitting around
t2 = 25 or 26, however these results sit significantly lower than the variational
result. In the case of the point sink, moving the fit window to later times results
in an increase in the central value, with a 5% variation observed in the value for
gA between 25–30 and 28–30. Fits taken at these later times are consistent with
the variational result, however this is in part due to an increase in the statistical
uncertainty. For the smeared sink, we find that moving the fit window to later
times results in a decrease in the central value. Consequently there is no choice
of fit-window that leads to a result consistent with the variational method. It is
clear in either case that we have little control over the excited state systematics.
In contrast to this, the variation in the extracted fits for the different fit-windows
taken for the variational result, is considerably smaller than the smallest statistical
uncertainty.
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Table 5.2: Un-renormalized values of gA from fit windows which give a covariance matrix based χ2
dof between 0.800 and

1.200. The datasets are identified as (a) Standard approach with point sink, (b) Standard approach with smeared sink and
(c) Variational approach. For the standard approach we have selected 35 sweeps of smearing. We note how the value of
gA increases for the standard approach as we move the fit window to later times. In contrast, the variational approach is
stable across all windows with the desired χ2

dof.

(a) (b) (c)

Fit Window gA χ2
dof Fit Window gA χ2

dof Fit Window gA χ2
dof

25 – 27 1.38(3) 1.168 24 – 30 1.36(3) 1.161 23 – 30 1.47(3) 0.848

25 – 30 1.38(4) 1.100 24 – 31 1.36(3) 1.104 23 – 31 1.47(3) 0.818

25 – 31 1.38(3) 0.951 25 – 28 1.38(3) 0.926 24 – 29 1.47(2) 0.848

26 – 27 1.40(3) 0.808 25 – 29 1.37(3) 0.812 24 – 30 1.47(2) 0.988

26 – 30 1.40(3) 1.077 26 – 30 1.37(4) 1.100 24 – 31 1.47(4) 0.932

26 – 31 1.40(4) 0.902 26 – 31 1.36(4) 0.952 25 – 29 1.47(3) 0.951

27 – 31 1.41(4) 1.011 27 – 31 1.33(4) 1.148 25 – 30 1.47(2) 1.120

28 – 30 1.42(6) 1.129 28 – 31 1.30(10) 1.082 25 – 31 1.47(2) 1.040

29 – 31 1.35(7) 0.994 26 – 28 1.47(2) 1.091

26 – 29 1.47(2) 1.184

26 – 31 1.47(2) 1.146
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As there are multiple smearing levels required for evaluation of the corre-
lation matrix, we can consider how the level of smearing affects the extracted
value of gA. In Fig. 5.3 we show gA as a function of sink time t2 using the
standard method, for all of the smearing levels utilised in the variational analysis.
Within the data there are some clear trends. Firstly, as was noted for 35 sweeps
of smearing, the use of smeared sink leads to a reduction of the excited state
contributions over the point sink method. Furthermore, the impact of excited
states is reduced as we increase the level of smearing. Particularly, for the larger
levels of smearing using both smeared source and smeared sink, we observe
plateaus similar in nature to that of the variational analysis. Taking the fits shown
in Fig. 5.3, we compare the renormalised value for gA for all the smearing levels,
both with point and smeared sinks, and compare this to the result extracted using
the variational approach. This comparison is shown in Fig. 5.4 We see a clear
dependence on the level of smearing used in the calculation. For low levels of
smearing the extracted result can be significantly suppressed, with the smallest
level of smearing differing by up to 8% from our improved, variational result.
From this evidence, it is clear that if the smearing level is not properly tuned at
the source and sink, then excited state effects significantly impact the extracted
result for gA. We note further that for the larger levels of smearing, though the
result is still consistent with the variational result, the observed trend suggests
that further smearing will result in a larger value. It is therefore entirely possible
that over-smearing may also lead to systematic error in the extracted value.

In principle, one could tune the smearing so as to obtain optimal overlap
with the ground state. This could be done efficiently by using a point source
propagator and tuning the smearing through the sink via examination of the
two-point correlator, as outlined in Ref. [88]. However, this optimal level of
smearing depends entirely on the quark mass, β value, momentum or operator
under consideration. Therefore one must tune the smearing level for each set of
parameters one wishes to examine. Through the variational procedure we obtain
operators optimised to couple to the physical eigenstates, therefore eliminating
the need for tedious fine-tuning to maximise overlap with the ground state.

5.3 Cost–Benefit Discussion

A real concern with the correlation matrix approach is the increased cost. For our
implementation, we require 2 inversions per configuration for every smearing we
include in constructing the correlation matrix. For n = 4 levels of smearing we
have a total of 2n = 8 inversions per configuration, as opposed to the minimum of
2. In Fig. 5.2 we can see that, for large Euclidean times, the conventional approach
is consistent with the correlation matrix approach, albeit with larger errors. Thus
it is worth considering what the required increase in statistical sample would be
for the conventional approach to produce results with similar error to that of our
correlation matrix method.
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Figure 5.3: Nucleon axial charge, gA, as a function of Euclidean sink time
determined using standard techniques for the range of smearing levels presented
in Table 5.1. The red dataset (left column) is for smeared source and point sink,
while the purple dataset (right column) is for smeared source and smeared sink.
The level of smearing increases down the column and is indicated by the row
label to the left.
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Figure 5.4: Comparison of the renormalised value of gA. The first four pairs of
points are the results for the conventional, point sink ( ) and smeared sink ( )
approach with increasing levels of smearing from left to right. The rightmost
point ( ) is the result extracted using the variational approach.
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Given the error varies with the sample size N as ∆gA ∝ 1√
N

, then the relative

increase in sample required to obtain an error (∆gA)desired is given by

Nrequired

Ncurrent

=

(

(∆gA)current

(∆gA)desired

)2

=

(

(∆gA)sm-sm

(∆gA)CM

)2

,

where (∆gA)current is the error extracted with the current sample of size Ncurrent.
Using the leading time-slice of the associated fit-windows as indicative of the
uncertainty in gA, which for the smeared-smeared approach is t2 = 27 and for the
correlation matrix approach t2 = 23, we find that

(∆gA)sm-sm = 0.059

(∆gA)CM = 0.030

}

Nrequired

Ncurrent
=

(

0.59

0.30

)2

= 3.87 .

Naively we expect a factor 4 increase in statistics, which would require fewer
inversions than our correlation matrix method. However, we note that the peak
value for the smeared-smeared approach is at time slice 26 and so χ2

dof analysis
would tend to favour earlier points around times 24-25. This is consistent
with Table 5.2. In the tradition of choosing the earliest possible fit-window
to minimise statistical uncertainty, a more appropriate fit window would be
sometime between times 24-31. Taking this into account, the best choice of fit
is from times 25-28 with χ2

dof = 0.9 and a result gA = 1.38(3). However, it is
clear that this result is systematically suppressed, relative to the correct result of
gA = 1.47(2), by excited state contributions. While one could invest more super-
computing resources to reduce statistical error, in this case one will only get the
wrong answer very accurately if one does not take care in fine-tuning the source.

The origin of this excited state suppression stems from our choice of t1. Using
the variational approach, the onset of ground state dominance occurs earlier in
Euclidean time, allowing for an earlier choice of current insertion time t1. For
this particular ensemble, ground state dominance for the nucleon occurs at time
t = 21, so our choice for t1 is ideal for the correlation matrix method. For the
smeared-smeared approach with 35 sweeps of smearing, ground state dominance
does not occur until time t = 23. Consequently, our choice of current insertion
time is not sufficiently large to ensure suppression of the first sub-leading term
in Eq. (5.1) and so we are therefore sampling both ground state and excited state
contributions to the matrix element. This is why the peak value is systematically
low for this choice of smearing. This also gives rise to the smearing dependence
illustrated in Fig. 5.4. Thus for a more comprehensive comparison, one requires
a new simulation with t1 = 23, two time slices later. Nonetheless, we can still get
some insight from our present analysis into the required increase in statistics. For
the the ratio of three- to two-point functions, ground state dominance occurs 6
time slices after the current insertion, so with t1 = 23 one would be considering a
fit window commencing at t2 = 29 as opposed to ts = 27 considered earlier. Here
we have

(∆gA)sm-sm = 0.101

(∆gA)CM = 0.030

}

Nrequired

Ncurrent

=

(

0.101

0.030

)2

≃ 11.3,
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Figure 5.5: Results for gRA obtained with different number and combination of
operators used in the variational analysis.

a factor 11 increase. As the variational approach enables one to:

1. rapidly isolate the ground state following the source, thus enabling
an earlier current insertion, and

2. rapidly isolate the ground state again after inserting the current
enabling an earlier Euclidean time fit,

the associated reduction in the error bar through this process outweighs the
increased cost in constructing the matrix of cross-correlators.

In our implementation, due to the construction of the complete correlation
matrix of three-point functions, we not only have access to the ground state, but
also to the first n−1 excited states, where n is the dimension of our operator basis.
This has been utilised in Ref. [89] to access the axial charge of nucleon excitations.
In principle, if one were solely interested in the ground state properties, one could
use the optimised sources generated via the two-point correlation matrix as the
input for the SST inversion, providing SST propagators that couple directly with
the ground state. This reduces the cost from 2n inversions down to n+1. For this
calculation the cost would be reduced from 8 to 5 inversions. Further reduction
in cost is demonstrated through Fig. 5.5. It was found that access to ground state
properties can be achieved with 3 levels of smearing, provided the smearing radii
are chosen to span the space. Therefore, we could further reduce the cost to 3+1 =
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Table 5.3: Comparison of results for gRA on ensembles with similar volumes and
values of mπ to our calculation. For the CLS/Mainz group we have included
results for the conventional ratio method (upper) and the summation method
(lower). The asterisk indicates that these results include the correction of finite-
volume effects and so will tend to sit slightly higher.

Group mπ (MeV) mπL ts − t0 (fm) gRA
our result 290 4.26 0.75 1.147(33)

QCDSF ’13 292 4.25 1.1 1.099(13)
CLS/Mainz ’12 277 4.25 1.1 1.137(37) *
CLS/Mainz ’12 277 4.25 0.7-1.3 1.162(95) *
LHPC ’10 293 3.68 1.2 1.154(26)
ETMC ’10 298 4.28 1.1 1.103(32)

4 inversions per configuration, only a factor of 2 above the minimum for what is
equivalent to an order of magnitude improvement in the statistics.

In Table 5.3 we present a comparison of our result for gRA with results by other
groups on similar ensembles. The consistency between our result and those of
other groups is testament to the care taken by these collaborations to minimise
systematic uncertainties. Fig. 5.4 clearly shows that excited state contamination
can suppress the extracted value of gA, however the consistency of Table 5.3
leads us to conclude that the suppression observed in the literature is unlikely
to stem from excited state effects. However, a key issue in the calculation of any
three-point function is how large must one make their source-sink separation to
ensure that excited state contaminations are sufficiently suppressed [35]. There
is a general consensus within the community that source-sink separations . 1.0
fm will suffer from excited state contaminations without fine-tuning the source
and sink to isolate the state. Indeed our results highlight this systematic effect
when using the conventional approach. Here the source-sink separation of ∼ 1.0
fm is too small and the extracted value for gA suffers from excited state effects
as illustrated in Fig. 5.4. The underlying issue is that there is insufficient time to
isolate the ground state prior to current insertion and again isolate the ground
state before annihilation. Based on our earlier arguments regarding a more
suitable current insertion time, we would expect a suitable sink time would be
t2 = 29, increasing the source-sink separation to∼ 1.2 fm. This result is consistent
with the source-sink separations used by the other groups in Table 5.3.

Using the variational approach, due to rapid onset of ground state dominance
through ideal interpolators, we are able to use much smaller source-sink sep-
arations. For our variational results, ground state dominance after the current
insertion occurs as early as t2 = 23 resulting in a temporal separation between
source and sink of only 0.64 fm. Thus, by applying the variational technique to
fixed sink methods, one could consider source-sink separations ∼ 0.7 fm which
would result in small statistical errors.
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5.4 Summary

Here we have illustrated how the variational approach can be used to eliminate
excited state effects from the calculation of the nucleon axial charge, gA. We have
demonstrated , through consideration of a variety of smearing levels, that excited
state effects act to suppress lattice simulation results for gA. The use of optimised
interpolators obtained via the variational approach resulted in rapid ground state
dominance allowing for earlier insertion of the current and earlier fit windows
resulting in smaller statistical uncertainty. The key advantage to this approach
is that once a suitable basis has been chosen, optimised sources are constructed
automatically, eliminating the need to tune smearing parameters. In comparing
our variational result with those of other groups using similar ensembles, the ob-
served consistency highlights the care taken by these collaborations to minimise
the impact of excited state contamination. Through careful consideration of the
cost versus benefit, it was found that the additional cost for this method was
outweighed by the improvement in statistical uncertainty.



Chapter 6

Light Meson Form Factors

The content of this chapter is based on the publication: ”Light Meson Form Factors at
near Physical Masses” by B. J. Owen et al., Phys. Rev. D 91, no. 7, 074503 (2015),
[arXiv:1501.02561]

The fact that quarks carry electric charge makes the electromagnetic interaction
an excellent probe for examining hadron structure. Mapping out the electromag-
netic form factors of these states provides a direct measure of the distribution
of charge and magnetism within a hadron and consequently, insight into the
arrangement of the quarks within. Experimentally this can be achieved by
electron scattering off the hadron target. However such measurements can only
be performed with states that are stable, or decay weakly, where their lifetimes
are sufficiently long to allow the necessary interactions to occur. For states
that are unstable with respect to the strong interaction, direct measurements
are not possible. Instead one is forced to disentangle resonant state properties
from radiative processes observed during scattering experiments. Recently
there has been interest in extracting magnetic dipole moments [90–92] through
such methods. In particular, Gudiño et al. [92] have been able to provide a
determination of the magnetic dipole moment of the ρ meson, the first such
experimental measurement for a vector meson.

Searching through the literature to see what results lattice QCD can offer as a
comparison, one finds there exist only a small handful of lattice determinations of
this quantity, with the majority of these making use of the quenched approxima-
tion [56, 93–97]. Of these calculations, only three do so via direct measurement of
the electromagnetic form factors and only two using dynamical quarks [95, 97].
Furthermore, their determinations of the magnetic and quadrupole moments rely
upon large extrapolations to Q2 = 0 due to their large value for the minimum
available, non-trivial 4-momentum transfer, Q2

min ≃ 0.44 GeV2 and 0.28 GeV2

respectively. Thus, there is a clear need for an evaluation of the ρ meson form
factors in full QCD, with low-Q2 and near physical quark masses, so as to allow
for a direct comparison with the result of Ref. [92]. Making use of the PACS-CS
configurations and our variational framework, we perform such an evaluation.
We begin in Section 6.1 with an overview of the manner in which we isolate the
form factors for both pseudoscalar and vector mesons from the corresponding
three-point functions. This is followed by a summary of the calculation details in
Section 6.2. In the remainder of the chapter, we present our results starting with
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an examination of our meson spectrum followed by further considerations of the
improvements offered through the use of variational techniques. We then present
the form factors and corresponding moments, for both ground states and the first
excitations in our spectra. We conclude with a summary in Section 6.4.

6.1 Extracting Light Meson Form Factors

As was discussed in Section 2.3, a given form factor decomposition is arrived at
through general considerations of the Lorentz covariance of the matrix element
and the symmetries of the system under consideration. It follows that for states
within a given JPC , the form factor decomposition will be the same. This is not
to say that the form factors themselves will be the same, simply that the physical
properties of the system can be expressed through the same set of Lorentz
covariant structures. Consequently, to access the excited state form factors we
consider the same combination of correlator ratios, formed with the relevant
eigenstate projected correlators. Here we shall consider the correlator ratios
required to isolate the Sachs electromagnetic form factors for both pseudoscalar
and vector mesons. We shall begin this discussion with the pseudoscalar mesons.

Pseudoscalar mesons being spinless particles allow us to express the operator
overlap as

〈Ω|φα,~p(0)|πβ(~p)〉 =
δαβ

√

2Eα(~p)
Zα(~p) , (6.1)

where φα,~p is the optimised operator obtained through the variational analysis.
Consequently the two-point function takes the form

G(~p, t2;α) =
e−Eα(~p) t2

2Eα(~p)
Zα(~p)Zα†(~p) , (6.2)

and the three-point function,

Gµ(~p ′, ~p, t2, t1;α) =
e−Eα(~p ′) (t2−t1) e−Eα(~p) t1

2
√

Eα(~p ′)Eα(~p)

×Zα(~p ′)Zα†(~p) 〈πα(~p ′)|Jµ(0)|πα(~p)〉 . (6.3)

For a pseudoscalar meson, the matrix element is described by a single form factor
Fπ(Q

2)

〈πα(~p ′)|Jµ(0)|πα(~p)〉 =
1

2
√

Eα(~p ′)Eα(~p)
[p′µ + pµ] F α

π (Q
2) , (6.4)

where again p and p′ label the incoming and outgoing momenta and Q2 =
−q2 is the space-like momentum transfer. We note that in this case the Sachs
decomposition GC(Q

2) and Fπ(Q
2) are equivalent so we choose to use the
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notation GC(Q
2) from here on. Substituting this expression into Eq. (6.3) and

substituting correlators into the ratio given by Eq.(4.16), we have

Rµ(~p ′, ~p;α) =
1

2
√

Eα(~p ′)Eα(~p)
[pµ + p′µ] Gα

C(Q
2) .

For this calculation we choose to work with the following kinematics

p′ = (Eα, px, 0, 0) and p = (mα, 0, 0, 0) ,

where Eα =
√

m2
α + p2x. Thus the required expression through which we access

the Sachs charge form factor for a pseudoscalar meson is

Gα
C(Q

2) =
2
√
mα Eα

Eα +mα

R0(~px, 0;α) . (6.5)

In the case of the vector meson, the situation is somewhat more complicated
due to the meson’s spin. In order to correctly describe the operator overlap for
this state we must include a spin polarisation vector

〈Ω|φα,~pσ (0)|ρβ(~p, s)〉 =
δαβ

√

2Eα(~p)
Zα(~p) ǫασ(p, s) , (6.6)

where the polarisation vectors satisfy the spin sum relation

∑

s

ǫασ(p, s) ǫ
α
τ
∗(p, s) = −

(

gστ −
pσ pτ
m2
α

)

. (6.7)

An important feature of Eq. (6.6) that warrants further discussion is the presence
of the Lorentz index, σ. It is not surprising that in order to correctly describe
the Lorentz covariance properties of the vector meson, we require operators that
in themselves transform as vectors. Accordingly we generalise the variational
problem by assigning eigenvectors to each Lorentz component and forming the
optimised operators as

φασ(x) =
∑

i

vασ,i χσ,i(x), φ̄ατ (x) =
∑

j

χ̄τ,j(x) u
α
τ,j .

We then solve Eqs. (4.20a) and (4.20b) for each Lorentz component separately
such that the resulting operators maximally isolate the spectrum observed in each
Lorentz component1. We can then obtain the projected correlators by projecting
with the relevant eigenvectors where care is taken to ensure that one uses the
correct momentum and now Lorentz component for both source and sink,

Gστ (~p, t2;α) ≡ vασ,i(~p)Gστ,ij(~p, t2) u
α
τ,j(~p) ,

(GO)στ (~p
′, ~p, t2, t1;α) ≡ vασ,i(~p

′) (GO)στ,ij(~p
′, ~p, t2, t1) u

α
τ,j(~p) .

1We note that to account for spectral non-degeneracies induced by the finite volume of the
lattice, a different approach is required.
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Making use Eqs. (6.6) and (6.7), the vector meson two-point function reduces to

Gστ (~p, t2;α) = −
e−Eα(~p) t2

2Eα(~p)
Zα(~p)Zα†(~p)

(

gστ −
pσ pτ
m2
α

)

, (6.8)

and the three-point function

Gµ
στ (~p

′, ~p, t2, t1;α) =
e−Eα(~p ′) (t2−t1) e−Eα(~p) t1

2
√

Eα(~p ′)Eα(~p)
Zα(~p ′)Zα†(~p)

×ǫ′ασ (p′, s′) 〈ρα(~p ′, s′)|Jµ(0)|ρα(~p, s)〉 ǫατ ∗(p, s) . (6.9)

In order to reduce this further, we require an expression for the matrix element.
For a spin-1 system coupled to a vector current, one finds that the matrix element
can described entirely by three independent vertex functions Gi(Q

2) [98–100]

〈ρα(~p ′, s′)|Jµ|ρα(~p, s)〉 =
1

2
√

Eα(~p)Eα(~p ′)
ǫ′αδ

∗(p′, s′) Γδµγ(p′, p) ǫαγ (p, s) (6.10)

where

Γδµγ(p′, p) = −{gδγ [pµ + p′µ]G1(Q
2) + [gγµ qδ − gδµ qγ]G2(Q

2)

−qδ qγ p
µ + p′µ

2m2
α

G3(Q
2)} . (6.11)

Taking the appropriate linear combination of these vertex functions, gives the
Sachs decomposition [99, 100]

GQ(Q
2) = G1(Q

2)−G2(Q
2) +

(

1 +
Q2

4m2
α

)

G3(Q
2) ,

GM(Q2) = G2(Q
2) ,

GC(Q
2) = G1(Q

2) +
2

3

Q2

4m2
α

GQ(Q
2) .

Replacing the matrix element in Eq. (6.9) with the above expression and
applying the spin-sum identity, the three-point function reduces to

Gµ
στ (~p

′, ~p, t2, t1;α) =
e−Eα(~p ′) (t2−t1) e−Eα(~p) t1

4Eα(~p ′)Eα(~p)
Zα(~p ′)Zα†(~p)Aσµτ (~p ′, ~p) (6.12)

where we have grouped all covariant indices into a single term

Aσµτ (~p ′, ~p) =

(

gσδ −
p′σ p

′
δ

m2
α

)

Γδµγ(p′, p)

(

gγτ −
pγ pτ
m2
α

)

.

We note that the placement of indices is for clarity and does not denote the
covariance and contravariance of the associated quantity. Substituting our
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expressions for the two- and three-point correlators into Eq. (4.16) and making
use of the symmetry property Aσµτ (~p ′, ~p) = Aτµσ(~p, ~p ′) we obtain

Rσ
µ
τ (~p

′, ~p;α) =
1

2
√

Eα(~p ′)Eα(~p)

(

p′σ p
′
σ

m2
α

− gσσ
)−1/2 (

pτ pτ
m2
α

− gττ
)−1/2

Aσµτ (~p ′, ~p) .

Given our choice of kinematics, one can show that the Sachs form factors can be
accessed through the following terms

A1
0
1(~px, 0) =

E

m

(

(E +m)GC(Q
2) +

2

3

p2x
m
GQ(Q

2)

)

,

A2
0
2(~px, 0) = A3

0
3(~px, 0) =

(

(E +m)GC(Q
2)− 1

3

p2x
m
GQ(Q

2)

)

,

A1
3
3(~px, 0) = −

E

m
pxGM(Q2) ,

A3
3
1(~px, 0) = +pxGM(Q2) .

As such, we isolate the form factors through the following combination of ratio
terms

Gα
C(Q

2) =
2

3

√
Eαmα

Eα +mα

(

R1
0
1(~px, 0;α) +R2

0
2(~px, 0;α) +R3

0
3(~px, 0;α)

)

, (6.13)

Gα
M(Q2) =

√
Eαmα

px

(

R3
3
1(~px, 0;α)− R1

3
3(~px, 0;α)

)

, (6.14)

Gα
Q(Q

2) =
mα

√
Eαmα

p2x

(

2R1
0
1(~px, 0;α)−R2

0
2(~px, 0;α)−R3

0
3(~px, 0;α)

)

. (6.15)

6.1.1 Extracting Static Quantities

The Sachs form factors GC , GM and GQ describe the distribution of charge,
magnetism and charge asymmetry within the hadron. In particular, the value of
these functions at Q2 = 0 define the hadron’s total charge, q, magnetic moment,
µ, and quadrupole moment, Q,

q = eGC(0) , (6.16a)

µ =
e

2m
GM(0) , (6.16b)

Q =
e

m2
GQ(0) , (6.16c)

where m is the mass of the hadron. For many quantities, such as the magnetic
form factor, it is not possible to access Q2 = 0 directly and so in order to obtain
values for these moments, one must perform an extrapolation inQ2. Use of fixed-
current SST-propagators allows us to explore the form factors of many different
hadrons using the same set of propagators. However we are limited to a single
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value of 3-momentum transfer and consequently a singleQ2 for each quark mass.
Motivated by the observed scaling behaviour for GE and GM of the proton at
low Q2 [101, 102], we shall assume the meson sector displays similar scaling
within each quark sector and thus use this to extract a value for magnetic and
quadrupole moments

Gi(Q
2 = 0) =

Gi(Q
2)

GC(Q2)
, (6.17)

so as to facilitate a comparison with the experimental prediction of [92] and
model expectations.

For the mean squared charge radius, we use the standard definition from the
small Q2 expansion of the Fourier transform of the charge distribution

〈r2〉 = −6 d

dQ2
GC(Q

2)
∣

∣

Q2=0
. (6.18)

Using a monopole ansatz

GC(Q
2) =

(

Λ2

Λ2 +Q2

)

GC(Q
2 = 0) , (6.19)

as suggested by the Vector Meson Dominance hypothesis, we have

〈r2〉 = 6

Q2

(

1

GC(Q2)
− 1

)

. (6.20)

6.2 Calculation Details

Here we shall consider all the available masses that comprise the PACS-CS
configurations [24]. As was mentioned in Section 5.1, there are five values for
the light quark masses with the resulting pion masses ranging from 702 MeV
down to 156 MeV. The hopping parameters κud, pion masses and the number of
configurations for each quark mass are listed in Table. 6.1. Due to the limited
number of available configurations for the lightest masses, we make use of
multiple sources on each configuration. For the lightest mass, this is achieved by
using two maximally separated spatial sources with relative temporal boundary
shift of 8 time slices. The temporal boundary is then shifted by multiples of
16 times slices for each spatial source. This results in a total of 8 sources per
configuration for this mass. For the second and third lightest masses we make
use of a single spatial source and perform a single shift of 32 time slices resulting
in a total of 2 sources per configuration.

The fermion source is inserted at t0 = 16 relative to a fixed boundary condition
at t = 0 and the current at t1 = 21. Here we use an O(a)-improved conserved
vector current as described in Section 3.4.2. For the current 3-momentum, ~q,
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Table 6.1: Summary of the configuration details.

κud mπ (MeV) Ncfg Nsrc

0.13700 702 350 350
0.13727 570 350 350
0.13754 411 350 700
0.13770 296 350 700
0.13781 156 197 ∼ 1600

we use the smallest non-zero momentum available, |~q| = 2π
L

oriented in the x-
direction. The current is polarized with µ = 3, 4 as required by Eqs. (6.5) and
(6.13)–(6.15). As was highlighted in Section 4.3, our choice of correlation function
ratio requires the evaluation of both +~q and−~q, however both are required if one
wishes to use U∗-trick as we will here.

As the primary goal of this work is to cleanly extract matrix elements of the
ground state, we use a small variational basis. For our interpolators, we use with
the following spin-flavour structures

χπ(x) = d(x)γ5u(x) ,

χρ(x) = d(x)γiu(x) ,

for the π+ and ρ+ meson respectively. Our basis is composed of smeared
operators formed using these interpolating structures with the four smearing
widths outlined in Table. 5.1. This allows for the construction of up to a 4 ×
4 correlation matrix. The use of the alternate bilinear forms γ0γ5 and γ0γi was
considered, however these were found to not provide any additional basis span
when used with more than two smearing levels. We considered all combinations
of variational parameters t0 and δt in range 17-20 and 1-4 respectively where
a superposition of states can be used to constrain the analysis. With regard to
state isolation and the stability of the analysis, the optimal choice was found to
be t0 = 17 and δt = 3 for the three heavier masses and t0 = 17 and δt = 2
for the two remaining lighter masses. The use of an earlier t0 value relative to
baryon studies [87, 103, 104] on the same ensembles is to be expected given the
larger energy gaps displayed between the ground state and first excitation in the
meson sector. Eigenvectors are tracked across quark mass and momentum using
the methods outlined in Section 4.4.2. Of particular importance is the need to
maintain consistent orientation between bases of different momenta. In forming
an orthonormal basis, one has the freedom to choose the orientation of vectors.
In constructing the eigenstate projected three-point correlation, if bases are not
aligned consistently, it is possible to introduce a relative sign into the correlator
and consequently lead to erroneous results.
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6.3 Results

6.3.1 Light Isovector Meson Spectrum

We begin the discussion of results with an examination of the spectra obtained
in our variational analysis. In Figs. 6.1 and 6.2 we display the resulting spectrum
below 3 GeV in the isovector 0−+ and 1−− channels, obtained from our 4 × 4
correlation matrix. Within these figures we also include the experimentally
observed states in the respective channels. These states were taken from the
summary tables prepared by the Particle Data Group (PDG) [105].

Within the pion channel we find three well separated eigenstates, consistent
with the spectrum obtained in previous studies which examined the entire
isovector meson sector [50, 106, 107]. At the lightest mass we find that our
states are or are very nearly consistent with the those of the physical spectrum.
In particular, our first excitation is consistent with the π(1300). Reading the
spectrum from right to left, we see a significant increase in the mass for the
first excitation at the second lightest quark mass and a similar increase for the
second excited state at the middle mass. This feature is observed across the range
of variational parameters considered and corresponding 3 × 3 analyses formed
from subsets of the variational basis. A similar feature is observed in the positive
parity spectrum of the nucleon [64, 87] using the same ensembles. Examination
of the wave functions for these nucleon excitations [63] show significant finite
volume effects for the lightest two masses which consequently may lead to an
increase in the eigenstate energy. It is certainly possible that we are observing a
similar effect here.

In the ρ meson channel, we again observe three well separated eigenstates.
However, in this channel we expect to see two eigenstates near 1600 MeV
separated by about 250 MeV. As the mass gap between our first and second
excitation is of the order of 1 GeV, our results strongly suggest that a basis
of local operators is not able to isolate both of these eigenstates. A similar
conclusion was found in Ref. [106]. In a subsequent study by this group [107],
they found that isolation of the ρ(1450) required a basis that contained displaced,
derivative operators. Within the constituent quark model, these two states are
identified as an S-wave dominant state and a D-wave dominant state [105].
Given the radial symmetry of our operators, it is not possible to form D-wave
orbital structures and so it is not surprising that we are unable to isolate both
eigenstates. Interestingly, the close agreement of our first excited state with
the physical ρ(1700) energy and the absence of the ρ(1450) from our spectrum
suggests that the ρ(1700) is the S-wave state while the ρ(1450) is the D-wave
state. Within [61], Dudek et al. were able to successfully isolate both of these
states. Their pion masses range from 702–396 MeV, which are comparable with
our three heaviest masses. Through considerations of the operator overlaps, they
show the S-wave dominated state to be the lighter of the two states for their
heavier quark masses. However it appears that with decreasing quark mass the
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Figure 6.1: Spectrum observed in the isovector, pseudoscalar (0−+) channel. The
light blue data points at the far left are the experimentally observed states, taken
from the PDG summary tables [105].
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Figure 6.2: Spectrum observed in the isovector, vector meson (1−−) channel. The
light blue data points at the far left are the experimentally observed states, taken
from the PDG summary tables [105].
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mass splitting between these two states became smaller, with the states nearly
degenerate at their lightest mass of mπ = 396 MeV. A continuation of this trend
to lighter quark masses would place the D-wave dominated state lower in mass.
While this is an interesting possibility, we note that the eigenstates energies can
depend heavily on the volume through the relative evolution of the allowed
multi-particle dressings. Consequently if this ordering were to exist on the finite
volume, there is no guarantee that it will remain in the infinite volume limit.

An important feature in the QCD spectrum is the possibility of multi-particle
intermediate states. In the infinite-volume limit this renders the majority of
hadrons unstable under the strong interaction. However on the finite-volume
lattice, the QCD eigenstates are stable and are composed of admixtures of both
single-particle and multi-particle states. Some insight into the composition
of states can be taken from the physical spectrum and scattering thresholds.
However, the position of these thresholds change on the finite volume. Multi-
particle states are forced to overlap in the finite volume, giving rise to a volume-
dependent interaction energy. Mixing with single-particle dominated states
further distorts the spectrum to the point where intuition from infinite-volume
scattering thresholds and the physical spectrum becomes irrelevant, particularly
in volumes with lattice length L ∼ 3 fm.

Below the finite-volume modified two-particle scattering threshold, states
are generally single-particle dominated but still contain important contributions
from nearby scattering channels. The position of states in the spectrum can
be changed by varying the quark mass or the volume of the lattice and the
eigenstates can become maximally mixed making their traditional identification
as scattering states or resonant states impossible. In the case where a low-lying
finite-volume scattering threshold sits well below the resonant state, then the
lowest-lying state may be regarded as a two- or multi-particle scattering state
and the single-particle dominated state is now the higher eigenstate.

In the case of the states under study here, particularly the ground state ρ
meson, we must be careful to ensure that the state we are exciting on the lattice
is in fact the single-particle dominated resonant state. Though there is strong
evidence to suggest that local meson operators couple poorly to scattering states
[49, 50], especially on larger volumes such as that under investigation here, we
perform a check to determine whether the eigenstate isolated in our correlation-
matrix analysis is single particle in nature. For all our ensembles, the ground
state ρ meson at rest is well below the ππ threshold, and will be single-particle
dominated. However, upon applying the boost to momentum ~q, the extracted
energy eigenstate on the three lightest ensembles now sits above the lowest-
lying bare ππ energy allowed by momentum conservation. In order to determine
whether the state we have isolated in the boosted case is the finite-volume ρ
meson or the lower-lying ππ scattering state, we compare the extracted eigenstate
energy against the expected energy given by the dispersion relation for a single
particle.
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In Figs. 6.3 and 6.4 we show the π and ρ energies extracted from the finite-
momentum correlators for a range of momenta, overlaid with the dispersion
relation2 expectation for a single particle

E =
√

m2 + np|~q|2 where n2
p = n2

x + n2
y + n2

z ,

and m is the energy extracted with np = 0. Here we can see that the energies
extracted from the boosted correlator are in excellent agreement with dispersion
for small boosts, particularly for np = 1 required for our form factor analysis.
For the larger momenta considered there does appear to be a slight discrepancy
between the dispersion expectation and extracted energy, especially for those
masses near or above threshold, however as we only use a small subset of
the available momentum orientations this deviation may be due to a lack of
statistics. To make a firm statement, one should average over all possibly allowed
momentum orientations for a given np. As we are only really interested in the
np = 1 case we shall not do so here.

As a further check for the ρ meson, we compare our extracted energies with
the non-interacting ππ energies allowed by momentum and parity conservation,
represented in Fig. 6.4 by the red diamonds. For the single unit of lattice
momentum relevant to our form factor analysis, we find that the mass separation
between the dispersion result and the non-interacting ππ energy is significant
for all but the middle mass. Moreover, the attractive finite-volume interaction
in the ππ system would act to further increase the separation between the single
and multi-particle dominated states. As a matter of principle, we do expect a ππ
scattering state to reveal itself in the long Euclidean-time tail of our correlation
function. However, our interpolating fields have rendered this contribution to
be negligible at the finite-Euclidean times considered. This indicates that our
correlation functions are indeed dominated by the resonant-like state of interest
and not the lower-lying finite volume scattering state. Through this process we
have determined that the state we have isolated in the boosted system is in fact
the state most closely related to the resonant ρ meson.

Similar considerations are given to our excited states. As these states have
much larger masses, the correlator decreases more rapidly leading to earlier loss
of signal. As such, any weakly coupled states can dominate the correlator at large
Euclidean times [52]. Care must therefore be taken to ensure that we are probing
the single particle excitation within the required Euclidean time window. To do so
we consider the behaviour of our projected two-point correlator by considering
where log(G) displays linear behaviour. In Fig. 6.5, we demonstrate this for
the projected correlator of the π∗ meson. Guided by the χ2

dof we identify linear
behaviour between times t = 19− 26, highlighted by solid line indicating the fit.
Extending this dashed line to both earlier and later times show that outside of this

2For the momentum we are considering in this calculation, sin(apµ) ≃ apµ and so the
continuum dispersion relation is sufficient.
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Figure 6.3: Extracted eigenstate energies for the ground state π meson against
the single particle dispersion expectation. The bottom axis is the centre-of-mass
momentum in units of the minimum available momentum 2π

L
. The direction of

decreasing quark mass is from left to right and down the page.
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Figure 6.4: Comparison between the dispersion relation (blue line), and the
energies extracted from the finite-momentum projected correlators ( ) for the ρ
meson over a range of momenta. The red diamonds ( ) are the corresponding
non-interacting ππ-energies allowed by momentum conservation. The bottom
axis is the centre-of-mass momentum in units of the minimum available momen-
tum 2π

L
. The direction of decreasing quark mass is from left to right and down the

page.
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Figure 6.5: log(G) for the projected correlator of the π∗ meson at mπ = 702 MeV.
The solid line is the best fit highlighting the linear behaviour of the correlator
indicating single state isolation. In order to examine the form factors for the
excited states, we require single state isolation prior to the current at t1 = 21.

window, the correlator is no longer consistent with the single particle hypothesis
and so such times should not be considered in the analysis of the form factor
ratios. We examine both the correlators for the state at rest and boosted to ~q,
taking the earliest time for which single state dominance is no longer observed
as the limit for allowable fit windows of the form factor ratio. We further note
the single state must necessarily be observed before the insertion of the current to
ensure that we are sampling a single state only. For those cases where either
single state dominance is observed after t = 21, or loss of single eigenstate
dominance occurs before t = 22, we do not examine the form factor as we are
not probing the state in question. We also compare the masses extracted from the
correlator fits to the dispersion relation. These are shown in Figs. 6.6 and 6.7 for
the π∗ and ρ∗ respectively. Here we find that for both states, all energies extracted
for np = 1 are consistent within errors with dispersion expectation.
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Figure 6.6: Extracted eigenstate energies for the first π∗ meson against the single
particle dispersion expectation. The bottom axis is the centre-of-mass momentum
in units of the minimum available momentum 2π

L
. The direction of decreasing

quark mass is from left to right and down the page.
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Figure 6.7: Extracted eigenstate energies for the first ρ∗ meson against the single
particle dispersion expectation. The bottom axis is the centre-of-mass momentum
in units of the minimum available momentum 2π

L
. The direction of decreasing

quark mass is from left to right and down the page.
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6.3.2 Improved Excited State Systematics

As we saw in the previous chapter, use of the optimised operators obtained via
the correlation matrix analysis gave rise to significant improvement in the quality
and duration of the plateaus from which the matrix elements are extracted.
Before we examine the form factors, we shall first consider whether similar
improvement is observed here. In Fig. 6.8 we compare the ratio for the charge,
magnetic and quadrupole form factor of the ground state ρ extracted using the
variational method and using standard single correlator techniques utilising a
modest level of smearing at the source and sink.

The improvement observed in the magnetic form factor (Fig. 6.8(b)) is by far
the most striking. Here there is a clear difference in the quality of the plateau.
For the correlation matrix, single-state dominance follows immediately after the
current at t1 = 21 allowing for fits as early as t2 = 22. For the standard approach,
the excited states act to suppress the value of GM at earlier times forcing one to
wait until at least t2 = 24 before an adequate χ2

dof is obtained. However for the
standard method, the central values show a systematic upward trend following
this time slice and consequently the is no clear indication that a plateau has been
obtained. Similar conclusions can be drawn for the quadrupole form factor in
(Fig. 6.8(c)). Here we find that both the correlation matrix and the standard
approach give consistent values immediately following the current, but diverge
as we move out to later time-slices. Again there is a clear systematic drift in the
results obtained using the standard approach and it would be difficult to select
a fit region where the form factor can be determined with confidence. Given
that we seek a region where the extracted form factor is constant over successive
time slices, both cases demonstrate improvement through use of the variational
method. In the case of the charge form factor (Fig. 6.8(a)) the two methods are
in closer agreement and display a similar quality in plateau. In either case, some
Euclidean time evolution is required before a plateau is observed, but we find that
the correlation matrix approach gives a systematically lower value following the
current and plateaus a couple of time-slices earlier than the standard approach.
Similar results are observed for the charge form factor of the ground state pion.

Though the examples presented here have been selected to highlight the
improvement using the variational method, we see significant improvement
across all masses and form factors considered. It is clear that through this method
we are able to:

(1) Isolate an eigenstate at earlier Euclidean times,

(2) Insert the conserved vector current at earlier Euclidean times,

(3) Fit the correlation function at earlier Euclidean times,

(4) Observe robust plateau behaviour,

(5) Identify large Euclidean-time fit windows,
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Figure 6.8: Comparison of the ρ meson form factors as a function of Euclidean
sink time using the correlation matrix method ( ) and the standard single
correlator methods with smeared source and sink ( ). For each figure we have
selected the quark mass that best demonstrates the improvement offered in each
channel. The upper figure is the charge form factor GC for mπ = 296 MeV, the
centre figure is the magnetic form factor GM for mπ = 156 MeV and finally the
lower figure is the quadrupole form factor GQ for mπ = 296 MeV. The vertical
dashed line indicates the position of the current insertion. The fitted value from
the variational approach has been included (shaded band) to highlight where the
single source approach is consistent with our improved method.
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(6) Determine the form factors with significantly reduced
systematic errors, and

(7) Determine the form factors with significantly reduced
statistical uncertainties due to the admission of analysis
at earlier Euclidean times.

6.3.3 Form Factor Results

In extracting form factors across a wide range of quark masses, it is important
to note that for each mass there will be a slight change in the value of Q2 due
to the variation in the temporal component of the current four-momentum, q0,
stemming from the change in the hadron’s mass. To ensure that the comparison
between quark masses and furthermore eigenstates, is meaningful, we make use
of the monopole ansatz to shift the extracted values for our form factors to a
common Q2. For the pion system, we shift Q2 values to a common value of Q2 =
0.10 GeV2, while for the ρ meson system we select Q2 = 0.16 GeV2. These values
are selected to minimise the shift for the form factor extractions at the lightest
quark mass. We use different values to ensure that we minimise the shift for each
system and given that the pion is significantly lighter than the ρ meson, a smaller
value for Q2 arises naturally. Fig. 6.9 demonstrates this shift for the pion.

Before we examine our form factor results, we note that all quantities pre-
sented are the quark sector contributions for unit-charge quarks. Here we choose
to label these as the quark sector contributions to the positive-charge eigenstate
of the corresponding isotriplet. That is, the quark contribution is labelled as
the u-quark sector while the anti-quark contribution is labelled as the d-quark
sector. Working with exact isospin symmetry, these quark sector contributions
are equivalent and so we need only present the u-quark sector. In the case of
meson elastic electromagnetic form factors, the invariance of the QCD action
under charge conjugation forces disconnected contributions to be zero [45, 108].
This is because the “C-even” two-point function and the “C-odd” disconnected
loop term give rise to a relative sign between the {U} and {U∗} configurations
and so cancel exactly [45] in the ensemble average. Consequently in taking the
charge weighted sum to give the meson form factor one finds that it is equivalent
to the quark contribution

〈1+〉 =
2

3
〈u〉+ 1

3
〈d〉

= 〈u〉 ,

where 〈1+〉 labels the positive member of the π and ρ meson isotriplets.

The Euclidean time-series data for all of our form factors, and the subsequent
fits can be found in Appendix B. Here we shall simply present our extracted
results.
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Figure 6.9: An example of the shift applied to the pion form factor to ensure that
all eigenstates across all quark masses are at a common Q2. For the pion and its
excitation, this shift is to Q2 = 0.10 GeV2, while for the ρ meson and its excitation
we shift to Q2 = 0.16 GeV2.

Charge Form Factor

In Figs. 6.10 and 6.11 we display the charge form factor GC for the π and π∗

mesons, and the ρ and ρ∗ mesons respectively. In both channels we observe a
decrease in the charge form factor for the excitation which translates to the excited
states having a larger spatial extent. We note that for the excited pion, single state
dominance was not achieved after t = 21 for the lightest two masses and so not
considered.

To give us insight into the relative size of these states, we consider the mean
squared charge radii, shown in Fig. 6.12. As was found in [56], the ground
state vector meson is consistently larger than the corresponding pseudoscalar
meson. This observation is consistent with constituent quark model expectations

where a hyperfine interaction of the form ~σq·~σq̄
mqmq̄

acts to repel the quarks when

spins are aligned and attract them when spins are anti-aligned. For the heaviest
quark masses where well determined values are available for the excited states,
it appears that a similar trend may exist between our ρ∗ and π∗ mesons. As
was noted directly from the form factor itself, we see that the excited states are
larger in extent through the larger value obtained for 〈r2〉. Again appealing
to constituent quark model arguments, one would naively expect that quarks
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Figure 6.10: The unit-charge quark sector contributions to the charge form factor
GC of the pion ( ) and its first excitation ( ) at the common valueQ2 = 0.10 GeV2.
The dashed line represents the physical point.
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Figure 6.11: The unit-charge quark sector contributions to the charge form factor
GC of the ρ meson ( ) and its first excitation ( ) at Q2 = 0.16 GeV2. The dashed
line represents the physical point.
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Figure 6.12: Mean squared charge radii, 〈r2〉, for the positive-charge states of
the π ( ), π∗ ( ), ρ ( ) and ρ∗ ( ) mesons. The grey dashed line represents the
physical point, while the light blue data point ( ) is the experimental value for
the pion obtained from the PDG summary tables [105]. The π∗ and ρ∗ values have
been offset for clarity.

residing in a more energetic state can carry larger energies and therefore sit higher
in the confining Coulomb + ramp potential, giving rise to a larger radius. In
Fig. 6.12 we also include the experimental value for the pion radius [105], which
compares well with our determination.

Magnetic Form Factor

The magnetic form factors for our ρ and ρ∗ mesons are illustrated in Fig. 6.13.
We note that at the lightest mass, the plateau for the first excitation was of
insufficient duration to allow for a fit and so no value is given. For both the
ground and excited state we observe very little variation in the value as we vary
mπ. Comparing the results between states, we clearly observe a significantly
smaller value for the excitation at this value of Q2. Though we would expect
a decrease consistent with the decrease in the charge form factor for this state,
the degree of suppression suggests that the magnetic moment for this state is
smaller than the ground state. In Fig. 6.14, we show the magnetic moments for
these states where we invoke common scaling between the charge and magnetic
form factors as discussed in Section 6.1. Here we do find a smaller magnetic
moment for the ρ∗. This observation is consistent with the magnetic moments
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Figure 6.13: The unit-charge quark sector contributions to the magnetic form
factor GM of the ρ meson ( ) and its first excitation ( ) at Q2 = 0.16 GeV2. The
dashed line represents the physical point.
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Figure 6.14: The quark-mass dependence of the ρ+ ( ) and ρ∗+ ( ) magnetic
moments in units of the nuclear magneton. The dashed line represents the
physical point.
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Figure 6.15: The g-factor of the ρ meson ( ) is provided by the magnetic moment
of the ρ meson in natural magnetons. The dashed line highlights the physical
point. The light blue data point ( ) is the experimental determination of Ref. [92].

extracted for excitations of the ρ meson obtained using a relativistic Hamiltonian
approach [109]. Here they obtain the following values for the 1S, 2S and 1D ρ
meson systems,

µ1S = 2.37 µN , µ2S = 1.71 µN , µ1D = 0.411 µN .

Our results compare well with this determination if we identify our ρ∗ as the S-
wave excitation. In particular, their value for µ2S

µ1S
≃ 0.7 is consistent with our

value of
µρ∗

µρ
= 0.74(9), taken for the second lightest mass.

In Fig. 6.15 we show the g-factor for the ρ meson, provided by the magnetic
moment of the ρ meson in natural magnetons. Constituent quark model
expectations suggest for a pure S-wave state that,

µρ+ = µu + µd̄
= qu µu + qd̄ µd

=
2

3

(

e

2mud

)

+
1

3

(

e

2mud

)

=
e

2mud
,

which taking mud ≃ mρ

2
gives,

µρ+ ≃ 2
e

2mρ
⇒ gρ ≃ 2 .
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Figure 6.16: The unit-charge quark sector contributions to the quadrupole form
factor GQ of the ρ meson at Q2 = 0.16 GeV2. The dashed line represents the
physical point.

Our result of gρ = 2.21(8), taken from our lightest mass point, is larger
than this expectation. A departure from gρ = 2 suggests that the ρ has a
non-trivial D-wave component which in turn should give rise to a non-trivial
value for the quadrupole moment induced by the asymmetry of the D-wave
orbital. We observe a mild downwards trend of the g-factor with increasing
quark mass suggesting that our results are compatible with the quark-model
expectation of gρ = 2 in the limit of large quark mass. These results agree
in value and behaviour with the previous quenched determination [56] and
dynamical study using background field methods [96]. In Fig. 6.15 we include
the experimental determination of Ref. [92]. Our result is in good agreement,
however with a much smaller uncertainty. Within the literature, the majority of
model calculations [110–116] give a value of gρ between 2.0 and 2.4, consistent
with our determination.

Quadrupole Form Factor

The quadrupole form factor for the ρ meson is shown in Fig. 6.16. For the excited
ρ∗ meson, the signal was too poor to extract a result. As was found in the
quenched study of Ref. [56] and the studies in full QCD [95, 97], the quadrupole
form factor is negative for low-moderate Q2. The value of GQ varies mildly
with mπ in the heavy quark regime, however displays a significant increase in
magnitude as we move to the lightest mass.
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Figure 6.17: The quark-mass dependence of the ρ meson quadrupole moment.
The blue circles ( ) are from the current analysis, while the red squares ( )
are the quenched results of Ref. [56]. The dashed line represents the physical
point. We see very similar behaviour between the results at the heavier masses.
However, at our lightest mass we observe a significant increase in the magnitude
of the quadrupole moment indicating a significant role of the pion cloud in the
underlying structure of the ρ meson.
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In Fig. 6.17 we illustrate the quark mass dependence of the quadrupole
moment. We also include the quadrupole moment extracted from the quenched
data of Ref. [56]. At heavier masses we find consistent values and see a slight
increase in the magnitude in the direction of decreasing quark mass. However,
we see a rapid increase in the magnitude at our lightest mass; the value nearly
doubles in comparison with the next lightest mass. This indicates the importance
of light-quark dynamics to the underlying structure of the ρ meson and suggests
significant contributions coming from the associated pion cloud. The dramatic
variation observed warrants further investigation into the chiral dynamics of
this quantity, especially into the role that finite volume effects may have on the
determination.

In Ref. [117], through considerations of the most general free Lagrangian for
a charged spin-1 system with minimal electromagnetic coupling, it was shown
that there exists an explicit degree of freedom in the Lagrangian which can
be parametrised by the g-factor. Consequently one finds that at tree-level the
quadrupole moment is Qρ = (1 − gρ) e/m2

ρ. With our value of gρ = 2.21(8),
the tree-level value for Qρ is −1.21(8) e/m2

ρ. To make contact with Ref. [117], we
can re-express our quadrupole moment in natural units of e/m2

ρ, where mρ is
the mass of the ρ meson observed on the lattice at each quark mass. Doing so
for our lightest quark mass we find Qρ = −0.733(99) e/m2

ρ indicating important
contributions beyond tree level, driven by the fundamental strong interactions of
QCD.

As was mentioned in the discussion of the ρ meson g-factor, from the
perspective of a non-relativistic quark model, the quadrupole moment arises
from an admixture of S and D-wave components in the wave function. Thus our
non-zero quadrupole moment, even at heavy masses, indicates an important D-
wave component to the ρ meson. In our discussion of the ρ meson spectrum we
noted that quark model expectations predict two excitations around 1600 GeV
with one state S-wave dominant and the other D-wave dominant. As the
quadrupole moment is a measure of the asymmetry of a state, we would expect
such states to have very different quadrupole moments. Therefore in a next-
generation calculation where excited-state signals are sufficiently precise, the
quadrupole moment could be used to determine the dominant contributions to
the ρ(1450) and ρ(1700) wave functions. Furthermore, it offers the ideal tag to
track these eigenstates with varying quark mass and in this way would allow
one to determine if there is a reordering of these states in the light quark regime.
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6.4 Summary

As we found in the previous chapter, the use of optimised interpolators obtained
from the variational approach results in a rapid isolation of the eigenstate,
enabling earlier insertion of the probing current. Optimised interpolators at the
sink result in a rapid onset of robust plateau behaviour enabling early and large
Euclidean-time fit windows. Together these features act to reduce systematic
errors through the suppression of excited state contaminations and reduce
statistical uncertainties through the ability to insert the current and establish fit
windows earlier in Euclidean time. This approach, coupled with the large lattice
volume and light quark masses, has resulted in an accurate determination of the
π and ρ meson electromagnetic form factors at low Q2.

Our light quark-mass determination of the ρ meson g-factor, gρ = 2.21(8),
compares well with the experimental result of Ref. [92], but with significantly
smaller uncertainty. This value is consistent with earlier lattice and model
evaluations, which collectively prefer a g-factor slightly larger than the simple
quark model estimate of 2. As was found in the quenched calculation of
Ref. [56], we obtain a negative value for the quadrupole form factor. The onset
of significant chiral non-analytic behaviour in the light quark-mass regime is also
observed.

Finally we have for the first time measured the electromagnetic form factors
for a light meson excitation. We find that the charge form factors for these states
are smaller than their ground state counterparts, consistent with expectations that
these states should be larger in size. For the ρ∗ meson, we observed a significantly
smaller value for the magnetic form factor and a smaller magnetic moment. Our
observation of µρ∗/µρ = 0.74(9) supports the model prediction of Ref. [109].



Chapter 7

Meson Transitions on the Lattice

The content of this chapter is based on the paper: ”Transition of ρ→ πγ in Lattice QCD”
by B. J. Owen et al., arXiv:1505.02876 [hep-lat].

So far we have examined how the variational approach can be utilised in the
evaluation of elastic form factors where the incoming and outgoing hadron
are the same. Though such quantities can provide valuable insight into the
structure of these states on a finite volume, their meaning and interpretation
in the infinite volume becomes less intuitive as these states become resonances
[118, 119]. Furthermore, the systematics required to measure the elastic form
factors for unstable particles renders direct experimental determination difficult.
What can be determined experimentally are transition form factors where the
current transforms an incoming state, i.e. some stable particle, into an outgoing
state, the unstable state under consideration. By examining the decay products,
one is able to extract the relevant form factor describing the production, or decay,
of a resonance. Therefore, we now consider how the variational approach can
be utilised for the evaluation of transition form factors. In particular, we shall
evaluate the transition form factor relevant to the radiative decay of the ρ meson
into a pion.

7.1 Variational Methods for Transitions Elements

As was noted at the end of Section 4.4, to obtain the three-point correlation

functions for transitions of the form α
O→ β, one simply projects the relevant

eigenvectors for eigenstates α and β at the source and sink respectively

GO(~p
′, ~p, t2, t1;α→ β) ≡ vβi (~p

′) (GO)ij(~p
′, ~p, t2, t1) u

α
j (~p) .

In the case where α and β have the same JPC , it is a simple matter of projecting
onto the same matrix of three-point correlators used in the evaluation of the
elastic form factors. In general however, α and β need not have the same
quantum numbers. Here one must instead consider the three-point correlation
function evaluated between source and sink interpolators of differing quantum
numbers

Ga→b
O (~p ′, ~p, t2, t1) =

∑

~x2,~x1

e−i~p
′·~x2 ei(~p

′−~p)·~x1 〈Ω|χb(x2)O(x1) χ̄a(0)|Ω〉 , (7.1)
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with a and b labelling the different JPC . To obtain the projected correlators for

the transition α, a
O→ β, b, we must now work with two variational bases

{χai | i = 1, . . . , na} ,
{χbi | i = 1, . . . , nb} ,

one for each of the states involved. By solving the eigenvalue problem on each
basis separately, we obtain two sets of eigenvectors giving rise to optimised
operators for each JPC

φαa (x) =
∑

i

(va)
α
i χ

a
i (x), φ̄αa (x) =

∑

j

χ̄aj (x) (ua)
α
j ,

φβb (x) =
∑

i

(vb)
β
i χ

b
i(x), φ̄βb (x) =

∑

j

χ̄bj(x) (ub)
β
j .

We then access the desired three-point correlator for the transition in question by
projecting the relevant eigenvectors for source and sink, taken from the relevant
bases, onto the na × nb matrix of three point correlators formed between bases

GO(~p
′, ~p, t2, t1;α→ β) ≡ (vb)

β
i (~p

′) (Ga→b
O )ij(~p

′, ~p, t2, t1) (ua)
α
j (~p) .

Having obtained the projected correlators, isolation of the transition form factors
in question is achieved through construction of a suitable ratio, appropriately
generalised for transitions. The ratio we work with is one such generalisation of
Eq. (4.16)

R(p′, p;α→ β) =

√

〈G(~p ′, ~p, t2, t1;α→ β)〉 〈G(~p, ~p ′, t2, t1; β → α)〉
〈G(~p ′, t2; β)〉 〈G(~p, t2;α)〉

. (7.2)

7.2 The Pseudoscalar–Vector Transition

A complete description of the radiative transition between a vector and pseu-
doscalar meson requires only a single form factor. Expressing the vertex in terms
of multipole moments, this form factor is identified as a magnetic dipole (M1)
transition moment. We therefore choose to label this form factor as GM1(Q

2). For
our calculation, we shall use the vertex normalisation of Woloshyn [120]

〈πα(~p)|Jµ(0)|ρβ(~p ′, s′)〉 =
1

2
√

Eπα(~p)Eρβ(~p
′)

(−ie
mρβ

)

GM1(Q
2) εµδστ p′δ pσ ǫ

β
τ (p

′, s′) , (7.3)

where ǫβτ (p
′, s′) is again a spin-polarisation vector specifying orientation of the ρ

meson spin. The corresponding time reversed vertex can be obtained by taking
the Hermitian conjugate.
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To make contact with the above matrix element, we again begin with the
necessary three-point correlation function

(Gρ→π)
µ
ν (~p, ~p

′, t2, t1; β → α) =
∑

~x2,~x1

e−i~p·(~x2−~x1) e−i~p
′·~x1

× 〈Ω| φα,~pπ (x2) J
µ(x1)φ

β,~p ′

ρ,ν
†(0) |Ω〉 .

Applying the completeness identity between the operators gives

(Gρ→π)
µ
ν(~p, ~p

′, t2, t1; β → α) =
∑

s′

e−Eπα (~p) (t2−t1) e−Eρβ
(~p ′) t1

2
√

Eρβ(~p
′)Eπα(~p)

×〈Ω|φα,~pπ (0)|πα(~p)〉 〈πα(~p)|Jµ(0)|ρβ(~p ′, s′)〉 〈ρβ(~p ′, s′)|φβ,~p ′

ρ,ν
†(0)|Ω〉 .

Making use of the pseudoscalar and vector operator overlaps, given by Eqs. (6.1)
and (6.6), as well as the vertex definition above, reduces this to

(Gρ→π)
µ
ν(~p, ~p

′, t2, t1; β → α) =
e−Eπα(~p) (t2−t1) e−Eρβ

(~p ′) t1

4Eρβ(~p
′)Eπα(~p)

Zαπ (~p)Zβρ †(~p ′)

×
(

∑

s′

ǫβν (p
′, s′) ǫβτ

∗(p′, s′)

)

(−ie
mρβ

GM1(Q
2) ǫµδστ p′δ pσ

)

.

Finally, we replace the spin-sum using Eq. (6.7)

∑

s′

ǫν(p
′, s′) ǫ∗τ (p

′, s′) = −
(

gντ −
p′ν p

′
τ

m2

)

,

and by noting that the second term does not contribute with p′δ due to the anti-
symmetric properties of the Levi-Civita, we arrive at the general expression
describing how the form factor GM1(Q

2) is encoded within the three-point
function

(Gρ→π)
µ
ν(~p, ~p

′, t2, t1; β → α) =
e−Eπα (~p) (t2−t1) e−Eρβ

(~p ′) t1

4Eρβ(~p
′)Eπα(~p)

×Zαπ (~p)Zβρ †(~p ′)

(−ie
mρβ

GM1(Q
2) ǫµδσν p

′
δ pσ

)

.

Performing the same procedure on the time-reversed process gives us the
corresponding expression

(Gπ→ρ)
µ
ν(~p

′, ~p, t2, t1;α→ β) =
e−Eρβ

(~p ′) (t2−t1) e−Eπα(~p) t1

4Eρβ(~p
′)Eπα(~p)

×Zβρ (~p ′)Zαπ †(~p)

(

+ie

mρβ

GM1(Q
2) ǫµδσν p

′
δ pσ

)

.
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In order to form the ratio, we require the π and ρ meson two-point correlation
functions. These correlators were considered in Section 6.1 with the reduced
expressions given by Eqs. (6.2) and (6.8) respectively. Substituting the expressions
for the two- and three-point correlators into Eq. (7.2), we arrive at the expression
that directly relates the ratio to GM1(Q

2)

Rµ
ν ρ→π(p

′, p; β → α) =
e ǫµδσν p

′
δ pσ

2

√

Eπα(~p)Eρβ(~p
′)
(

(p′ν)
2 −m2

ρβ
gνν

)

GM1(Q
2) . (7.4)

For this calculation we will use exactly the same set-up as our evaluation of
the elastic form factors. In particular, the current 3-momentum is fixed to ~q =

±2π
L
x̂ ≡ ±~ξ, with current polarization µ = 3. We further choose to fix the vector

meson polarization to be ν = 2. Using this arrangement, the term ǫµδσν p
′
δ pσ

reduces to (p′0 p1−p0 p′1). As was done in the evaluation of the elastic form factors,
we shall take either the incoming or outgoing state to be at rest. However in the
case of a transition, we have the freedom to choose which of the particles is taken
to be at rest. Consequently we have two distinct kinematic possibilities (shown

here for ~q = +~ξ):
~p ′ = ~ξ, ~p = 0 and ~p ′ = 0, ~p = −~ξ ,

each of which gives a distinct value in Q2 due to the difference in the value
for the temporal component of the current four-momentum q0. Applying
these kinematics to Eq. (7.4) we arrive at the final expressions used in our
determination of the ρ→ πγ transition form factor

eGM1(Q
2) =

2mρβ

|~q|

√

Eρβ(~q)

mπα

R3
2ρ→π(ξ, 0; β → α) , Q2 = |~q|2 − (Eρβ(~q)−mπα)

2 ;

eGM1(Q
2) =

2mρβ

|~q|

√

Eπα(~q)

mρβ

R3
2ρ→π(0, ξ; β → α) , Q2 = |~q|2 − (mρβ − Eπα(~q))2 ,

where for the first expression the pion is taken to be at rest while for the second
expression the ρ is at rest.

7.3 Results

For this calculation, we use the same framework as was used for the elastic form
factors and refer the reader to Section 6.2 for a summary of the simulation details.
As outlined at the end of the previous section, our choice of kinematics allows us
to evaluate GM1 at two distinct values of Q2. In particular, determinations taken
with the pion at rest have time-like Q2 < 0, while those with the ρ meson at
rest have space-like Q2 > 0. We therefore have values for GM1 on either side of
Q2 = 0. In order to compare with experiment and quark model expectations we
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Figure 7.1: A comparison of the u-quark contribution to the transition form
factor, Gu

M1, as a function of Euclidean sink time using the variational approach
and the standard single correlator method with smeared source and sink. The
results are shown for mπ = 702 MeV. The two data sets are offset for clarity.
The upper figure is for the π meson at rest with the blue circles ( ) denoting
the results from the variational approach while the red squares ( ) illustrate
results using the standard single-correlator method. The lower figure is for the
ρ meson at rest with the green triangles ( ) denoting the variational method and
the purple diamonds ( ) denoting the single-correlator method. The vertical
dashed line indicates the position of the current insertion. The fitted value from
the variational approach has been included (shaded band) to highlight where the
single source approach is consistent with our improved method.
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require a determination of GM1(0). To do this we choose to interpolate between
our extracted values using a monopole ansatz

GM1(Q
2) =

(

Λ2

Λ2 +Q2

)

GM1(0) , (7.5)

again motivated by vector meson dominance (VMD) arguments. In these models,
interaction with a virtual photon proceeds via neutral vector meson and so
the pole mass can be identified as that of the lightest neutral vector mesons,
particularly the ρ, i.e. Λ ≃ mρ. Use of VMD hypothesis has been considered
in other calculations.The results of Edwards [121], which examine the transition
over a range of Q2 between 0.02-0.6 GeV2, display behaviour consistent with the
VMD hypothesis. Our Q2 is similar to that of Edwards [121] and so VMD allows
for a reasonable estimate of GM1(0).

During the extraction of the quark sector contributions to the form factor,
we compared the time-series for the ratio using the correlation matrix approach
and the standard single smeared source and sink correlator. For all masses
and kinematics, we again find that the correlation matrix method improves
the quality of the plateau over the single level of smearing. In particular, the
ratio sampling in the time-like region requires significantly more Euclidean time
evolution than the corresponding ratio sampling the space-like region. We note
that in this case the ρ carries the momentum and the pion is at rest. Figure 7.1
highlights this comparison for a single quark mass.

Once more we present the Euclidean time-series and subsequent fits for the
form factor at all quark masses and kinematic arrangements in Appendix B.

We shall now consider the quark sector contributions for the transition form
factor. As was outlined in Section 4.2.1, the anti-quark sector contribution
is evaluated through considerations of charge conjugation. Evaluating this
contribution in this way, we need to account for any signs associated with the
charge conjugation properties of the bilinear in the meson interpolator. For the
elastic case, the in and out states are the same and so both source and sink
operators will pick up a sign and thus drop out. In this case however, the bilinears
for the π and ρ mesons transform differently and so we have that the anti-quark
sector is equal in magnitude to the quark sector contribution, however differs in
sign. Without this sign, we note that under exact isospin, all neutral states with
I3 = 0 would not undergo radiative transitions due to the complete cancellation
between the quark sectors.

In Fig. 7.2 we present our results for the extracted values for the u-quark sector
contribution to the form factor, Gu

M1, as well as the corresponding interpolations
used to extract Gu

M1(0). Here we choose to label these as the quark sector
contributions to the positive-charge eigenstate of the corresponding iso-triplet.
That is, the quark contribution is labelled as the u-quark sector while the anti-
quark contribution is labelled as the d-quark sector. However, as the anti-quark
contribution is equal in magnitude with opposite sign, Gd

M1 = −Gu
M1, we choose
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Figure 7.2: The quark sector contributions for the transition form factor, Gu
M1(Q

2)
for both time-like and space-like Q2. Each color corresponds to a different value
of mπ , with blue the heaviest and masses getting lighter as we read down. For
each mass we have access to two values of Q2 stemming from the freedom
to choose which hadron is as rest. The solid line and coloured bands are the
resulting monopole parametrisation extracted from the two data points, allowing
us access obtain a value forGu

M1(0). We also include a VMD estimate, dashed line,
obtained from using the right positive Q2 data only, with ρ meson mass used as
the monopole mass Λ.
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to show the quark contribution only. The quark sector contributions are for
quarks of unit-charge. We note that the spread of Q2 sampled is much larger
in the time-like region due to the increasing Q0-component stemming from the
Goldstone nature of the pion. In the space-like region, we see this effect is
suppressed when the momentum is carried by the pion. This tight grouping of
Q2 values shows a clear decrease in the value of Gu

M1 as the quark masses become
light.

In the time-like region, the most striking feature is the significantly small
value obtained for the lightest mass. As discussed in Section 6.3, examination of
the projected two-point function appears consistent with a single particle state.
We shall note that the plateau for this particular extraction of Gu

M1 differed in
nature to those at heavier masses. Based upon the χ2

dof , one is able to fit much
earlier, however this is likely the result of a significant increase in the uncertainty
of Gu

M1 at early time-slices. Guided by the fit-windows at heavier masses we
choose to fit at later times, however it is certainly possible that we simply do
not have sufficient statistics and so obtain a value for Gu

M1 that is suppressed.
Another possibility is that we are sampling too far into the time-like region
for the VMD hypothesis to hold. Therefore this result may suggest that this
process is suppressed at large time-like momentum transfers. As a check of
the potential impact that this may have on the extracted value of Gu

M1(0), we
compare our results with the VMD estimate obtained using space-like data and
the ρ meson mass as the monopole mass. This result is shown as the dashed line
in Fig. 7.2. In Fig. 7.3 we show the monopole masses extracted from our analysis.
We also include the corresponding ρ meson masses and find that they compare
reasonably well at large quark masses, but diverge in the light quark regime.
Indeed, at the lightest mass Λ ≃ 0. This draws the monopole ansatz into question
deep in the time-like regime. Thus to connect to experiment we also work with
results in the space-like regime (Q2 > 0) and employ VMD.

We now consider the full hadronic transition form factor. As was noted
earlier, for this transition the quark and anti-quark sector contributions are of
equal magnitude and opposite sign and so the charge weighted form factor for
the ρ+ → π+γ transition is given by

GM1(Q
2) =

2

3
Gu
M1(Q

2) +
1

3
(−Gu

M1(Q
2))

=
1

3
Gu
M1(Q

2) .

Table 7.1 summarises our lattice results. In Fig. 7.4 we present our results for
GM1(0). We also include the non-relativistic quark model (NRQM) expectation
of Ref. [122] and the available experimental data. Due to the different choice of
normalisation for this matrix element, we match conventions via the decay width.
The relevant expression for the decay width using our choice of normalisation
[120] is

Γρ→πγ =
1

3
α
|~q|3
m2
ρ

|GM1(0)|2 , (7.6)
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Figure 7.3: Monopole mass Λ ( ), obtained from monopole ansatz as suggested
by Vector Meson Dominance (VMD) hypothesis. The corresponding ρ meson
mass ( ) is included to test the VMD hypothesis. The monopole mass for the
lightest point is not included as the extracted value for Λ2 ≃ 0 stemming from the
low value for GM1(Q

2) in the time-like region.
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Table 7.1: Lattice results for the charge-weighted form factor GM1 of the ρ+ →
π+γ transition for the two available Q2-values for each pion mass.

κ mπ (GeV) mρ (GeV) Q2 (GeV2) GM1(Q
2)

0.13700 0.6226(9) 0.981(5) -0.042(5) 0.572(12)
0.078(3) 0.498(7)

0.13727 0.5145(9) 0.917(6) -0.085(5) 0.559(13)
0.070(3) 0.470(6)

0.13754 0.3884(9) 0.867(6) -0.163(6) 0.572(15)
0.066(3) 0.442(8)

0.13770 0.2848(11) 0.832(10) -0.246(10) 0.578(35)
0.054(6) 0.401(9)

0.13781 0.1613(31) 0.793(14) -0.370(17) 0.413(64)
0.050(9) 0.389(15)

where the photon 3-momentum is evaluated in the ρ meson rest frame

|~q | =
m2
ρ −m2

π

2mρ
.

Using this expression we are able to evaluate GM1(0) for experimental measure-
ments of the decay width. We include the PDG average [105] as well as the
three experimental measurements [123–125] used in its evaluation. For the quark
model, the choice of normalisation used in Ref. [122] results in the following
expression for the decay width

Γρ→πγ =
2

3
α|~q |3

(

Eπ
mρ

)

∑

q

|〈 ρ |µqeqσq
e
| π 〉|2 .

As discussed in Ref. [122], by using SU(6) quark and anti-quark flavour
combinations, the sum evaluates to

∑

q

|〈 ρ |µqeqσq
e
| π 〉|2 = 2

9

µ2
ud

e2
,

where the light-quark magnetic moment is

µud =
e

2mud
.

Matching with Eq. (7.6), this gives rise to the following expression

GM1(0) =
2

3

√

mρEπ
µud
e
.
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Figure 7.4: Results for the full hadronic transition moment, GM1(0), extracted
using both space and time-like Q2 values ( ) and using the space-like values only
and invoking the VMD hypothesis ( ). We include the available experimental
extractions ( ) ordered from left to right by year of publication [123–125]. We
also include the PDG average ( ) obtained from this data [105]. The experimental
data are offset for readability, with the PDG average aligned at the physical point
indicated by the vertical dashed line. The dashed green line is the non-relativistic
quark model expectation of Ref. [122] as discussed herein. We also include the
result of Shultz et al. [97] ( ) which determines this moment for a single heavy
quark mass.

For the quark moment, µud, we use a constituent quark mass that varies linearly
in m2

π

mud = a + bm2
π ,

with a and b fixed such that the constituent quark has a mass of 330 MeV at the
physical point and 510 MeV at the SU(3) symmetric point, as determined in Ref.
[105] using the magnetic moments µp, µn and µΛ.

Beginning with our results at the heaviest values ofmπ, we find that our lattice
data is close to the quark model expectation. Furthermore the observed trend
in the data suggests consistency with increasing quark mass where we would
expect the quark model expectation to hold. The trend in the data also appears
consistent with the determination of Ref. [97]. As we move down to the lighter
masses there is a clear downwards trend in the lattice data, as was also observed
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in our previous quenched study [126] 1. In contrast to this the quark model result
shows little variation with mπ . In the light quark regime, we do not expect the
quark model to necessarily hold for this transition. Unlike heavier systems such
as bottomium and charmonium decays, the quarks in both the π and ρ meson
systems are highly relativistic. Furthermore, the pion itself is a Goldstone mode
of QCD stemming from the underlying chiral symmetry of the theory. Though
we can in principle treat the quarks relativistically [127, 128], the inability to
properly describe the chiral behaviour of the pion is a fundamental shortfall of all
constituent quark models and may certainly lead to deviations in the chiral limit.

Comparison with the experimental determination shows a notable deviation,
with the lattice data sitting around 33% lower than the experimental value. In
Fig. 7.4 we also include the values obtained using VMD with the space-like data
only and find that significant differences persist. However, we note that our
calculation is incomplete. Unlike the elastic form factors for which disconnected
contributions are necessarily zero [45, 108], such contributions are present for
meson transitions that involve a change in G-parity [97]. As discussed in the
previous chapter, under charge-conjugation the “C-even” two-point function and
the “C-odd” disconnected loop give rise to a relative sign between the {U} and
{U∗} configurations and so cancel exactly [45] in the ensemble average. For
transitions involving a change in G-parity, the two-point function is now “C-
odd” and so combining with the disconnected loop gives rise to a common
sign between the {U} and {U∗} configurations resulting in a non-zero quantity
[97, 108]. Furthermore, if one neglects disconnected s-quark contributions, the
charge weight factors between the connected contributions and the disconnected
contributions are equal

GM1 = quG
con.
M1 + qd̄ (−Gcon.

M1 ) + quG
dis.
M1 + qdG

dis.
M1

=

(

2

3
− 1

3

)

Gcon.
M1 +

(

2

3
− 1

3

)

Gdis.
M1

=
1

3
Gcon.
M1 +

1

3
Gdis.
M1 .

Thus the discrepancy between our results and the experimental value suggest
that disconnected contributions are likely to play an important role in fully
describing this transition. One would also expect such contributions to become
increasing important with decreasing quark mass. This expectation complements
the observation that our results are consistent with quark model expectations at
heavier masses, however deviate as we move to light-quark regime.

Another important aspect that warrants further consideration is the fact
that the ρ meson is ultimately a resonant state. The nature of resonant states

1 We note that in this proceedings, there was an error in converting the experimental decay
widths to our definition of the form factor GM1(0). The lattice data however is correct and
consistent with results presented herein. Comparison with experiment for Ref. [126] should be
done with the value presented here.
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on the lattice is significantly different to that of continuum due to the lack
of a continuous distribution of momentum modes and so to properly make
connection with the continuum expectation, one must suitably evolve the lattice
determinations to the infinite volume to properly account for the differences in
the underlying multi-particle interactions. Understanding exactly how to do this
in general is an area of current interest to the community and only very recently
has a framework been presented to handle 1 → 2 body processes required to
properly describe this transition [118, 119, 129, 130]. In fully addressing this
aspect, it is important to also consider the role of ππ scattering states in the ρ
meson correlation matrix to ensure a complete isolation of QCD eigenstates on
the finite volume.

7.4 Summary

In this chapter we utilised the variational approach to examine the radiative
decay of the ρ meson in the light quark-mass regime. The calculated transition
moment, GM1(0), was found to be consistent with quark model expectations
at heavy masses. However we have discovered an important quark mass
dependence. Our results in the light quark regime sit low in comparison with
experimental determinations, suggesting important disconnected contributions
to this process. These results warrant a more comprehensive investigation of this
process. Any future work should aim to focus on the inclusion of disconnected
contributions, multi-particle contributions and finite volume effects so as to
allow for the proper evolution of the lattice determination to the infinite-volume.
Understanding the role these systematics play in this calculation may provide
important insights into topical transition amplitudes such as N∗ → Nγ∗ and
∆(∗) → Nγ∗ transitions, and those central to the search for exotic hadron states
[131].





Chapter 8

Negative Parity Electromagnetic
Form Factors

A look at the PDG baryon summary tables clearly highlights that the overwhelm-
ing majority of observed resonant states are excitations of the nucleon, denoted
N∗. This is not surprising given that within the standard model, the proton is
the only stable hadron and so experimentally the simplest target to operate with.
Over the past decade, ongoing efforts at a number of facilities, notably Mainz,
Bonn, MIT-Bates and Jefferson Lab [132] have produced a rich body of data on the
N∗ → Nγ and ∆∗ → Nγ transition amplitudes. With access to such high-quality
experimental data, examination of these transition amplitudes using lattice QCD
presents an excellent opportunity to connect the experimental data directly to
QCD and in turn shed some insight into how resonant state properties emerge
from QCD. However, before we delve into the transition elements we shall first
consider the simpler problem of determining the elastic form factors for a nucleon
excitation.

The lightest nucleon excitation, the Roper resonance (N∗(1440)), is of partic-
ular interest as its mass lies lower than the first negative parity excitation, the
N∗(1535), a feature which cannot be explained consistently using constituent
quark models. Consequently, there has been on going effort within lattice
spectroscopy studies to observe a positive parity excitation lower in energy than
the lowest negative parity excitation. Such an ordering has yet to be observed
and recent Hamiltonian effective field theory studies indicate that the Roper has
not yet been seen on the lattice [133]. We shall therefore focus instead on the next
nucleon resonance, the N∗(1535). As the N∗(1535) is the lowest lying negative
parity nucleon state one could in principle use standard techniques to perform
the calculation. However, the small mass gap between this state and the nearby
N∗(1650) complicates the calculation. Using standard techniques one cannot
properly disentangle these states and so one would encounter severe excited
state contamination. The variational approach gives us a means to separate these
contributions.

In this chapter, we shall do exactly this. In Section 8.1 we begin by considering
how one can access the two- and three-point correlation functions relevant for
negative parity baryon states. This is followed by Section 8.2 where we take
a look at the negative parity nucleon spectrum obtained using the PACS-CS
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ensembles. Section 8.3 describes how we extract the electromagnetic form factors
for the negative parity nucleon states followed by the presentation of our results.
We conclude the chapter in Section 8.4 with a brief summary.

8.1 Accessing Negative Parity States on the Lattice

Two-point Functions

To understand how negative parity states can be accessed on the lattice, we
need to understand the complete structure of the baryon correlator. Equipped
with some baryon interpolator, χ, which itself has known parity transformation
properties, we consider the baryon correlator

G(~p, t) =
∑

~x

e−i~p·~x 〈Ω|χ(x) χ̄(0)|Ω〉 . (8.1)

As was outlined in Section 5.1, because the interpolators are spinors, the baryon
correlator is a 4 × 4 matrix coupling all spinor components χ̄ with all those of χ.
Consequently, to analyse the correlation function for a given state we must first
project out the relevant contributions using some projection operator Γ,

G(~p, t; Γ) = Tr [ΓG(~p, t)] .

In order to identify a suitable projection operator, we need to understand how
the desired terms are encoded within the complete baryon correlator.

Following the now standard procedure of inserting completeness, operator
translation and selecting Euclidean time, we can reduce Eq. (8.1) to the familiar
form for our correlation function,

G(~p, t) =
∑

α+,s

e−Eα+ (~p) t 〈Ω|χ(0)|α+, p, s〉 〈α+, p, s|χ̄(0)|Ω〉

+
∑

α−,s

e−Eα−(~p) t 〈Ω|χ(0)|α−, p, s〉 〈α−, p, s|χ̄(0)|Ω〉 ,

where we have separated the sum over eigenstates into those with positive and
negative parity respectively. Now due to the underlying structure of the spinor
algebra, the interpolator χ, which is itself a spinor, can couple to both positive
and negative parity states. Selecting χ = χ+ transforming under parity as

χ+ → +γ0 χ
+ ,

the operator overlap factors can be expressed as

〈Ω|χ+(0)|α+, p, s〉 = Zα+(~p)

√

mα+

Eα+(~p)
um

α+ (p, s) ,

〈Ω|χ+(0)|α−, p, s〉 = Zα−(~p)

√

mα−

Eα−(~p)
γ5 um

α−
(p, s) ,
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where umi
(p, s) is standard Dirac spinor, with the label mi identifying the

associated mass for corresponding state. Substituting these overlaps into our
expanded expression for the correlator gives

G+(~p, t) =
∑

α+

e−Eα+ (~p) tZα+(~p) Z̄α+(~p)
mα+

Eα+(~p)

(

∑

s

um
α+ (p, s) ūmα+ (p, s)

)

−
∑

α−

e−Eα−(~p) tZα−(~p) Z̄α−(~p)
mα−

Eα−(~p)
γ5

(

∑

s

um
α−

(p, s) ūm
α−

(p, s)

)

γ5 ,

which can be reduced further using the spin-sum

∑

s

umi
(p, s) ūmi

(p, s) =

(

/p+mi

2mi

)

,

to give

G+(~p, t) =
∑

α+

e−Eα+ (~p) t

2Eα+(~p)
Zα+(~p) Z̄α+(~p)

(

/p+mα+

)

+
∑

α−

e−Eα−(~p) t

2Eα−(~p)
Zα−(~p) Z̄α−(~p)

(

/p−mα−

)

,

where we note that the γ5 have been pulled through the
(

/p+m
)

term for the
negative parity states. In Section 5.1 we noted that the energy for the positive
parity baryon state (mass if we take ~p = 0) can be isolated using the projection
operator

Γ0 =

(

γ0 + I

4

)

=
1

2

(

I 0
0 0

)

.

Applying this projector to the above expression for the baryon correlator, we find
the following terms for positive and negative parity states respectively

Tr
[

Γ0

(

/p+m
)]

= (E +m) ,

Tr
[

Γ0

(

/p−m
)]

= (E −m) .

Evidently, if we look in the traditional upper-left quadrant of the Dirac matrix by
projecting with Γ0, we can see that χ+ interpolators couple strongly to positive
parity states and weakly to negative parity states. The same argument carries
over to the use of χ− operators transforming under parity as

χ− → −γ0χ− .

Here the operator overlaps are

〈Ω|χ−(0)|α+, p, s〉 = Zα+(~p)

√

mα+

Eα+(~p)
γ5 um

α+ (p, s) ,

〈Ω|χ−(0)|α−, p, s〉 = Zα−(~p)

√

mα−

Eα−(~p)
um

α−
(p, s) .
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Working through the algebra and using the same projection operator Γ0, one finds
that χ− operators couple strongly to negative parity states and weakly to positive
parity states.

However, an important observation is that we can obtain a χ− operator from
a χ+ operator through

χ−(x) = γ5 χ
+(x) .

Consequently, the correlator formed from χ−χ̄− can be re-expressed as

G−(~p, t) =
∑

~x

e−i~p·~x 〈Ω|χ−(x) χ̄−(0)|Ω〉

= −
∑

~x

e−i~p·~x 〈Ω|γ5 χ+(x) χ̄(0) γ5|Ω〉

= −γ5
(

∑

~x

e−i~p·~x 〈Ω|χ+(x) χ̄+(0)|Ω〉
)

γ5

= −γ5G+(~p, t) γ5 .

Applying the Γ0 projection operator, we can see that it is possible to isolate the
negative parity states from the correlator formed from χ+χ̄+ by using a modified
projection operator,

G−(~p, t; Γ0) = Tr [Γ0 (−γ5G+(~p, t)γ5)]

= Tr [(−γ5 Γ0 γ5) G+(~p, t) ]

= Tr
[

Γ−−
0 G+(~p, t)

]

,

where
Γ−− = −γ5 Γ γ5 .

The superscript−− reflects the parity transition properties of the source and sink
operators. This notation will be useful in considering abnormal parity transitions
in the following chapter. We can interpret the use of the modified projector on
G+(~p, t) as mapping the spinors in the operator couplings from,

+ : u(p, s) → γ5 u(p, s)

− : γ5 u(p, s) → u(p, s) ,

leading to strong couplings for the negative parity states and weak couplings for
the positive parity states, consistent withG−(~p, t). An alternate interpretation can
be arrived at through consideration of

Γ−−
0 = −γ5

(

γ0 + I

4

)

γ5

=

(

γ0 − I
4

)

= −1
2

(

0 0
0 I

)

,
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which highlights that the negative parity states couple strongly to the lower
components of the interpolators and so one finds the correlation function of the
negative parity state in the lower-right quadrant of the Dirac matrix.

Three-point Functions

Having examined the case of the two-point correlator in some detail, we shall
now turn our attention to the three-point correlator

G(~p ′, ~p, t2, t1) =
∑

~x2,~x1

e−i~p
′·~x2 ei(~p

′−~p)·~x1 〈Ω|χ(x2)O(x1) χ̄(0)|Ω〉 . (8.2)

Once more, inserting completeness between our operator pairs, appealing to op-
erator translation and finally selecting Euclidean-time, we arrive at the expanded
form for the three-point correlator,

G(~p ′, ~p, t2,t1) =
∑

α+,β+

e−Eβ+(~p ′) (t2−t1) e−Eα+ (~p) t1 〈Ω|χ(0)|β+〉 〈β+|O(0)|α+〉 〈α+|χ̄(0)|Ω〉

+
∑

α+,β−

e−Eβ−(~p ′) (t2−t1) e−Eα+ (~p) t1 〈Ω|χ(0)|β−〉 〈β−|O(0)|α+〉 〈α+|χ̄(0)|Ω〉

+
∑

α−,β+

e−Eβ+(~p ′) (t2−t1) e−Eα− (~p) t1 〈Ω|χ(0)|β+〉 〈β+|O(0)|α−〉 〈α−|χ̄(0)|Ω〉

+
∑

α−,β−

e−Eβ−(~p ′) (t2−t1) e−Eα−(~p) t1 〈Ω|χ(0)|β−〉 〈β−|O(0)|α−〉 〈α−|χ̄(0)|Ω〉 , (8.3)

where we have again separated the sums explicitly into positive and negative
parity states respectively. For clarity we have suppressed the momentum and
spin labels on the bras and kets. Having noted that we can access all combinations
of interpolators χ+ and χ− by projecting with the relevant projection operator, our
goal is to identify those operators that allow us to isolate the matrix elements of
interest. Taking our interpolators χ to transform as χ+ we note that the correlation
function obtained from χ− interpolators can be obtained by post-multiplying
with −γ5 for the source and pre-multiplying by γ5 for the sink. In projecting out
the desired components, we can again appeal to cyclicity of the trace in order to
construct modified projectors that allow us to isolate the various matrix elements
with given parity combination. These modified projectors are

+→ + : Γ++ = Γ ,

+→ − : Γ−+ = Γγ5 ,

− → + : Γ+− = −γ5Γ ,
− → − : Γ−− = −γ5Γγ5 ,
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where our notation follows the tradition of source on the right and sink on the
left, namely Γ(sink)(source). By using the required projector for a given transition,
all operator overlaps that weight the desired matrix element in Eq. (8.3) are
parametrised as

〈Ω|χ+(0)|αi, p, s〉 = Z iα(~p)
√

mi

Ei(~p)
umi

(p, s) ,

as the γ5 factors that appear for negative-parity states have been moved to the
projector.

8.2 Negative Parity Nucleon Spectrum

The evaluation of the negative parity spectrum on the PACS-CS ensembles was
presented in Ref. [104], so here we shall simply present a summary of their
calculation and results.

In this work, the variational basis was constructed from the local nucleon
interpolators

χ1(x) = ǫabc
(

uaT (x)Cγ5 d
b(x)

)

Iuc(x) ,

χ2(x) = ǫabc
(

uaT (x)C db(x)
)

γ5u
c(x) ,

χ4(x) = ǫabc
(

uaT (x)Cγ5γ0 d
b(x)

)

Iuc(x) ,

coupled with some level of source/sink smearing. Their choice of smearing
levels is identical to those summarised in Table 5.1. We note that each of these
local nucleon interpolators has a unique Dirac structure giving rise to different
spin-flavour combinations. In particular, χ1(x) and χ4(x) contain scalar di-
quark interpolators while χ2(x) holds a vector di-quark interpolator. For their
analysis, the ideal choice of variational parameters (t0, δt) was found to be
(18, 2). In forming their nucleon spectrum, the authors considered the various
combinations of interpolating structures. The results between χ1, χ2 and χ2,
χ4 were found to be consistent, while the χ1, χ4 analysis revealed states not
present in the other analyses. Within all three choices the lower portion of the
spectrum was consistent. As we are only interested in the lowest negative parity
nucleon states, we shall only consider the spectrum using χ1 and χ2 allowing us
to construct an 8 × 8 correlation matrix. The resulting spectrum below 3 GeV is
presented in Fig. 8.1.

As was found in Ref. [104], we obtain two close eigenstates between 1.5-
2.0 GeV. The results at the lightest quark mass are consistent with the ex-
perimentally measured masses for the N∗(1535) and N∗(1650). We observe a
reordering of states for the second heaviest quark mass. As was highlighted in
Refs. [64, 104], without tracking eigenvectors across quark masses, one can easily
miss-tag eigenstates based on their apparent ordering. Between 2 and 3 GeV we
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Figure 8.1: Spectrum observed in the negative parity nucleon (N 1/2−) channel
obtained using χ1, χ2 basis of operators as described in Ref. [104]. The light blue
data points at the far left are the experimentally observedN∗(1535) andN∗(1650),
with the masses taken from the PDG summary tables [105].

observe another pair of eigenstates, displaying similar behaviour to the lowest
eigenstates. Within constituent quark models, the N∗(1535) and N∗(1650) are
understood to be admixtures of spin-1/2 and spin-3/2 nucleon states coupled to
angular momentum ℓ = 1. This leads to two near degenerate eigenstates, with
the small energy splitting stemming from spin-dependent forces. In Ref. [104] it
was noted that the lowest eigenstates both have large contributions from χ1 and
χ2 interpolators. As these interpolators carry different di-quark structures, large
overlap with both interpolators suggest an admixture of spin states.

For both of the lowest lying negative parity nucleon states, we examine log(G)
to ensure that we have single state dominance at the electromagnetic current
insertion time t1 = 21 and identify the time windows over which we can examine
the form factors. The energies extracted from the identified fit-windows are
compared against the dispersion relation for a single particle. These dispersion
plots are presented in Figs. 8.2 and 8.3 for the first and second negative-parity
eigenstates respectively. For the first non-trivial momentum relevant to the
calculations presented in this chapter, we find reasonable agreement between
the eigenstate energy and the dispersion relation across all quark masses, with
the exception of the lightest mass where we observe a significant decrease in
the energy for the lightest eigenstate when the boost is applied. This may be
the result of cross-parity contamination at finite momentum whereby the ground
state nucleon dominates the correlator at larger Euclidean time. Consequently
we do not consider this mass in the form factor analysis.



112 Negative Parity Electromagnetic Form Factors

0 1 2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

np

E
HG

eV
L

0 1 2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

np

E
HG

eV
L

0 1 2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

np

E
HG

eV
L

0 1 2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

np

E
HG

eV
L

0 1 2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

np

E
HG

eV
L

Figure 8.2: Extracted eigenstate energies for the first negative parity nucleon
against the single particle dispersion expectation. The bottom axis is the centre-
of-mass momentum in units of the minimum available momentum 2π

L
. The

direction of decreasing quark mass is from left to right and down the page.
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Figure 8.3: Extracted eigenstate energies for the second negative parity nucleon
against the single particle dispersion expectation. The bottom axis is the centre-
of-mass momentum in units of the minimum available momentum 2π

L
. The

direction of decreasing quark mass is from left to right and down the page.
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8.3 Electromagnetic Form Factors

To evaluate the negative parity nucleon electromagnetic form factors we consider
the elastic matrix element,

〈N∗(p′, s′) | Jµ |N∗(p, s) 〉 .

As our nucleons are spin-1/2 states, this matrix element can be expressed as

〈N∗(p′, s′) | Jµ |N∗(p, s) 〉 =
(

M2

E(~p)E(~p ′)

)1/2

ū(p′, s′)

(

γµ F1(Q
2) + i

σµνqν
2M

F2(Q
2)

)

u(p, s) ,

where F1(Q
2) and F2(Q

2) are the so-called Dirac and Pauli Form Factors respec-
tively. These are in turn related to the Sachs Electric and Magnetic form factors

GE(Q
2) = F1(Q

2)− Q2

(2M)2
F2(Q

2) ,

GM(Q2) = F1(Q
2) + F2(Q

2) ,

which describe the distribution of charge and magnetisation within our nucleon
states.

As this vertex decomposition is the same as that for the nucleon, isolation
of the form factors is well established. Here we choose to follow the approach
outlined in Refs. [42, 55], suitably adapted for negative parity baryons. As we are
evaluating the full baryon correlator using χ+ nucleon operators, this amounts
to using the negative parity projectors, defined in Section 8.1. We choose to take
either the incoming or outgoing state to be at rest. For such kinematics, one finds
that the Sachs form factors GE and GM can be extracted through the following
terms [42, 55]

GE(Q
2) = R

0
(~q, 0; Γ−−

0 ,Γ−−
0 ;α) ,

|ǫijkqi|i GM(Q2) = (Eq +M)R
k
(~q, 0; Γ−−

j ,Γ−−
0 ;α) ,

where

Γ−−
0 = −γ5 Γ0 γ5 and Γ−−

j = −γ5 Γj γ5 ,
with

Γ0 =
1

2

(

I 0
0 0

)

and Γj =
1

2

(

σj 0
0 0

)

,

and R is the reduced ratio

R
µ
(~p ′, ~p; Γ′,Γ;α) =

(

2E(~p)

E(~p) +M

)1/2 (
2E(~p ′)

E(~p ′) +M

)1/2

Rµ(~p ′, ~p; Γ′,Γ;α) .
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Evaluation the three-point correlation function is done using the same set of
SST-propagators used in the evaluation of the meson form factors of chapters 6
and 7. In particular our quark fields are inserted at t0 = 16 relative to the fixed
boundary condition at t = 0 and the current at t1 = 21. For the current we use
an O(a)-improved conserved vector current as described in Section 3.4.2. The
current 3-momentum ~q is fixed in the x-direction with magnitude |~q | = 2π

L
. We

use both +~q and −~q, as required for the construction of our ratio as well as use of
the U∗-trick. The current is polarised with µ = 3, 4. We evaluate correlators for
the four heaviest quark masses with the statistics outlined in Table 6.1.

In evaluating the form factors we consider the contribution from each individ-
ual quark-sector separately, with each sector normalised to give the quarks unit
charge. The u-quark sector of the proton and the d-quark sector of the neutron
are composed of two valence quarks and so we refer to these as the doubly-
represented quark sector. Correspondingly, the d-quark sector of the proton and
u-quark sector of the neutron are composed of a single valence quark and so we
refer to this as the singly-represented quark sector. In constructing the baryon
form factor from these quark sectors, we take the charge and quark-number
weighted sum of all the quark sector contributions. For the proton-like states
this amounts to

Gp∗ = 2× 2

3
×Gdoub + 1×

(

−1
3

)

×Gsing , (8.4)

while for the neutron-like states we have

Gn∗

= 2×
(

−1
3

)

×Gdoub + 1× 2

3
×Gsing . (8.5)

In Fig. 8.4 we show an example of the form factor plateaus forGE andGM . We
note that due to the similar masses between these two states, we are essentially
probing the same value of Q2. Consequently, comparison of the plateaus in these
figures highlights some notable similarities and differences between the form
factors of these two states. Beginning with the electric form factor, we find that
both states display very similar values for both quark sectors. Comparing the
quark sectors for either state, we can see that the singly-represented quark sector
is slightly larger than the doubly-represented quark sector. For the magnetic form
factor, the doubly-represented quark sectors are of similar value, however we
observe markedly different values for the singly-represented quark. In particular,
the first eigenstate has a change in sign from the doubly-represented quark sector
to the singly-represented quark sector, while for the second eigenstate there is no
change in sign.

As was done in chapter 6 for the meson form factors, we perform shifts in
Q2 to ensure that the variations observed in the form factors between states and
quark mass are not due to variations in the Q2 associated with the change in mass
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Figure 8.4: An example of the electromagnetic form factors as a function of
Euclidean sink time for the first two negative parity nucleon eigenstates. Within
each figure, the blue dataset ( ) is for the first negative parity eigenstate while
the red dataset ( ) is for the second eigenstate. These results are obtained with
mπ = 570 MeV. The figures on the left are for the doubly-represented quark sector
while those on the right are for the singly-represented quark. Both quark sectors
are normalised to single quarks of unit charge. The top figures show the electric
form factor GE while the bottom figures show the magnetic form factor GM . We
find similar values for the electric form factor in both quark sectors, however
for the magnetic form factor the singly-represented quark contribution differs
in sign between the two states suggesting very different spin configurations for
these eigenstates. The vertical dashed line indicates the position of the current
insertion.
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of the eigenstate. In the case of baryons, we use a dipole form to describe the low
Q2 behaviour of the form factor [42, 134]

Gi(Q
2) =

(

Λ2

Λ2 +Q2

)2

Gi(Q
2 = 0) ,

where Λ is determined from the electric form factor using GE(0) = 1, as required
by charge conservation for each quark sector having unit charge. Though this
choice may not necessarily be a good description of the completeQ2 evolution for
the form factor of an excited baryon, the required shifts inQ2 are small. We choose
to shift the data to Q2 = 0.16 GeV2 to minimise the shift for the lighter masses
considered, with the largest shift around 0.018 GeV2 occurring at the heaviest
quark mass.

In Figs. 8.5 and 8.6 we show the quark sector contributions to GE and GM at
Q2 = 0.16 GeV2 for the two lightest negative parity nucleon states. To provide
some context to these values, we also include the corresponding quantities for
the ground state nucleon. Beginning with the electric form factor we can see that
both eigenstates display similar values for each quark sector, with the exception
of the lightest quark mass considered. Here we observe a substantial increase in
GE for both quark sectors of the second eigenstate. Comparing the values for the
negative parity states with the ground state, we find that for the heaviest three
masses, GE is considerably smaller that of the nucleon suggesting these states are
significantly larger is size.

Turning our attention to the magnetic form factor, the most striking feature
is the difference in sign between the singly-represented quark sectors. For the
lower negative-parity eigenstate, the signs are consistent with that of the nucleon.
Within both states, the doubly-represented quark sector is similar in value and
displays a slight increase with increasing mass. Across all masses, the value is
smaller than the doubly-represented quark sector of the nucleon by∼ 0.5 µN . For
the singly-represented quark sectors, the lowest eigenstate displays a value larger
in magnitude to that in the nucleon while the heavier eigenstate it is slightly
smaller. For the singly-represented quark sector, there appears to be less variation
than in the doubly-represented quark sector.

Recently, there have been a handful of model calculations of the magnetic
moments for the lightest negative parity baryons [135–139]. In order to facilitate
a comparison with these determinations, we need to take our results at finiteQ2 to
Q2 = 0. Once more we will make an assumption of common scaling between the
electric and magnetic form factors for each quark sector such that the magnetic
moment for each quark sector is extracted through

µ =
GM(Q2)

GE(Q2)
.

In Fig. 8.7 we present the magnetic moments for the 1/2+ (proton) and 1/2−

(neutron) isospin states for the two lightest negative parity nucleon eigenstates



118 Negative Parity Electromagnetic Form Factors

0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

1.0

mΠ
2 HGeV2L

G
E
HQ

2 L

0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

1.0

mΠ
2 HGeV2L

G
E
HQ

2 L

Figure 8.5: The unit-charge quark sector contributions to the electric form factor
GE of the first ( ) and second ( ) negative-parity nucleon eigenstates at the
common value Q2 = 0.16 GeV2. The green points ( ) are the corresponding
values for the ground state nucleon for comparison. The top figure illustrates
results for the doubly-represented quark sector while the bottom figure illustrates
those for the singly-represented quark sector. The vertical dashed line represents
the physical point.
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Figure 8.6: The unit-charge quark sector contributions to the magnetic form
factor GM of the first ( ) and second ( ) negative-parity nucleon eigenstates at
the common value Q2 = 0.16 GeV2. The green points ( ) are the corresponding
values for the ground state nucleon. The top figure illustrates results for the
doubly-represented quark sector while the bottom figure illustrates those for the
singly-represented quark sector. The vertical dashed line represents the physical
point.
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Figure 8.7: Magnetic moments for the 1/2+ (proton) and 1/2− (neutron) isospin
states for the two lightest negative parity nucleon eigenstates, obtained assuming
common quark-sector scaling for GE and GM . In order to compare with model
expectations we identify our eigenstates with the experimentally observed states
via our negative parity spectrum, presented in Fig. 8.1. With this identification,
we have µp∗(1535) ( ), µn∗(1535) ( ), µp∗(1650) ( ) and µn∗(1650) ( ). The grey dashed
line represents the physical point.
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Table 8.1: Comparison of the magnetic moments predicted by various model
calculations and our lattice extraction. Our determination compares well for the
N∗(1535) nucleon state, however we obtain a different ordering for µp∗(1650) and
µn∗(1650).

µp∗(1535) µn∗(1535) µp∗(1650) µn∗(1650)

CQM [135] 1.89 -1.28 0.11 0.95
CQM [136] 1.9 -1.3 0.1 1.0
χCQM [136] 1.6 -1.0 0.0 0.7
χCQM [137] 2.085 -1.570 -0.286 0.984
LCSR [138] 1.4 -0.54 - -

EH [139] 1.24 -0.84 0.12 0.74

Our Result 2.32(18) -1.50(11) 1.29(9) -0.41(10)

obtained using Eqs. (8.4) and (8.5) and the magnetic moments for each quark
sector. All states display little variation across all of the quark masses considered.

In Table 8.1 we compare model determinations with our lattice extraction for
the lightest mass considered. Qualitatively our results for the lowest eigenstate
compare well to the model calculations for both proton and neutron moments for
the N∗(1535), though slightly larger in magnitude.

For our heavier eigenstate our values are at odds with the quark model
expectation. The quark model results suggest a neutron moment of ∼ +1 µN
which is significantly larger in value than the corresponding proton moment. We
find moments qualitatively similar to the lighter eigenstate, though somewhat
smaller in magnitude.

In order to obtain a moment for the heavier eigenstate consistent with the
quark model results, we would require quark sector contributions of 1.2 µN for
the doubly-represented quark sector and 2.7 µN for the singly-represented quark
sector. Our results for GM at Q2 = 0.16 GeV2 are consistent in that we require
both contributions to be positive. However, we observe the doubly-represented
quark sector contribution to be larger than the singly-represented quark sector
contribution at this value of Q2.

This significant discrepancy calls our identification of the second negative
parity state as the N∗(1650) into question. This result indicates the second
state is more likely a different finite-volume meson-baryon dressing of a bare
state associated with the N∗(1535). In the Hamiltonian effective field theory
calculation of Ref. [133] our lowest lying state is described well by a bare state
with a strong πN dressing. Our second state is described well by the same bare
state but with a significant ηN dressing in the finite volume. Similar results are
seen for the JLab led Hadron Spectrum Collaboration negative parity spectrum
obtained on a smaller (2 fm)3 lattice volume, thus testing the the finite-volume
predictions of the model [133].
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While the magnetic moments have not been calculated in the Hamiltonian
model, the charge neutrality of the η meson will result in smaller moments.
For example, p∗ → n∗π+ is likely to make an important contribution to the p∗

magnetic moment on the lattice. A similar pattern of moments is seen in Table 8.1
with the moment attributed to the N∗(1650) suppressed in magnitude. This lends
further support to our second state being attributed to the N∗(1535) in the finite
volume of the lattice. As such, state identification on the finite volume of the
lattice presents an interesting challenge of unanticipated difficulty.

8.4 Summary

In this chapter we carefully examined the baryon correlator in order to under-
stand how positive and negative parity eigenstate contributions are contained
within. Through this examination, we have developed a general strategy for
accessing both two- and three-point correlation functions for both positive and
negative parity states, as well as transition elements between the various parity
eigenstates, whereby the desired contributions are isolated through the selection
of the relevant parity projection operator applied to the baryon correlator formed
from χ+ interpolators.

This framework was then utilised to examine the electromagnetic form
factors for the lightest two negative parity nucleon eigenstates on the PACS-CS
ensembles. We observed very similar behaviour between the two eigenstates for
the electric form factor GE , which in comparing with the ground state nucleon
were observed to be considerably smaller suggesting these states are significantly
larger in size. For the magnetic form factor GM , we find that the doubly-
represented quark sector is consistent between the two eigenstates. However for
the singly-represented quark sector the values differ in both sign and magnitude.

In constructing p∗ and n∗ magnetic moments to compare with model calcu-
lations, we find that the first eigenstate gives values that are consistent with the
expected values for the N∗(1535) from constituent quark models. The second
eigenstate was found to be inconsistent with the expected values for theN∗(1650)
raising doubt as to whether this state, which appears consistent in mass with the
N∗(1650), is in fact this state. Examination of the spectrum in Ref. [133] using a
Hamiltonian effective field theory suggests this second state could be identified
as a different finite-volume meson-baryon dressing of a bare state associated
with the N∗(1535). This highlights the complexity and difficulty one faces in
identifying eigenstates on the finite volume of the lattice.



Chapter 9

Negative Parity Transition Form
Factors

In the previous chapter we made use of variational techniques to evaluate
the elastic electromagnetic form factors for the lightest negative-parity nucleon
states. While such quantities can provide important insight into the underlying
structure of these states and inform model calculations, defining and measuring
such quantities experimentally present significant challenges. Experimentally
the quantities of interest are the transition elements for the electroproduction
processes γ∗N → N∗, specifically the transverse and longitudinal helicity
amplitudes A 1

2
and S 1

2
.

Previous lattice calculations have focused primarily on the ∆ → Nγ tran-
sition. The framework for such a calculation was established in Ref. [140] and
subsequently examined comprehensively both in quenched [141, 142] and full
QCD [143, 144]. For all of these studies, due to the choice of lattice ensemble
parameters, the ∆ baryon remains the lightest state in this channel and so this
process can be examined using standard techniques. The results of [144] show
good qualitative agreement with the experimental data, especially in the value
extracted for E2/M1 ratio, however the authors outline that discrepancies ob-
served in the exact behaviour of these amplitudes, particularly theM1 amplitude,
highlight important chiral dynamics to this process.

The only other nucleon transition considered to date has been the N∗(1440)→
Nγ transition [145, 146]. However, as yet it is unlikely any group has properly
isolated the N∗(1440) on the lattice [133]. Nonetheless, experimental determina-
tions indicate that the sign of the A 1

2
transition form factor is negative at low Q2,

contrary to constituent quark models which predict a positive sign. Therefore
evaluation of this amplitude may assist in understanding the underlying dynam-
ics of the Roper resonance and the make up of this state, both on the lattice and
in the continuum.

A notably absent calculation is the evaluation of the N∗(1535) → Nγ
transition. Having outlined how we isolate the correlation functions for negative
parity baryons in the previous chapter, we shall now consider the extraction
of the transition form factors for such states. We begin in Section 9.1 with the
presentation of a general framework through which one can determine N∗ → Nγ
transition amplitudes for all choices and combinations of parity, all from the same

123
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baryon correlator. In Section 9.2 we utilise this framework to examine the A 1
2

and S 1
2

form factors of the first two negative parity nucleon eigenstates and then

conclude with a summary in Section 9.3.

9.1 Generalised Nucleon Transition Vertices

Experimentally the quantities of interest are the transverse and longitudinal
helicity amplitudes A 1

2
and S 1

2

A 1
2
=

√

2πα

K

1

e
〈N∗, s′z = 1/2+ | ǫ(+)

µ Jµ |N, sz = 1/2− 〉 ,

S 1
2
=

√

2πα

K

1

e

|~q|
Q
〈N∗, s′z =

1/2+ | ǫ(0)µ Jµ |N, sz = 1/2+ 〉 ,

where e is the magnitude of the electron’s charge, α the electromagnetic fine

structure constant and Q =
√

Q2. Here ǫµ represents the polarization of the
incoming virtual photon, with |~q| the photon’s 3-momentum in the N∗ rest frame

and K = M2−m2

2M
. We identify M with the resonance N∗ and m with the nucleon

N . These amplitudes can in turn be related to matrix elements with the familiar
form

〈N∗, p′, s′| Jµ |N, p, s〉 = e

(

Mm

E ′(~p ′)E(~p)

)1/2

ū(M)(p
′, s′) Γ(p′, p) u(m)(p, s) ,

which parametrises the interaction via a different choice of Lorentz covariant
structures and consequently a different set of form factors. We shall note that
all spinors in this and subsequent expressions are regular Dirac spinors. Here
the subscript, u(ξ), labels the mass of the state for which the spinor describes.
A convenient choice of parametrisation is that first presented in Ref. [147] and
nicely summarised in Refs. [148, 149], which allows us to express the normal-
parity (1/2+ → 1/2+) transition as

〈N∗, p′, s′|Jµ(0)|N, p, s〉 = e

(

M m

E ′(~p ′)E(~p)

)1/2

ū(M)(p
′, s′) J̃µ u(m)(p, s) , (9.1)

and abnormal-parity (1/2+ → 1/2−) transition

〈N∗, p′, s′|Jµ(0)|N, p, s〉 = e

(

M m

E ′(~p ′)E(~p)

)1/2

ū(M)(p
′, s′) J̃µ γ5 u(m)(p, s) , (9.2)

with

J̃µ = −
[

q2 γµ − /q qµ
]

G1(Q
2)−

[

(P · q) γµ − /q P µ
]

G2(Q
2) ,
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and P = 1
2
(p′ + p). Using this decomposition, the helicity amplitudes can be

expressed in terms of G1 and G2 as

A 1
2
(Q2) = b+

[

2Q2G1(Q
2)− (M2 −m2)G2(Q

2)
]

,

S 1
2
(Q2) = b+

|~q |√
2

[

2 (M +m)G1(Q
2) + (M −m)G2(Q

2)
]

,

for normal transitions, and

A 1
2
(Q2) = b−

[

2Q2G1(Q
2)− (M2 −m2)G2(Q

2)
]

,

S 1
2
(Q2) = −b−

|~q |√
2

[

2 (M −m)G1(Q
2) + (M +m)G2(Q

2)
]

,

for abnormal transitions, with

b± = e

√

E ∓m
8mK

.

Another popular choice of parametrisation is to express the vertex in terms of
Pauli-Dirac-like form factors F ∗

1 (Q
2) and F ∗

2 (Q
2). Taking

F ∗
1 (Q

2) = Q2G1(Q
2)

F ∗
2 (Q

2) = −(M
2 −m2)

2
G1(Q

2) .

one can re-express the transition matrix elements [149] as

〈N∗, p′, s′|Jµ(0)|N, p, s〉 = e

(

Mm

E ′(~p ′)E(~p)

)1/2

ū(M)(p
′, s′) Γµi (p

′, p) u(m)(p, s) ,

with

Γµn(p
′, p) =

(

γµ − /q qµ

q2

)

F ∗
1 (Q

2) +
iσµν qν
M +m

F ∗
2 (Q

2) , (9.3)

for normal transitions and

Γµa (p
′, p) =

(

γµ − /q qµ

q2

)

γ5 F
∗
1 (Q

2) +
iσµν qν
M −m γ5 F

∗
2 (Q

2) . (9.4)

for abnormal transitions. We note that our choice of normalisation for the F ∗
2

form factor in the abnormal transition vertex differs from the common choice
[150, 151] by a factor of

(

M−m
M+m

)

. However, the absence of parity doubling in
the low-lying energy eigenstates of QCD admit this formalism. The advantage
of our normalisation is apparent if we consider the expressions for the helicity
amplitudes in term of the Dirac and Pauli form factors, namely

A±
1
2

(Q2) = 2 b±
[

F ∗
1 (Q

2) + F ∗
2 (Q

2)
]

,

S±
1
2

(Q2) = ±
√
2 b± (M ±m) |~q |

Q2

[

F ∗
1 (Q

2)− τ± F ∗
2 (Q

2)
]

,
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where

b± =

√

Q2 + (M ∓m)2

8m (M2 −m2)
,

and

τ± =
Q2

(M ±m)2
,

with the ± label indicating the parity of the resonant nucleon state. Compare this
to the choice of Refs. [150, 151]

A−
1
2

(Q2) = 2 b−

[

F ∗
1 (Q

2) +
M −m
M +m

F ∗
2 (Q

2)

]

,

S−
1
2

(Q2) = −
√
2 b− (M +m) |~q |

Q2

[

M −m
M +m

F ∗
1 (Q

2)− τ+ F ∗
2 (Q

2)

]

,

we can see that for our choice the helicity amplitudes are proportional to
generalisations of the Sachs electric and magnetic form factors

G∗
E(Q

2) = F ∗
1 (Q

2)− Q2

(M ±m)2
F ∗
2 (Q

2) ,

G∗
M(Q2) = F ∗

1 (Q
2) + F ∗

2 (Q
2) ,

while such an identification is not possible using the normalisation of Refs. [150,
151] due to a relative factor of

(

M−m
M+m

)

between F ∗
1 and F ∗

2 . In our analysis we
shall use the decompositions given by Eqs. (9.3) and (9.4).

Having suitably parametrised the desired matrix elements and subsequently
related the corresponding form factors to the helicity amplitudes A 1

2
and S 1

2
,

we shall now consider how these quantities are encoded in the three-point
correlation function. For this we will begin with the eigenstate projected three-
point correlation function, equipped with the correct parity selector as outlined
in Section 8.1,

Gµ
αi→βj (p

′, p, t2, t1; (Γ
′)
ji
) =

∑

~x2,~x1

e−i~p
′·~x2 e+i(~p

′−~p)·~x1

× Tr
[

(Γ′)
ji 〈Ω|φβj ,~p ′

(x2) J
µ(x1) φ̄

αi,~p(0)|Ω〉
]

. (9.5)

Here the i, j labels denote an element of {+,−} indicating the parity of the
associated nucleon state. As discussed in Section 8.1, the parity selectors are
defined as

Γ++ = Γ ,

Γ−+ = Γγ5 ,

Γ+− = −γ5Γ ,
Γ−− = −γ5Γγ5 .
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Following the standard arguments of inserting completeness, invoking operator
translation and the selection of Euclidean time, this expression reduces to the
familiar form

Gµ
αi→βj(p

′, p, t2, t1; (Γ
′)
ji
) = e−Eβj (~p ′) (t2−t1) e−Eαi(~p) t1

×Tr
[

(Γ′)
ji 〈Ω|φβj ,~p ′

(0)|βj, p′, s′〉

× 〈βj, p′, s′|Jµ(0)|αi, p, s〉 〈αi, p, s|φ̄αi,~p(0)|Ω〉
]

. (9.6)

Using our formalism for parity selection, we parametrise all baryon operator
overlap factors as

〈Ω|φαi,~p(0)|αi, p, s〉 = Zαi (~p ′)

√

mαi

Eαi(~p)
u(m

αi )(p, s) .

Substituting these overlap factors into Eq. (9.6) we have,

Gµ
αi→βj(p

′, p, t2, t1; (Γ
′)
ji
) = e−Eβj (~p

′) (t2−t1) e−Eαi(~p) t1

(

Mβj mαi

Eβj (~p ′)Eαi(~p)

)

Zβj

(~p ′) Z̄αi

(~p)

× Tr

[

(Γ′)
ji

(

∑

s′

uβj(p′, s′) ūβj(p′, s′)

)

Γµ(p′, p)

(

∑

s

uαi(p, s) ūαi(p, s)

)]

,

which upon applying the spin-sum identities reduces to

Gµ
αi→βj (p

′, p, t2, t1; (Γ
′)
ji
) = e−Eβj (~p

′) (t2−t1) e−Eαi(~p) t1

(

Zβj

(~p ′) Z̄αi

(~p)

4Eβj (~p ′)Eαi(~p)

)

× Tr
[

(Γ′)
ji (

/p
′ +Mβj

)

Γµ(p′, p)
(

/p+mαi

)

]

. (9.7)

The trace within the above expression is a linear combination of the form factors
and it is this term we wish to isolate in our ratio of correlation functions.

For our choice of ratio we require the three-point correlators for both the
forwards process αi → βj and the reverse process βj → αi. Applying the same
arguments as above to the correlator for the backwards process, we have

Gµ
βj→αi(p, p

′, t2, t1; (Γ̃
′)ij) = e−Eαi(~p) (t2−t1) e−Eβj (~p

′) t1

(

Zαi

(~p) Z̄βj

(~p ′)

4Eβj (~p ′)Eαi(~p)

)

× Tr
[

(Γ̃′)ij
(

/p+mαi

)

Γµ(p, p′)
(

/p
′ +Mβj

)

]

,

where the tilde on the projection matrix denotes that it is distinct to that used in
the forwards process. Using the symmetry property of Eqs. (9.3) and (9.4),

γ0 (Γµ(p, p′))
†
γ0 = Γµ(p′, p) ,
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it is possible to re-express the trace in this correlator as

Gµ
βj→αi(p, p

′, t2, t1; (Γ̃
′)ij) = e−Eαi(~p) (t2−t1) e−Eβj (~p ′) t1

(

Zαi

(~p) Z̄βj

(~p ′)

4Eβj(~p ′)Eαi(~p)

)

× Tr
[

(Γ′)
ji (

/p
′ +Mβj

)

Γµ(p′, p)
(

/p +mαi

)

]∗
, (9.8)

provided that we have

(Γ̃′)ij = γ0

[

(Γ′)
ji
]†
γ0 .

We shall therefore use this relation as the definition for the necessary choice of
projection operator for the correlator describing the backwards process. In the

case where γ0 (Γ
′)† γ0 = Γ′, this relationship reduces to

(Γ̃′)ij = (Γ′)
ij
,

for all choices of parity labels i and j. That is to say we can use the same base
projection operator, Γ′, suitably adjusted for source and sink parities using the
parity selectors outlined in Section 8.1.

Having identified the term of interest in the three-point correlator, we now
construct the following ratio,

Rµ
αi→βj(p

′, p; Γ′,Γ; j, i) =

√

〈Gαi→βj(p′, p, t2, t1; (Γ′)ji)〉 〈Gβj→αi(p, p′, t2, t1; (Γ′)ij)〉
〈Gαi(p, t2; (Γ)

ii)〉 〈Gβj(p′, t2; (Γ)
jj)〉

,

where we note that the ordering of p′ and p, as well as the parity label j and i
follow the tradition of source on the right and sink on the left. Using the parity
selected correlators, both two-point functions that appear in the denominator can
be expressed as

Gαi(p, t2; Γ
ii
0 ) = e−Eαi (~p) t2 Zαi

(~p) Z̄αi

(~p)

(

Eαi(~p) +mαi

2Eαi(~p)

)

,

Gβj(p′, t2; Γ
jj
0 ) = e−Eβj (~p

′) t2 Zβj

(~p ′) Z̄βj

(~p ′)

(

Eβj(~p ′) +Mβj

2Eβj(~p ′)

)

,

which substituting into the ratio, along with Eqs. (9.7) and (9.8), gives us

Rµ
αi→βj(p

′, p; Γ′,Γ; j, i) =
1

4Eαi(~p)Eβj (~p ′)

{(

2Eαi(~p)

Eαi(~p) +mαi

) (

2Eβj(~p ′)

Eβj (~p ′) +Mβj

)}1/2

× Tr
[

(Γ′)
ji (

/p
′ +Mβj

)

Γµ(p′, p)
(

/p+mαi

)

]

.

This can be further simplified by using the reduced ratio

R
µ

αi→βj(p′, p; Γ′,Γ; j, i) =
(

2Eαi(~p)

Eαi(~p) +mαi

)1/2( 2Eβj(~p ′)

Eβj (~p ′) +Mβj

)1/2

Rµ
αi→βj(p

′, p; Γ′,Γ; j, i) ,
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to give

(Eαi(~p) +mαi)
(

Eβj (~p ′) +Mβj

)

R
µ

αi→βj (p′, p; Γ′,Γ; j, i) =

Tr
[

(Γ′)
ji (

/p
′ +Mβj

)

Γµ(p′, p)
(

/p+mαi

)

]

.

In order to isolate the form factors we can express the trace, which is itself a linear
combination of these terms, as a matrix product

Tr
[

(Γ′)
ji (

/p
′ +Mβj

)

Γµ(p′, p)
(

/p+mαi

)

]

=
(

Kµ
1 (p

′, p; (Γ′)ji) Kµ
2 (p

′, p; (Γ′)ji)
)

(

F ∗
1 (Q

2)
F ∗
2 (Q

2)

)

,

expressed here in terms of the Pauli-Dirac decomposition. The kinematic weights

Kµ
i (p

′, p; (Γ′)ji) are determined by substituting the explicit form for the vertex
function in the trace and reducing the product of γ-matrices into expressions
involving the incoming and outgoing energies and momenta, the eigenstate
masses and the hadron spins via Pauli matrices. These expressions are presented
in Appendix C for both normal and abnormal transitions. By expressing each
independent determination of R

µ

αi→βj(p′, p; Γ′,Γ; j, i) in this way, we can combine
the results into a single vector equation

R = KF ,

where R is a vector containing n independent ratio determinations, K is an
n × 2 matrix of kinematic factors and F is a vector containing the 2 form
factors. Provided we have atleast two linearly independent determinations of
R
µ

αi→βj(p′, p; Γ′,Γ; j, i), we can solve the linear system by taking the pseudoinverse
of K via the Singular Value Decomposition (SVD) of K, to give

F = K
+
R .

To express this solution in terms of another choice of form factor decomposition,
it is a simple matter of applying the relevant basis transformation matrix relating
the two parameterisations. Consequently we can determine the the generalised
Sachs form factors and the helicity amplitudes through the following expressions,

G =

(

G∗
E(Q

2)
G∗
M(Q2)

)

=

(

1 − Q2

(M±m)2

1 1

)

K
+
R

H =

(

S 1
2
(Q2)

A 1
2
(Q2)

)

= b±

(

±
√
2(M±m)|~q|

Q2 0

0 2

)(

1 − Q2

(M±m)2

1 1

)

K
+
R .

9.1.1 Extractions Involving a State at Rest

The method discussed above allows for a general approach to the determination
of the transition form factors for an arbitrary choice of incoming and outgoing 3-
momentum, current polarisation and hadron spin polarisation. However in the
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case where one state is at rest, the expressions reduce remarkably allowing for
each helicity amplitude to be sampled independently through a given choice of
parameters. As was noted in the case of the ρ → πγ transition, we have a choice
as to which state is at rest and consequently, we can access to distinct values of
Q2. We shall examine the case of the incoming state is at rest (~p = 0, ~p ′ = ~q) in
detail for both temporal and spatial currents and simply quote the result for the
outgoing state at rest. We begin with the normal parity transition.

Working from the reduced expressions presented in Appendix C, choosing
the temporal current (µ = 0) and projecting with

Γ′ = Γ0 =
1

2

(

I 0
0 0

)

,

we have

K0
1(q, 0; Γ

++
0 ) =

+1

Q2

{

2mα+ (Mβ+ + Eβ+)
(

Q2 + (Mβ+ −mα+) (Eβ+ −mα+)
)}

,

and

K0
2 (q, 0; Γ

++
0 ) = − 2mα+ |~q |2

Mβ+ +mα+

.

By noting that

(

Q2 + (Mβ+ −mα+) (Eβ+ −mα+)
)

= (Eβ+ −Mβ+) (Mβ+ +mα+) ,

we can rewrite this first expression as

K0
1(q, 0; Γ

++
0 ) =

2mα+

Q2
(Eβ+ +Mβ+) (Eβ+ −Mβ+) (Mβ+ +mα+)

=
2mα+

Q2
|~q |2 (Mβ+ +mα+) .

Combining these together we have

R
0

α+→β+(q, 0; Γ0,Γ0; +,+) =
1

2mα+

1

(Eβ+ +Mβ+)

2mα+ |~q |2 (Mβ+ +mα+)

Q2

×
(

F ∗
1 (Q

2)− Q2

(Mβ+ +mα+)2
F ∗
2 (Q

2)

)

=
(Mβ+ +mα+)

(Eβ+ +Mβ+)

|~q |2
Q2

G∗
E(Q

2)

=
(Mβ+ +mα+)

(Eβ+ +Mβ+)

|~q |2
Q2

Q2

√
2 b+ (Mβ+ +mα+) |~q |

S 1
2
(Q2)

=
|~q |√

2 b+ (Eβ+ +Mβ+)
S 1

2
(Q2)
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and so we can isolate the S 1
2 helicity amplitude through

S 1
2
(Q2

1) =

√
2 b+ (Eβ+ +Mβ+)

|~q | R
0

α+→β+(q, 0; Γ0,Γ0; +,+) .

If now choose the spatial current (µ = k) and project with

Γ′ = Γj =
1

2

(

σj 0
0 0

)

,

we have
Kk

1 (q, 0; Γ
++
j ) = (−i) 2mα+ ǫijk q

i ,

and
Kk

2 (q, 0; Γ
++
j ) = (−i) 2mα+ ǫijk q

i .

Combining these together we have

R
k

α+→β+(q, 0; Γj,Γ0; +,+) =
1

2mα+

1

(Eβ+ +Mβ+)
(−i) 2mα+ ǫijk q

i

×
(

F ∗
1 (Q

2) + F ∗
2 (Q

2)
)

=
−i

(Eβ+ +Mβ+)
ǫijk q

iG∗
M(Q2)

=
−i

(Eβ+ +Mβ+)
ǫijk q

i 1

2b+
A 1

2
(Q2)

=
−i

2 b+ (Eβ+ +Mβ+)
ǫijk q

iA 1
2
(Q2) ,

and so we can isolate the A 1
2 helicity amplitude through

ǫijk q
iA 1

2
(Q2

1) = +2i b+ (Eβ+ +Mβ+)R
k

α→β(q, 0; Γj,Γ0; +,+) .

Using the alternative kinematics, we can isolate S 1
2 using

S 1
2
(Q2

2) =

√
2 b+ (Eα+ +mα+)

|~q | R
0

α+→β+(0, q; Γ0,Γ0; +,+) ,

and A 1
2 from

ǫijk q
iA 1

2
(Q2

2) = +2i b+ (Eα+ +mα+)R
k

α+→β+(0, q; Γj,Γ0; +,+) .

For the abnormal parity transitions, we note that the γ5 in the corresponding
vertex function acts to produce analogous expressions to those in the normal
parity case, however shifted into the off-diagonal quadrants of the spinor matrix.
By projecting out these off-diagonal contributions, we are able to access the
helicity amplitudes through expressions analogous to those used in the normal
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parity case. Once more we shall demonstrate this for the case where the incoming
state is at rest (~p = 0, ~p ′ = ~q) and simply present the results for the alternate
kinematics.

Choosing the temporal current (µ = 0) and projecting with Γ′ = Γ0

K0
1 (q, 0; Γ

−+
0 ) =

−1
Q2

{

2mα+ (Mβ− −Eβ−)
(

Q2 − (Mβ− +mα+) (Eβ− −mα+)
)}

,

and

K0
2 (q, 0; Γ

−+
0 ) =

2mα+ |~q |2
Mβ− −mα+

.

By noting that
(

Q2 − (Mβ− +mα+) (Eβ− −mα+)
)

= − (Eβ− +Mβ−) (Mβ− −mα+) ,

we can rewrite this first expression as

K0
1(q, 0; Γ

−+
0 ) = −2mα+

Q2
(Eβ− +Mβ−) (Eβ− −Mβ−) (Mβ− −mα+)

= −2mα+

Q2
|~q |2 (Mβ− −mα+) .

Combining these together we have

R
0

α+→β−(q, 0; Γ0,Γ0;−,+) = − 1

2mα+

1

(Eβ− +Mβ−)

2mα+ |~q |2 (Mβ− −mα+)

Q2

×
(

F ∗
1 (Q

2)− Q2

(Mβ− −mα+)2
F ∗
2 (Q

2)

)

= −(Mβ− −mα+)

(Eβ− +Mβ−)

|~q |2
Q2

G∗
E(Q

2)

= −(Mβ− −mα+)

(Eβ− +Mβ−)

|~q |2
Q2

(

− Q2

√
2 b− (Mβ− −mα+) |~q |

)

S 1
2
(Q2)

=
|~q |√

2 b− (Eβ− +Mβ−)
S 1

2
(Q2)

and so we can isolate the S 1
2 helicity amplitude through

S 1
2
(Q2

1) =

√
2 b− (Eβ− +Mβ−)

|~q | R
0

α+→β−(q, 0; Γ0,Γ0;−,+) .

If we now choose the spatial current (µ = k) and project with Γ′ = Γj , we have

Kk
1 (q, 0; Γ

−+
j ) = (−i) 2mα+ ǫijk q

i ,

and
Kk

2 (q, 0; Γ
−+
j ) = (−i) 2mα+ ǫijk q

i ,
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as we had in the normal parity case. Working through the same steps we find

that we can isolate the A 1
2 helicity amplitude through

ǫijk q
iA 1

2
(Q2

1) = +2i b− (Eβ− +Mβ−)R
k

α+→β−(q, 0; Γj,Γ0;−,+) .

In the case of the alternative kinematics, in order to obtain a non-zero contribu-
tion one must project out the opposite quadrant and so a modified projector must

be used, namely γ5 (Γ′)−+ γ5 = − (Γ′)+−. Using these kinematics we isolate S 1
2

using

S 1
2
(Q2

2) =

√
2 b− (Eα+ +mα+)

|~q | R
0

α+→β−(0, q; γ5 Γ0 γ5,Γ0;−,+) ,

and A 1
2 from

ǫijk q
iA 1

2
(Q2

2) = +2i b− (Eα+ +mα+)R
k

α+→β−(0, q; γ5 Γj γ5,Γ0;−,+) .

9.2 Negative Parity Nucleon Transition Results

In figures 9.1 and 9.2 we present the Euclidean time-series for A 1
2

and S 1
2

respectively. Results are illustrated for the first two negative parity eigenstates
of chapter 8, undergoing radiative transition to the ground state. Similar to the
case of ρ → πγ, for each eigenstate we have access to two distinct values of Q2

stemming from the choice for which state is taken to be at rest. The values are
presented in Table 9.1. It is immediately apparent from the data that with our
choice of kinematics, we are limited to time-like Q2 only. This ultimately stems
from our small value for the 3-momentum transfer, |~q | ≃ 0.4 GeV, which across
all quark masses is consistently smaller than the difference in energy between the
incoming and outgoing states.

Beginning with the A 1
2

amplitude, for each state we observe plateau-like

regions for both choices of kinematics. Within both states we find that the
doubly-represented and singly-represented quark sectors come with opposite
signs. Values are in the range 0.1− 0.5 GeV−1/2.

To directly compare our quark-sector results with experiment, we consider
the PDG values [105] for the photon decay amplitude,A 1

2
(0), for both proton and

neutron states. In the absence of s-quark contributions, estimates for the expected
doubly- and singly-represented quark sector contribution to A 1

2
(0) are

N∗(1535) : Adoub
1
2

(0) = 0.153 GeV−1/2, Asing
1
2

(0) = 0.265 GeV−1/2 ,

N∗(1650) : Adoub
1
2

(0) = 0.070 GeV−1/2, Asing
1
2

(0) = 0.145 GeV−1/2 .

These estimates reflect both connected and disconnected contributions from a
given quark flavour. While the magnitude is consistent, it is apparent that the
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Figure 9.1: An example of the A 1
2

helicity amplitude as a function of Euclidean

sink time for the first two negative parity nucleon eigenstates. These results are
obtained with mπ = 411 MeV. The upper four figures ( ) and ( ) are for the first
excited nucleon state while the lower four figures ( ) and ( ) are for the second
excited nucleon state. For each eigenstate, the upper figures are evaluated with
the N∗ at rest while the lower figures with the N at rest. All figures on the left
are for the doubly-represented quark sector while those on the right are for the
singly-represented quark. Both quark sectors are normalised to unit charge. The
vertical dashed line indicates the position of the current insertion.
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Table 9.1: The Q2 values accessed in the our lattice evaluation of the N∗ → Nγ
helicity amplitudes for the two lightest negative parity eigenstates. For each state
we are able to access two distinct values for Q2 stemming from the choice of
which state is taken to be at rest. For Q2

1, the ground state nucleon, N , is at rest,
while for Q2

2, the excited nucleon, N∗, is at rest.

N∗(1535) N∗(1650)

κ mπ (MeV) Q2
1 (GeV2) Q2

2 (GeV2) Q2
1 (GeV2) Q2

2 (GeV2)

0.13700 702 -0.110(24) -0.205(28) -0.147(29) -0.246(34)
0.13727 570 -0.095(26) -0.199(31) -0.064(28) -0.162(34)
0.13754 411 -0.135(21) -0.272(25) -0.182(36) -0.328(42)
0.13770 296 -0.089(34) -0.231(42) -0.259(64) -0.431(74)

sign on our singly-represented quark sector is at odds with the experimental
determination. Consequently, the value we would extract for the proton A 1

2

amplitude would be larger than expected. We note that a previous determination
for the helicity amplitudes obtained from light-cone distribution amplitudes [152]
for values ofQ2 > 1 GeV2, suggest a value for theA 1

2
larger than the experimental

value. To make a quantitative comparison would require extractions in the space-
like regime and extrapolations to Q2 = 0.

For the S 1
2

amplitude, again the results are quite similar between the two

eigenstates. Both states give values around 0.1 − 0.2 GeV−1/2 with both quark
sectors carrying the same sign. In combining the quark sector results to obtain
the proton S 1

2
amplitude, we find the value to be positive in the time-like region.

The CLAS data for this process [153] shows a definite negative value for this
amplitude from Q2 = 0 − 4 GeV2, however at around 1 GeV2 there is a definite
turning point with the value tending towards 0. If one were to continue this trend
into time-like Q2, the value for the S 1

2
would be positive in value.

In comparing the results between the two helicity amplitudes, it appears that
theA 1

2
amplitude produces a cleaner signal than the corresponding S 1

2
amplitude

across the majority of simulation parameters considered. Comparing the helicity
amplitudes for each state with the corresponding N∗ elastic form factors there
is a significant decrease in the signal quality, despite one of our states being the
ground state nucleon. It is important to note that here we are operating in the
time-like region, compared to the elastic case where extractions are necessarily
in the space-like region. Our results for the ρ → πγ transition, presented in
chapter 7, sampled the form factor in both space and time-like regions of Q2 and
showed a marked reduction in the quality of the plateau when sampling in the
time-like region.

These results mark the first direct extraction of the helicity amplitudes for the
negative parity N∗ → Nγ∗ transition, however the apparent limitation of our
results is the fact our extractions lie in the time-like region. In order to compare
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Figure 9.2: An example of the S 1
2

helicity amplitude as a function of Euclidean

sink time for the first two negative parity nucleon eigenstates. These results are
obtained with mπ = 411 MeV. The upper four figures ( ) and ( ) are for the first
excited nucleon state while the lower four figures ( ) and ( ) are for the second
excited nucleon state. For each eigenstate, the upper figures are evaluated with
the N∗ at rest while the lower figures with the N at rest. All figures on the left
are for the doubly-represented quark sector while those on the right are for the
singly-represented quark. Both quark sectors are normalised to unit charge. The
vertical dashed line indicates the position of the current insertion.
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Figure 9.3: The distribution of Q2 values obtained for various current momenta
~q = 2π

L
~n formed from taking different values for the incoming momentum ~p. We

consider all possible values of ~p with |~p |2 ≤ 10 2π
L

. The blue lines are taking the
nucleon excitation, N∗, to be the outgoing state while the red lines are taking
the ground state nucleon, N , to be the outgoing state. The values are for mπ =
296 MeV with M = 1.66 GeV, the mass of the first negative parity nucleon
excitation, and m = 1.07 GeV, the mass of the ground-state nucleon, for this
ensemble.

with the existing experimental data and models, we need extractions in the space-
like domain. Extractions with low space-like Q2 are particularly interesting as
as model calculations are sensitive to long-distance physics in describing the
amplitudes. As was noted earlier, the limitation in our ability to sample the
desired Q2 stems from the small value for |~q | when compared with the energy
separation between the incoming and outgoing states. For the states of interest
here, the mass separation between our states is between 0.5 and 0.7 GeV and
so choosing a |~q | on the upper side of this bound will result in Q2 > 0 when
the N∗ is taken at rest. However, an alternate method that instead decreases the
energy separation is to work in a boosted frame. For the method used in this work
whereby the SST inversion is performed via the current rather than the sink, we
can access a range of different Q2 by projecting out different momenta at the sink,
to give

Q2 = |~q |2 − (EM(~p ′)− Em(~p))2 (9.9)

= 2 (EM(~p ′)Em(~p)− ~p ′ · ~p)−M2 −m2 , (9.10)

where ~p ′ is determined from our choice of the current and source momentum
using ~p ′ = ~q + ~p. From this expression we can see that space-like Q2 can be
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generated by increasing the incoming momentum ~p while holding the current
momentum fixed, or choosing kinematics such that ~p ′ · ~p < 0. In Fig. 9.3 we
show the resulting Q2 generated for several choices of ~q and can find that we can
obtain a range of space-like Q2 for relatively small momenta, ~p. Unfortunately,
candidature time frames prevent an investigation of this idea herein, however it
will be a first point of investigation post-submission.

9.3 Summary

Here we have created a formalism for the extraction of the electromagnetic
transition form factors for both positive and negative spin-1/2 baryons. The
formalism enables the description of electroproduction processes for excited
nucleon states, Nγ∗ → N∗. Through this framework we outlined how all possible
parity transitions could be obtained from the same baryon correlator and was
suitably generalised for determinations using arbitrary incoming and outgoing
momenta, current polarisation and spin orientations. We then considered explicit
extractions relevant to the choice of kinematics utilised in this work.

In examining the A 1
2

and S 1
2

helicity amplitudes for the abnormal parity

transition of the first two negative parity nucleon eigenstates, we observed
definite plateau-like behaviour in both channels. However, due to the relatively
small value of |~q | used in our calculation, our extractions were limited to time-
like Q2 limiting our ability to perform a direct comparison with experiment and
model calculations. With this in mind, a framework was proposed that would
allow for space-like Q2 values to be examined without the need for increasing
|~q |2.



Chapter 10

Conclusion

In this work we have considered a generalisation of the variational approach,
standard to hadron spectroscopy calculations, for use in the determination of
hadron structure. As the variational process acts to produce interpolators that
couple to individual eigenstates, it allows us to project out the contributions for
an individual state or transition from the corresponding three-point correlation
function. The appeal of such an approach is two-fold. It provides us with a means
of removing and thus controlling the effect of excited state contamination to the
determination of ground state properties. Complementary to this, it allows us
to disentangle the terms describing excited states properties from the dominant
ground state. With this understanding, we go on to consider a range of structure
calculations for a variety of hadron states.

We began in chapter 5 with the nucleon axial charge, gA. The lattice deter-
minations for this quantity have consistently been lower than the experimental
determination and it has been suggested that excited state contaminations may
play a significant role. Using the variational approach we find that the resulting
optimised interpolators provide rapid ground state dominance, allowing for
earlier insertion of the current and earlier fit windows, with a corresponding
reduction in statistical uncertainties. Through a subsequent comparison of
standard single source methods with the variational result, we are able to show
that excited state contamination acts to suppress the measured value for gA when
equipped with inadequately tuned sources and sinks.

The following chapter considered the electromagnetic form factors for the
ground state π and ρ mesons and their first excitations. Once more we are
able to show that use of the variational approach gives rise to improved ground
state dominance, discernible through the improved plateau quality and duration.
This allows for the selection of both earlier and larger fit windows. Using the
variational framework we are able to extract accurate results for the ρmeson form
factors in (2+1)-flavour QCD at near physical masses for the first time. Our value
for the ρmeson g-factor, gρ = 2.21(8), compares well with the experimental deter-
mination of Ref. [92], gρ = 2.1(5), albeit with significantly smaller uncertainty. For
the ρmeson quadrupole form factor, we observe significant chiral curvature with
a rapid increase in the magnitude of the quadrupole moment as the quark mass
approaches the physical value. The quadrupole moment is found to be negative,
consistent with previous lattice determinations.

139
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Through the variational framework, we are also able to perform the first
extraction for the electromagnetic form factors of a light meson excitation. For
the charge form factor GC of the π∗ and ρ∗ mesons, we find the magnitude to be
lower than the corresponding ground states, indicating that these states are larger
in extent. For the ρ∗ meson, we are further able to extract values for the magnetic
form factor which are found to be significantly smaller than the ground state ρ
meson. Evaluation of the magnetic moments for the ρ and ρ∗ mesons give a value
for µρ∗/µρ = 0.74(9) consistent with model determinations.

In chapter 7 we presented a follow-up calculation examining the ρ→ πγ tran-
sition. While there have been some lattice determinations of the corresponding
form factor, very few have been with dynamical quarks and none in the light
quark regime. In our extraction we are able to obtain values for the transition
form factor GM1 in both the space-like and time-like Q2 domain, which in turn
allows for the extraction of the transition moment GM1(0). Our results are found
to be consistent with quark model expectations for heavy quark masses, however
our result for the lightest quark mass is significantly lower than the experimental
value. Our results suggest that disconnected sea-quark loop contributions may
play a significant role for the complete description of this process and further
investigation is warranted.

The remaining two chapters considered the use of the variational approach
for the study of nucleon excitations, particularly those in the negative parity
channel. Due to the small mass splitting between the N∗(1535) and N∗(1650)
in this channel, standard single source methods would encounter severe excited
state contamination. Consequently this channel is well suited for the use of the
variational approach. Through considerations of the structure of the baryon
correlator, we present a framework for accessing both positive and negative
parity eigenstate contributions through the selection of appropriate projection
operators. With this in mind, we perform a calculation of the electromagnetic
form factors for the two lightest negative parity nucleon eigenstates. The electric
form factor GE is found to be similar between both states and comparison with
the ground state nucleon show the value to be significantly smaller, indicating
these states are considerably larger in extent. For the magnetic form factor GM ,
similar values are observed for the doubly-represented quark sector, however
for the singly-represented quark sector the values differ in sign, suggesting
different spin configuration for these states. To compare with model calculations,
we construct estimates for the magnetic moments of the p∗ and n∗ isospin
projections for the two negative parity eigenstates. Our lightest eigenstate gives
values consistent with the model estimates for the N∗(1535), however significant
discrepancies are observed for the second eigenstate and the model estimates
for the N∗(1650). This observation, coupled with the spectrum analysis of
Ref. [133], suggest that the eigenstate isolated on the lattice is more likely a finite-
volume meson-baryon dressing of the N∗(1535), rather than the N∗(1650). This
highlights the challenge involved in identifying states on the lattice. Nonetheless,
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determination of the properties of these eigenstates can guide us and provide
hints as to the nature of the eigenstates observed on the lattice.

In the final chapter we present a general framework for the determination of
the Nγ → N∗ transition form factors central to the electroproduction processes of
excited nucleon states being considered by the experimental programs at Mainz,
Bonn, MIT-Bates and Jefferson Lab. Through this framework, we outline how one
is able to extract all possible parity transitions from the same baryon correlator.
The presentation allows for arbitrary incoming and outgoing momenta, current
polarisations and spin orientations. We then perform a determination of the
A 1

2
and S 1

2
helicity amplitudes for the transition of the two lightest negative

parity nucleon eigenstates, considered in the preceding chapter, to the ground
state nucleon. Between the two states, we observe very similar results for both
amplitudes. Unfortunately, due to our choice for the current 3-momentum |~q |,
our extractions are limited to the time-like Q2 domain limiting our ability for
a direct comparison with experiment and model calculations. A method was
proposed to access space-like Q2 through considerations of boosted frames; this
will be a focus of future investigations.

In summary, we have been able to demonstrate the efficacy of the variational
approach in separating out the terms for individual eigenstates. The resulting
optimised interpolators allow for improved results for the determination of
ground state properties. This method is also the ideal means to study the
underlying structure of hadron excitations. Considerations of the negative parity
spectrum demonstrate the difficulties associated with state identification and
highlight the need to couple the hadron structure calculations presented here
with studies of the evolution and make-up of the finite-volume eigenstates.
Taking such an approach, we may well have the means to uncover some of the
long standing mysteries of the hadron spectrum.





Appendix A

Gamma Matrices

Here we review the representations of the γ-matrices used in this work. In
particular we consider the Dirac representation, which is used to facilitate
calculations of the γ-matrix algebra at the phenomenological level, and the
Sakurai representations which we use in the explicit numerical calculations of
our correlation functions.

The defining property for the γ-matrix algebra is that elements satisfy the anti-
commutation relation

{γµ, γν} = 2gµν ,

where gµν is the metric for the space in question. Generally this algebra is
extended to include the matrix γ5, which satisfies

{γ5, γν} = 0 .

From these matrices one is able to construct a basis that spans the space of 4 × 4
spinor matrices

{

I, γµ, σµν |µ>ν , γµγ5, γ5
}

,

where σµν = i
2
[γµ, γν ].

143



144 Gamma Matrices

Dirac Representation

The Dirac representation,

γ0 =

(

I2 0
0 −I2

)

, γi =

(

0 σi
−σi 0

)

,

satisfies the Clifford algebra for Minknowski metric (signature (+ - - - )),

{γµ, γν} = 2gµν .

For this metric we define γ5 =
i
4!
ǫµνστγ

µγνγσγτ , which in this representation takes
the explicit form

γ5 =

(

0 I2
I2 0

)

.

Useful definitions and properties

γ20 = I4 (A.1)

γ2i = −I4 (A.2)

γ25 = I4 (A.3)

γ†0 = γ0 (A.4)

γ†i = −γi (A.5)

γ†5 = γ5 (A.6)

γ0γ
†
µγ0 = γµ (A.7)

C = iγ0γ2 (A.8)

C† = C−1 = CT = −C (A.9)
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Sakurai Representation

The Sakurai representation,

γ4 =

(

I2 0
0 −I2

)

, γi =

(

0 −iσi
iσi 0

)

,

satisfies the Clifford algebra for the Euclidean metric,

{γµ, γν} = 2δµν .

For this metric we define γ5 =
1
4!
ǫµνστγ

µγνγσγτ , which in this representation takes
the explicit form

γ5 = −
(

0 I2
I2 0

)

.

Useful definitions and properties

γ2µ = I4 (A.10)

γ25 = I4 (A.11)

γ†µ = γµ (A.12)

γ†5 = γ5 (A.13)

C = γ4γ2 (A.14)

C† = C−1 = CT = −C (A.15)





Appendix B

Form Factor Plateaus

Here we present the figures showing the Euclidean time series and corresponding
fits for the electromagnetic form factors examined in the work. The error
analysis of the correlation function ratios is performed via a second order, single-
elimination jackknife, with the χ2 per degree of freedom (χ2

dof ) obtained from the
covariance matrix fits. We perform a series of fits of the ratio after the current
insertion at t1. By examining the χ2

dof we are able to establish a valid window
through which we may fit in order to extract our observables.
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B.1 Light Meson Form Factors

π meson Sachs Charge Form Factor
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Figure B.1: The quark sector results for the π meson charge form factor GC .
The dashed line represents the time-slice at which the current is inserted. The
direction of decreasing quark mass is left to right and down the page.
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π∗ meson Sachs Charge Form Factor
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Figure B.2: The quark sector results for the π∗ meson charge form factor GC .
The dashed line represents the time-slice at which the current is inserted. The
direction of decreasing quark mass is left to right and down the page.
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ρ meson Sachs Charge Form Factor
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Figure B.3: The quark sector results for the ρ meson charge form factor GC .
The dashed line represents the time-slice at which the current is inserted. The
direction of decreasing quark mass is left to right and down the page.
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ρ∗ meson Sachs Charge Form Factor
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Figure B.4: The quark sector results for the ρ∗ meson charge form factor GC .
The dashed line represents the time-slice at which the current is inserted. The
direction of decreasing quark mass is left to right and down the page.
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ρ meson Sachs Magnetic Form Factor
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Figure B.5: The quark sector results for the ρ meson magnetic form factor GM .
The dashed line represents the time-slice at which the current is inserted. The
direction of decreasing quark mass is left to right and down the page.



§B.1 Light Meson Form Factors 153

ρ∗ meson Sachs Magnetic Form Factor
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Figure B.6: The quark sector results for the ρ∗ meson magnetic form factor GM .
The dashed line represents the time-slice at which the current is inserted. The
direction of decreasing quark mass is left to right and down the page.
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ρ meson Sachs Electric Quadrupole Form Factor
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Figure B.7: The quark sector results for the ρ meson quadrupole form factor GQ.
The dashed line represents the time-slice at which the current is inserted. The
direction of decreasing quark mass is left to right and down the page.
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B.2 Light Meson Transition Form Factors

ρ→ πγ Transition Form Factor (π at rest)
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Figure B.8: The quark sector results for the ρ → πγ transition form factor GM1,
evaluated with the π meson at rest. The dashed line represents the time-slice at
which the current is inserted. The direction of decreasing quark mass is left to
right and down the page.
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ρ→ πγ Transition Form Factor (ρ at rest)
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Figure B.9: The quark sector results for the ρ → πγ transition form factor GM1,
evaluated with the ρ meson at rest. The dashed line represents the time-slice at
which the current is inserted. The direction of decreasing quark mass is left to
right and down the page.
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B.3 Negative Parity Nucleon Form Factors

Sachs Electric Form Factor for the 1st Negative Parity Eigenstate
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Figure B.10: The quark sector results for the electric form factor GE of the
first negative parity nucleon eigenstate. The doubly-represented quark sector
is presented on the left and the singly-represented quark sector on the right.
The dashed line represents the time-slice at which the current is inserted. The
direction of decreasing quark mass is the page.



158 Form Factor Plateaus

Sachs Electric Form Factor for the 2nd Negative Parity Eigenstate
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Figure B.11: The quark sector results for the electric form factor GE of the
second negative parity nucleon eigenstate. The doubly-represented quark sector
is presented on the left and the singly-represented quark sector on the right.
The dashed line represents the time-slice at which the current is inserted. The
direction of decreasing quark mass is down the page.
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Sachs Magnetic Form Factor for the 1st Negative Parity Eigenstate
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Figure B.12: The quark sector results for the magnetic form factor GM of the
first negative parity nucleon eigenstate. The doubly-represented quark sector
is presented on the left and the singly-represented quark sector on the right.
The dashed line represents the time-slice at which the current is inserted. The
direction of decreasing quark mass is down the page.
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Sachs Magnetic Form Factor for the 2nd Negative Parity Eigenstate
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Figure B.13: The quark sector results for the magnetic form factor GM of the
first negative parity nucleon eigenstate. The doubly-represented quark sector
is presented on the left and the singly-represented quark sector on the right.
The dashed line represents the time-slice at which the current is inserted. The
direction of decreasing quark mass is down the page.



Appendix C

Full Expressions for the Nucleon
Transition Matrix Elements

Here we provide the reduced expressions for the γ-matrix products found within
the trace required for the nucleon transition elements. In particular, we express
the products as

(

/p
′ +Mβj

)

Γµ(p′, p)
(

/p+mαi

)

= X
µ(p′, p)F ∗

1 (Q
2) + Y

µ(p′, p)F ∗
2 (Q

2) . (C.1)

Consequently, the kinematic factors that form the elements of the kinematic
weight matrix K (discussed in section 9.1), are given via the following traces

Kµ
1 (p

′, p; (Γ′)
ji
) = Tr

[

(Γ′)
ji
X
µ(p′, p)

]

,

Kµ
2 (p

′, p; (Γ′)
ji
) = Tr

[

(Γ′)
ji
Y
µ(p′, p)

]

.

Due to the underlying block 2×2 structure of the γ-matrices, we choose to present
X
µ(p′, p) and Y

µ(p′, p) in a 2 × 2 block form, with each term X
µ
ab(p

′, p) implicitly
multiplied by the 2× 2 identity matrix.

C.1 Normal Parity Transition Elements

These elements are formed from the vertex function for normal parity-transitions
(± → ±) given by Eq. (9.3).

For the temporal component of the current (µ = 0):

X
0
11(p

′, p) =
+1

Q2

{

(m+ E) (M + E ′)
(

Q2 + (M −m) (E ′ − E)
)

+ (~p ′ · ~p+ i ~p ′ · (~p× ~σ))
(

Q2 − (M −m) (E ′ − E)
)}

,

X
0
12(p

′, p) =
+1

Q2

{

(m− E)
(

Q2 − (M −m) (E ′ − E)
)

(~p ′ · ~σ)

− (M + E ′)
(

Q2 + (M −m) (E ′ − E)
)

(~p · ~σ)
}

,
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X
0
21(p

′, p) =
+1

Q2

{

(m+ E)
(

Q2 + (M −m) (E ′ − E)
)

(~p ′ · ~σ)

− (M −E ′)
(

Q2 − (M −m) (E ′ − E)
)

(~p · ~σ)
}

,

X
0
22(p

′, p) =
−1
Q2

{

(m− E) (M − E ′)
(

Q2 − (M −m) (E ′ −E)
)

+ (~p ′ · ~p+ i ~p ′ · (~p× ~σ))
(

Q2 + (M −m) (E ′ − E)
)}

;

(M +m)Y0
11(p

′, p) =− (m+ E) (~q · ~p ′ − i ~p ′ · (~p× ~σ)) + (M + E ′) (~q · ~p+ i ~p ′ · (~p× ~σ)) ,

(M +m)Y0
12(p

′, p) = + (~q · ~p) (~p ′ · ~σ) + (~q · ~p ′) (~p · ~σ) + ((m− E) (M + E ′)− ~p ′ · ~p) (~q · ~σ) ,

(M +m)Y0
21(p

′, p) = + (~q · ~p) (~p ′ · ~σ) + (~q · ~p ′) (~p · ~σ) + ((m+ E) (M −E ′)− ~p ′ · ~p) (~q · ~σ) ,

(M +m)Y0
22(p

′, p) = + (m− E) (~q · ~p ′ − i ~p ′ · (~p× ~σ))− (M −E ′) (~q · ~p+ i ~p ′ · (~p× ~σ)) .

For the spatial component of the current (µ = i):

X
i
11(p

′, p) = + (m+ E) p′i + (M + E ′) pi − i (m+ E) (~p ′ × ~σ)i + i (M + E ′) (~p× ~σ)i

+
(M −m)

Q2
((m+ E) (M + E ′)− ~p ′ · ~p− i ~p ′ · (~p× ~σ)) qi ,

X
i
12(p

′, p) =− (~p · ~σ) p′i − (~p ′ · ~σ) pi + ((m− E) (M + E ′) + ~p ′ · ~p) σi + i (~p ′ × ~p)i

− (M −m)

Q2
((m− E) (~p ′ · ~σ) + (M + E ′) (~p · ~σ)) qi ,

X
i
21(p

′, p) = + (~p · ~σ) p′i + (~p ′ · ~σ) pi − ((m+ E) (M −E ′) + ~p ′ · ~p)σi − i (~p ′ × ~p)i

+
(M −m)

Q2
((m+ E) (~p ′ · ~σ) + (M − E ′) (~p · ~σ)) qi ,

X
i
22(p

′, p) = + z (m− E) p′i + (M − E ′) pi − i (m− E) (~p ′ × ~σ)i + i (M −E ′) (~p× ~σ)i

+
(M −m)

Q2
((m−E) (M −E ′)− ~p ′ · ~p− i ~p ′ · (~p× ~σ)) qi ;
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(M +m)Yi
11(p

′, p) =− (m+ E) (E ′ − E) (p′i − i(~p ′ × ~σ)i) + (~q · ~p) p′i
+ (M + E ′) (E ′ − E) (pi + i(~p× ~σ)i)− (~q · ~p ′) pi

+ i (~p ′ · ~σ + ~p · ~σ) (~p ′ × ~p)i − i ((m+ E) (M + E ′)− ~p ′ · ~p) (~q × ~σ)i ,

(M +m)Yi
12(p

′, p) = + i (M +m) (~p ′ × ~p)i + (E ′ −E) (~p ′ · ~σ) pi + (E ′ − E) (~p · ~σ) p′i
+ (m− E) (~q · ~σ) p′i − (M + E ′) (~q · ~σ) pi − (m− E) (~q · ~p ′)σi

+ (M + E ′) (~q · ~p) σi + (E ′ − E) ((m−E) (M + E ′)− ~p ′ · ~p) σi ,

(M +m)Yi
21(p

′, p) =− i (M +m) (~p ′ × ~p)i + (E ′ − E) (~p ′ · ~σ) pi + (E ′ −E) (~p · ~σ) p′i
− (m+ E) (~q · ~σ) p′i + (M − E ′) (~q · ~σ) pi + (m+ E) (~q · ~p ′)σi

− (M − E ′) (~q · ~p)σi + (E ′ − E) ((m+ E) (M − E ′)− ~p ′ · ~p)σi ,

(M +m)Yi
22(p

′, p) = + (m− E) (E ′ − E) (p′i − i(~p ′ × ~σ)i) + (~q · ~p) p′i
− (M − E ′) (E ′ − E) (pi + i(~p× ~σ)i)− (~q · ~p ′) pi

− i (~p ′ · ~σ + ~p · ~σ) (~p ′ × ~p)i − i ((m− E) (M − E ′) + ~p ′ · ~p) (~q × ~σ)i .

C.2 Abnormal Parity Transition Elements

These elements are formed from the vertex function for abnormal parity-transitions
(∓ → ±) given by Eq. (9.4).

For the temporal component of the current (µ = 0):

X
0
11(p

′, p) =
+1

Q2

{

(m+ E)
(

Q2 − (M +m) (E ′ − E)
)

(~p ′ · ~σ)

+ (M + E ′)
(

Q2 + (M +m) (E ′ −E)
)

(~p · ~σ)
}

,

X
0
12(p

′, p) =
+1

Q2

{

(m− E) (M + E ′)
(

Q2 + (M +m) (E ′ − E)
)

− (~p ′ · ~p+ i ~p ′ · (~p× ~σ))
(

Q2 − (M +m) (E ′ − E)
)}

,

X
0
21(p

′, p) =
−1
Q2

{

(m+ E) (M −E ′)
(

Q2 − (M +m) (E ′ −E)
)

− (~p ′ · ~p+ i ~p ′ · (~p× ~σ))
(

Q2 + (M +m) (E ′ − E)
)}

,

X
0
22(p

′, p) =
+1

Q2

{

(m− E)
(

Q2 + (M +m) (E ′ − E)
)

(~p ′ · ~σ)

+ (M − E ′)
(

Q2 − (M +m) (E ′ − E)
)

(~p · ~σ)
}

;
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(M −m)Y0
11(p

′, p) =− (~q · ~p) (~p ′ · ~σ)− (~q · ~p ′) (~p · ~σ) + ((m+ E) (M + E ′) + ~p ′ · ~p) (~q · ~σ) ,

(M −m)Y0
12(p

′, p) =− (m−E) (~q · ~p ′ − i ~p ′ · (~p× ~σ))− (M + E ′) (~q · ~p+ i ~p ′ · (~p× ~σ)) ,

(M −m)Y0
21(p

′, p) = + (m+ E) (~q · ~p ′ − i ~p ′ · (~p× ~σ)) + (M − E ′) (~q · ~p+ i ~p ′ · (~p× ~σ)) ,

(M −m)Y0
22(p

′, p) =− (~q · ~p) (~p ′ · ~σ)− (~q · ~p ′) (~p · ~σ) + ((m− E) (M − E ′) + ~p ′ · ~p) (~q · ~σ) .

For the spatial component of the current (µ = i):

X
i
11(p

′, p) = + (~p · ~σ) p′i + (~p ′ · ~σ) pi + ((m+ E) (M + E ′)− ~p ′ · ~p)σi − i (~p ′ × ~p)i

− (M +m)

Q2
((m+ E) (~p ′ · ~σ)− (M + E ′) (~p · ~σ)) qi ,

X
i
12(p

′, p) = + (m− E) p′i − (M + E ′) pi − i (m− E) (~p ′ × ~σ)i − i (M + E ′) (~p× ~σ)i

+
(M +m)

Q2
((m−E) (M + E ′) + ~p ′ · ~p+ i ~p ′ · (~p× ~σ)) qi ,

X
i
21(p

′, p) = + (m+ E) p′i − (M −E ′) pi − i (m+ E) (~p ′ × ~σ)i − i (M − E ′) (~p× ~σ)i

+
(M +m)

Q2
((m+ E) (M − E ′) + ~p ′ · ~p+ i ~p ′ · (~p× ~σ)) qi ,

X
i
22(p

′, p) =− (~p · ~σ) p′i − (~p ′ · ~σ) pi − ((m− E) (M − E ′)− ~p ′ · ~p)σi + i (~p ′ × ~p)i

+
(M +m)

Q2
((m−E) (~p ′ · ~σ)− (M − E ′) (~p · ~σ)) qi ;

(M −m)Yi
11(p

′, p) =− i (M −m) (~p ′ × ~p)i − (E ′ − E) (~p ′ · ~σ) pi − (E ′ − E) (~p · ~σ) p′i
+ (m+ E) (~q · ~σ) p′i + (M + E ′) (~q · ~σ) pi − (m+ E) (~q · ~p ′)σi

− (M + E ′) (~q · ~p)σi + (E ′ − E) ((m+ E) (M + E ′) + ~p ′ · ~p) σi ,

(M −m)Yi
12(p

′, p) =− (m−E) (E ′ − E) (p′i − i(~p ′ × ~σ)i)− (~q · ~p) p′i
− (M + E ′) (E ′ − E) (pi + i(~p× ~σ)i) + (~q · ~p ′) pi

− i (~p ′ · ~σ + ~p · ~σ) (~p ′ × ~p)i − i ((m− E) (M + E ′)− ~p ′ · ~p) (~q × ~σ)i ,
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(M −m)Yi
21(p

′, p) = + (m+ E) (E ′ − E) (p′i − i(~p ′ × ~σ)i)− (~q · ~p) p′i
+ (M − E ′) (E ′ − E) (pi + i(~p× ~σ)i) + (~q · ~p ′) pi

+ i (~p ′ · ~σ + ~p · ~σ) (~p ′ × ~p)i − i ((m+ E) (M −E ′)− ~p ′ · ~p) (~q × ~σ)i ,

(M −m)Yi
22(p

′, p) = + i (M −m) (~p ′ × ~p)i − (E ′ −E) (~p ′ · ~σ) pi − (E ′ − E) (~p · ~σ) p′i
− (m−E) (~q · ~σ) p′i − (M + E ′) (~q · ~σ) pi + (m−E) (~q · ~p ′) σi

+ (M − E ′) (~q · ~p)σi + (E ′ − E) ((m−E) (M − E ′) + ~p ′ · ~p)σi .
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