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Abstract

The underlying theme of this thesis is an investigation of the equation of state of
strongly interacting matter and the modelling of cold neutron stars. Particular em-
phasis is placed on the influence of quark degrees of freedom, which we investigate by
using relativistic quark level models. More precisely, we study the equation of state for
QCD matter in the zero temperature limit, from the confined hadronic phase to the
deconfined quark phase.

We begin by exploring the equation of state for nuclear matter in the quark-meson
coupling model, including full Fock terms. The comparison with phenomenological
constraints can be used to restrict the few additional parameters appearing in the Fock
terms which are not present at Hartree level. Because the model is based upon the
in-medium modification of the quark structure of the bound hadrons, it can be readily
extended to include hyperons and to calculate the equation of state of dense matter
in beta-equilibrium. This leads naturally to a study of the properties of neutron stars,
including their maximum mass, their radii and density profiles.

Next, we study deconfined quark matter using the three flavour Nambu–Jona-
Lasinio model based on one-gluon exchange. The model is implemented by employing
Schwinger’s covariant method of proper time regularisation. Comparisons are made
with the more commonly used three momentum regularised model with the t’ Hooft
determinant term. Hybrid equations of state are constructed using the developed
Hartree-Fock quark-meson coupling and Nambu–Jona-Lasinio models. We consider
the possibility that deconfinement may be a crossover transition. Using the resulting
hybrid equations of state, the properties of hybrid stars are then calculated.
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1
Introduction

Many scientists, too many to name or even count, have contributed to our current
understanding of the universe. Over the past 100 years or so, scientific research
has intensified culminating in the knowledge that our universe, at its most basic
level, is made up of a few fundamental building blocks governed by four fundamental
forces—electromagnetic, gravitational, strong nuclear and weak nuclear. The deter-
mined struggle to make sense of these has been a long journey on a winding path
paved with numerous theories and fascinating discoveries. At present, the fundamen-
tal particles and three of the four known forces can be neatly packaged in the so called
standard model of particle physics. This model formulates the electromagnetic, strong
nuclear and weak nuclear forces between the fundamental particles as a quantised gauge
field theory. The standard model is well tested and has satisfied nearly all tests, but it
is far from the last word and there are still many open problems.

Unlike the other forces, gravity has proved too difficult to incorporate into the same
framework. A quantum theory of gravity is still lacking and is likely to be so for some
time. In most circumstances in particle physics, this is not a concern as its influence
on the particles is negligible. Thus gravity can generally be safely ignored. It typically
only becomes necessary to consider gravity on macroscopic scales. However, there are
places in our universe where all four fundamental forces play an important role, an
example of such a place is inside neutron stars. These are fascinating objects where
matter interacts under remarkably extreme, yet stable conditions. They will play a
starring role in this thesis.

Classically, gravity appears to be reliably described by the general theory of rel-
ativity. Among other things, this force is responsible for shaping galaxies. However,
the theory has only been rigorously tested on the scale of the solar system. Early
last century observational data indicated a deviation from expected galactic rotation
curves. This led to the development of two contrasting ideas, namely non-luminous
(dark) matter and modified theories of gravity. Both have been suggested as a solution
to the problem. Since, there has been a large amount of observational evidence in
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support of the existence of dark matter, it has also been interpreted by some that our
theory of gravity may need to be modified (or possibly even both). In direct detection
experiments so far, no beyond the standard model dark matter candidates have been
found but the search is far from over. In 2015 the Large Hadron Collider (LHC) is
gearing up for another run at even higher energies. The discovery of beyond the stan-
dard model physics at the LHC would be ground breaking, it could potentially shed
light on long standing open problems in particle physics, astronomy and cosmology.
The physics community is eagerly waiting to see what they ferret out.

In this thesis we will not consider extensions of the standard model or modifications
of gravity. We will be interested in systems described by the strongly interacting sector
of the standard model, particularly at finite density. We also assume that for macro-
scopic extrapolations of such systems that general relativity is adequate in describing
their gravitational interaction.

Quantum Chromodynamics (QCD) describes the strongly interacting sector of the
standard model. Developing a complete and rigorous understanding of this perplex-
ing theory, including all of its emergent phenomena, is by far the most challenging
problem confronting nuclear and particle physicists today. Its solution has thus far
proved extremely difficult to deduce, even more complex than Quantum Electrody-
namics (QED). The only first principles approach to study QCD is Wilson’s lattice
gauge theory, where QCD is simulated on a Euclidean space-time lattice. Much has
been learnt using this approach, but its application to systems at finite density is still
problematic, because of the notorious fermion sign problem. This problem originates
from the fermion determinant not giving rise to a positive definite probability, essen-
tially rendering standard Monte Carlo simulation techniques useless. There have been
some attempts to extend the simulations by expanding about zero baryonic chemical
potential, but only very limited progress has been achieved in this direction.

The force carrier of QCD, the gluon, carries colour charge unlike the photon in
QED which is charge neutral. This seemingly simple difference is at the heart of
the additional complexity of QCD. The non-linear interactions which ensue from the
gluon carrying colour charge are responsible for asymptotic freedom, whereby at large
momentum transfer or equivalently short distances the coupling parameter becomes
small. The perturbative techniques which were instrumental in the predicative success
of QED only become applicable in this limit. At lower energies the coupling grows and
quarks and gluons become confined in colour neutral bound states. The exact way in
which this occurs is unclear. These hadrons are the smallest level of structure and in
experiment they are what we actually detect.

Despite quarks and gluons being confined and never seen directly in experiment
their existence has been inferred in Deep Inelastic Scattering (DIS) experiments. At
CERN in 1982, the European Muon Collaboration (EMC) performed DIS experiments
to determine the F2(x) structure function of iron. They found, contrary to conventional
reasoning at the time, that it significantly deviated from the F2(x) structure function
of the deuteron, indicating that quark structure of the nucleons is sensitive to the
nuclear environment. This revelation begs the question, if quarks are affected by the
nuclear environment, to what extent do quarks and gluons influence traditional nuclear
physics? This spurred considerable experimental and theoretical research aimed at
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linking conventional nuclear physics with QCD.
When presented with a new form of matter determining its thermodynamic be-

haviour is of central importance. This includes exploring and characterising its phase
diagram and ascertaining its Equation of State (EoS). The phase diagram of QCD
matter1 is commonly characterised by its temperature, T , and baryonic chemical po-
tential, µ, or in some cases by the pressure, P . This two dimensional phase space has
been extensively studied using different methods from lattice QCD to phenomenologi-
cal models. Yet it is still not very well understood. Only portions of the diagram are
satisfactorily described by theory and accessible to experiment. In particular, the area
where dense matter resides is largely unknown.

The phase diagram is meant to show what distinct phases occur in thermal equilib-
rium under certain physical conditions. As alluded to above, what we have observed
in experiment, are quarks and gluons confined to hadrons such as mesons and baryons.
However, as temperature and density increase, hadronic matter may transition to a
deconfined phase in concordance with asymptotic freedom.

The EoS, on the other hand, is a thermodynamic relation between state variables
describing a state of matter under a set of physical conditions. It is essential input
and completely indispensable for understanding processes which occur in heavy ion
collision experiments, the evolution of the early universe just after the big bang, core
collapse supernovae and the properties of neutron stars.

Quantum chromodynamics exhibits complicated emergent phenomena, confinement
is one, Dynamical Chiral Symmetry Breaking (DCSB) is another. Most notably, the
latter is responsible for the majority of mass seen in our universe. These two phenomena
can be used to define several distinct phases. At low temperature and density, we know
quarks and gluons are confined. This defines the hadronic phase. If at some point
in the QCD phase diagram they become deconfined, forming a quark-gluon plasma,
this defines a second phase. Here the effective degrees of freedom define two distinct
phases. This is not to say they cannot coexist in a mixed phase. Likewise chiral
symmetry can be used to define two distinct phases, the broken phase and the restored
(or approximately restored) phase. Chiral and deconfinement transitions may not
coincide and other phases, such as superconducting phases of matter, may also exist.

Lattice QCD has been instrumental in understanding the low density region (µ ∼ 0)
of the phase diagram. A chiral transition has been supported by a number of differ-
ent simulations performed by various groups. These numerical studies have indicated
that the restoration of chiral symmetry is not an actual phase transition, but rather a
crossover. They find at high temperature and low density, that the quark condensate,
i.e., the order parameter of chiral symmetry, rapidly and continuously approaches zero.
The consensus is that a transition occurs at high temperature Tc ∼ 155 MeV. How-
ever, as it is a crossover transition, the exact location of the transition is somewhat
ambiguous.

On the opposite end of the scale, at low temperature and finite density, where we do

1 In using the term QCD matter, we wish to make it clear that, we use it as a collective term for
strongly interacting matter, which has as its most elementary degrees of freedom quarks and gluons.
As such, it not only refers to quarks and gluons, but also to finite nuclei and a hypothetical form of
matter called nuclear matter.
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not have asymptotic freedom, the situation is very complicated. However, this portion
is experimentally accessible, allowing us to develop effective and phenomenological
models. Making comparisons to experimental data allows us to improve upon them.

Given the complicated nature of QCD, hadrons have been used to develop effective
and phenomenological models of QCD. Nuclear physics employed these degrees of free-
dom long before the advent of QCD, amassing an incredible wealth of knowledge about
the strong interaction at low and intermediate energies. In contrast to lattice studies,
it is found at finite density using different phenomenological models that the chiral
transition is first order. It is commonly thought that in the interior of the QCD phase
diagram there will be a critical end point, where the transition to the chirally restored
phase becomes second order. The location and existence of such a critical point is
extremely model dependent. For example, in the NJL model with vector interaction,
it is found that on increasing the vector coupling the critical point is shifted closer to
the µ axis, i.e., to lower temperature.

Experimentally, nuclear structure experiments give us information at low tempera-
ture and density, mostly around the saturation density (ρ0 = 0.16 fm−3). The only way
to probe the higher densities in a laboratory setting is in Heavy Ion Collisions (HIC),
where nuclei collide, momentarily forming very hot and dense matter. The matter
formed in these experiments only has enough time to develop equilibrium with respect
to the strong interactions, but not weak equilibrium. The only place in the universe
where complete thermal equilibrium is likely to form (or at least approximately) is in
the interior of neutron stars. Signatures of a deconfinement phase transition have been
searched for in heavy ion collisions at CERN and RHIC, but the findings have so far
been inconclusive. With the commissioning of new rare isotope beam facilities, probing
higher densities and greater isospin asymmetries will occur yielding further information
on the high density behaviour of strongly interacting matter. This will provide crucial
information on the density and isospin dependence of nuclear forces.

Experimentally accessing dense matter at low temperature is not currently possi-
ble. Knowledge of this region of the phase diagram would allow for a more complete
understanding of QCD and the strong nuclear force. Neutron stars provide us with
access to this region, their densities are far greater than what we are currently capa-
ble of maintaining here on Earth in a laboratory. They can be thought of as a kind
of laboratory which can be used to test, constrain and understand effective and phe-
nomenological models of QCD. They can easily be used in this way as neutron stars
have observables such as mass, radius, photon red-shift, temperature, cooling rate, an-
gular velocity and moment of inertia, which can be observed (or inferred) and then
compared to a calculated value within a chosen model.

In this approach, one starts with models which are constrained by experimental
evidence at low density and extrapolate out to higher densities. Caution needs to be
taken when extrapolating a chosen model out to higher densities, possibly pushing it
out of its range of validity. This is where astrophysical observations become important.
The idea is not to just compare calculations with observations to either support or
refute them, but rather to use these observations to try and understand the physics
involved in dense matter. That is, to understand how the strong force works in dense
matter.
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As matter is compressed, the fundamental degrees of freedom become increasingly
more important. It is commonly thought that the densities reached in the inner core of
neutron stars may be sufficient to produce a phase transition to some form of deconfined
quark matter. Neutron stars are incredibly complex and a complete understanding has
not yet been achieved. In their study one must draw upon many branches of physics,
the most important of which are nuclear physics and general relativity.

Moreover, neutron stars are fascinating objects in their own right, containing matter
under extreme conditions. As such they warrant in-depth study. With the develop-
ment of new radio astronomy facilities, such as the Square Kilometre Array (SKA);
and gravitational wave detectors, such as LIGO, advanced LIGO and VIRGO; it is im-
portant to maintain theoretical research efforts to complement and inform observation.
These future tools will provide new information on neutron stars and hence also QCD.

Throughout this thesis, we will focus on the calculation of the EoS of dense QCD
matter at zero temperature. In this region of the phase diagram, QCD is too difficult
to solve exactly. Without some new deep physical insight allowing a simplification
of the QCD equations, we must resort to effective and phenomenological models. As
phenomenological approaches have proved useful in the past, we will be using this
approach.

A realistic model should be inspired by QCD, incorporating its key symmetries,
emergent phenomena and of course encompassing the great wealth of empirical infor-
mation obtained through over 100 years of nuclear physics research. Ideally it should
be derived from or have as much in common with QCD as possible. To this end
we develop and employ two different models. Both models embody QCD in different
asymptotic limits, one in the confined hadronic region and the other in the deconfined
quark region.

We use an improved version of the Quark-Meson Coupling (QMC) model for mod-
elling hadronic matter. Previous versions of this model have had impressive success
in predicting properties of nuclear matter, finite nuclei and neutron stars. The QMC
model is one of the most realistic phenomenological models available—it is relativistic,
includes quark degrees of freedom, and incorporates confinement by modelling hadrons
with a bag model. The version of the QMC model that will be used in this thesis will
include the effects of hyperons and the four lightest mesons (σ, ω, ρ and π), Fock terms,
form factors and the effect of the tensor interaction of the vector mesons. Baryons will
be modelled using the one gluon exchange version of the bag model, which has been
shown to be important for hyperon hyperfine mass splitting.

In the quark phase, we employ a three flavour Nambu–Jona-Lasinio (NJL) model
incorporating a vector interaction. The NJL model is an effective low energy model
of QCD, where gluons are integrated out leaving quarks to interact locally in a four
Fermi like contact interaction. It incorporates many of the symmetries of QCD, such
as chiral symmetry and its breaking, but it is much easier to calculate with than QCD.
However, the NJL model is not in general confining2, although it is covariant and
incorporates DCSB. In this way, the QMC and NJL models are complementary to
each other. In this thesis, Schwinger’s proper time method is chosen to covariantly

2An NJL model incorporating an infra-red cut-off allows for a crude definition of confinement, see
Ch. 6 and references cited therein.
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regularise the model. For comparative purposes, we also consider the extensively used
three momentum regularised model with t’ Hooft determinant term.

This thesis extends previous work on the EoS of strongly interacting matter by
considering the role of quark degrees of freedom at finite density, using the models
mentioned above, and studying the properties of neutron stars. This thesis is organised
as follows: In Ch. 2, we prepare the reader for subsequent chapters by reviewing the
main results of nuclear physics and QCD relevant to the problem at hand. A quick
run-through of the properties of the NN interaction as determined from early nuclear
physics through to modern day experiment and theory. The underlying ideas and
features of QCD are summarised. Then we introduce the hypothetical and idealised
form of matter called nuclear matter. A brief discussion of experimental and theoretical
knowledge of its EoS is presented. Finally, we introduce Quantum-Hadrodynamics
(QHD) and the QMC model, and define their Mean Field Approximation (MFA). In
Ch. 3. the application of general relativity to neutron stars and their connection to the
EoS is discussed.

In Ch. 4, we begin the main part of this thesis by considering the hadronic phase,
exploring the equation of state for nuclear matter in the QMC model, including full
Fock terms, i.e., both the Dirac and Pauli terms are taken into account. We include
a full derivation of the Fock terms and explain in detail all approximations used. We
then investigate the EoS of symmetric and asymmetric nuclear matter. The comparison
with phenomenological constraints can be used to restrict the few additional parameters
appearing in the Fock terms which are not present at Hartree level. Because the model
is based upon the in-medium modification of the quark structure of the bound hadrons,
it can be readily extended to include hyperons, allowing hyperon optical potentials and
the EoS of dense matter in beta-equilibrium to be calculated. This leads naturally to
a study of the properties of neutron stars in Ch. 5, including their maximum mass,
their radii and density profiles. We take the point of view that the uncertainty in
modelling neutron stars resides in the EoS and not in the form of a modified theory of
gravity. To calculate the properties of neutron stars we solve the Tolman-Oppenheimer-
Volkoff equations as derived within the framework of general relativity from Einstein’s
equation. Moreover, even though neutron stars are far from being at zero temperature
their temperature has a negligible effect on their properties. The matter of a typical
neutron star is considered to be insensitive to the temperature, because it is small in
comparison to the chemical potentials of the constituent particles.

In Ch. 6, we introduce the NJL model, discuss its main features and its connection
to QCD. A simple explanation of the MFA for the NJL model is discussed. A Fierz
invariant NJL Lagrangian is derived based on one-gluon exchange. The MFA to the
Fierz invariant NJL model is presented in the path integral formalism, deriving the
NJL effective potential and gap equation. Pion phenomenology is used to constrain
the few model parameters and then numerical results are presented for pure quark
matter as function of chemical potential, flavour symmetric quark matter and quark
matter in beta-equilibrium with leptons. In Ch. 7, we investigate the possibility of a
phase transition between the Hartree-Fock QMC and NJL models developed in earlier
chapters. We conclude in Ch. 8 with a summary and a discussion of possible future
work in this field of research.



CHAPTER 1. INTRODUCTION 7

Considering the multidisciplinary nature of this area of research we have as an ad-
ditional aim of this thesis, strived to write in a pedagogical manner, including sufficient
background, detail and numerous references to both textbooks and relevant research
papers. This was done in the hope that it will be useful to future students that wish
to enter this field of research.
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2
From Nuclear Physics to QCD and Back

Again

This chapter contains a short and concise review of relevant information in the literature
pertaining to nuclear physics and Quantum Chromodynamics (QCD). In the next
chapter its application and relevance to neutron stars will be discussed. Here we
present well known material, preparing the reader for the following chapters. Its aim
is to place this dissertation in the correct context.

We start by reviewing the basic notions of early nuclear physics and the properties
of the nucleon-nucleon (NN) two-body interaction. Emphasis will be placed on nuclear
physics in the era of Quantum Chromodynamics (QCD). In particular, the mean-field
approach to the non-perturbative regime of QCD (i.e. nuclear physics) will be reviewed.

2.1 NN Interaction and Early Nuclear Physics

The field of nuclear physics has now been around for over 100 years. It began with
Rutherford studying the emitted particles of radioactive substances [1]. His research
was directed mostly towards the nature and properties of alpha particles, eventually
proving them, with Royds, to be helium nuclei [2]. Once he obtained an understanding
of these particles he used them to probe the structure of atoms, ultimately proposing
in 1911 [3] the existence of a positively charged nucleus based on the experimental
results of Geiger and Marsden [4], who scattered alpha particles off metal foils. From
the scattering experiments it was determined that the nucleus must be small, and that
the range of the strong interaction is of the order of a few fermis. Since those early
days, a great deal has been learnt about nuclei and the strong nuclear force holding
them together. Despite not being completely understood, that is possessing a complete,
coherent and theoretically satisfying formulation and still an on-going avenue of intense
research, nuclear theory and its experimental techniques have been applied to many

9
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diverse areas with applications to: studies of fundamental interactions, compact stars,
and the beginning of the universe—just after the big bang; diagnosis and therapy
for cancer patients; power generation and sadly the development of weapons of mass
destruction.

We wish to stress the most important features of the strong nuclear force. The
majority of the early knowledge of the strong nuclear force was obtained by analysing
the low energy scattering of two nucleons and by experiments involving light nuclei.
The purpose of these studies was to develop a potential description of the two-body NN
interaction, which could be used to understand nuclear systems at a more fundamental
level. The experimental information on the two-body interaction that was available
mostly consisted of cross sections and empirically extracted phase shifts of various
partial waves for NN scattering and the bound state properties of the deuteron. A
potential description extracted from this two-body information can then be used in
describing the few-body systems such as triton, helion and helium nuclei. In this
way one can try to determine to what degree one can ignore the three-, four- and in
general many-body forces. Discrepancies between calculations of few-body systems and
experimental results can indicate a need for either an improved potential or inclusion
of many-body forces. From experiment it was learnt that the strong nuclear force
has the following features: strong intermediate range attractive force with a short
ranged repulsive core, charge conjugation C, parity P and time reversal T invariant,
approximate charge symmetry1, approximate charge independence2, spin dependent3,
and many-body forces are important. We will now elucidate these features in more
detail. It is important to note that, almost all of the early attempts to describe the
strong nuclear force were phenomenological. In this approach, one tries to develop a
mathematical form for the force that satisfies the known empirical properties.

The constituents of the nucleus, now known to be protons and neutrons, differ in
charge and quark structure. If one neglects their structure, the electromagnetic inter-
action and the small mass difference between them, they can be interpreted as two
degenerate states of the same particle, the nucleon N . This nucleon was originally
proposed by Heisenberg who described its two states using Pauli’s spin matrices, in
what would become known as isospin formalism. This is possible, because of the ap-
proximately equal masses and approximate charge independence of the strong force.
This symmetry, which essentially counts the number of charge states that are equiva-
lent under the influence of the nuclear force, is known as isotopic, isobaric or isospin
symmetry, in analogy with spin. The approximate charge symmetry and independence
of the nuclear force is translated into this isospin symmetry. A convenient description
of symmetries is provided by group theory in which the corresponding symmetry group
is SU(2). It is not a fundamental symmetry, but rather an approximate one, which
is very well realised in nature and has far reaching consequences in all of hadronic
physics. A system with isospin symmetry means that the strength of the interaction is
invariant under rotations in the abstract isospin space. This means that the interaction

1Excluding the electromagnetic interaction, the force between pp is the same as between nn.
2Excluding the electromagnetic interaction, the force between pp is the same as between nn and

also np.
3Tensor and spin-orbit contributions are important.
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between nucleons is independent of whether it is between neutrons and neutrons (nn),
or protons and protons (pp) or even neutrons and protons (np). This interaction has
an attractive component as can be inferred by the observational fact nuclei are bound
systems of these nucleons, which indicates the nuclear force must be attractive in some
range.

Theoretical arguments and experimental support for charge symmetry and inde-
pendence came in the mid 1930s. Among the earliest suggestions was from Young [5]
who argued on the basis of nuclear binding and the number theory properties of sta-
ble nuclei that not only np bonds are important, but also nn and pp are as well. He
argued that the binding energy is proportional to A not Z and that strong attractive
interactions exist between neutrons and to maintain balance within the nucleus they
must also exist between protons.

The deuteron is a very important piece of the two nucleon interaction puzzle. It is
the only bound two nucleon system and thus demonstrates that the np interaction must
be attractive. Furthermore, the deuteron has a non-zero quadrupole moment [6] of pos-
itive sign indicating a prolate spheroidal charge distribution. The non-zero quadrupole
moment implies that the NN interaction is not central. Through arguments based
on angular momentum and parity of the deuteron (Jπ = 1+), the ground state of the
deuteron must be an admixture of 3S1 and 3D1 states. A tensor component in the NN
interaction can account for such an admixture and is generally a significant component
of most modern NN potentials.

The pp scattering experiments of White [7] and the improved experiments of Tuve
et al [8, 9] indicated that there was an attractive pp interaction at close distances
(< 5 × 10−13m) deviating from the repulsive electromagnetic interaction. The data
from the latter experiment was analyzed further by Breit et al [10] and showed that
for the 1S state pp and pn interactions were the same within the experimental error.

It was during this period (1935) that Yukawa [11], made his famous mesotron
(meson) hypothesis. His hypothesis was that a massive particle of mass intermediate
between the electron and the proton was mediating the strong interaction, like the
photon for the electromagnetic interaction. Yukawa realised that the range of the in-
teraction was correlated with the mass of the exchanged particle and estimated it’s
mass to be around ∼ 200me. The meson hypothesised was a scalar and it was later
realised by Pauli [12] that it needed to be of pseudo-scalar nature to give the correct
sign for the deuteron quadrupole moment, which was later confirmed by experiment
(spin and parity measurement). This was the first really fundamental idea to appear
in nuclear physics and in 1937 the muon was discovered in cosmic radiation observa-
tions [13, 14] and misinterpreted as Yukawa’s meson. Ten years passed and the real
pion was eventually found in cosmic background radiation [15, 16] and then soon after
in experiment at Berkeley [17] and Bristol [18]. This brought support for the idea that
the strong interaction was mediated by a massive particle and for the following decade
the pion played the starring role.

The following decade (1950s) saw the development of pion theories concentrating
on one and two pion exchange. The strong force appeared to be considerably more
complicated than other forces previously studied. To handle the additional complexity
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Long range: “Outer” or “Classical” r & 2 fm

Intermediate range: “Dynamical” 1 fm . r . 2 fm

Short range: “Core” or “Phenomenological”
r . 1 fm

Figure 2.1.1: Division of configuration space into three regions.

Taketani et al [19] advocated a division of the range of the nuclear force into two sepa-
rate regions, the inner region to be treated phenomenologically due to the complicated
nature and many contributing effects; and the outer region treated by meson exchange.
The subdivision was later extended to three regions [20], which has proved to be very
useful and is still in use today. This division is summarised in Fig. 2.1.1.

As the deuteron is a weakly bound system, it is mostly affected by the outer region.
Thus subsequent works studied the properties of the deuteron ground state and low
energy np scattering, finding that a pseudo-scalar pion potential described the experi-
mental data rather well and that the one-pion exchange (OPE) is dominant in the outer
region [19–28]. It has also been established that two-pion exchange becomes important
in the intermediate region. For the innermost region, presumably many effects become
important, such as multi-pion; heavy meson; quark and gluon exchanges. The two-pion
exchange which becomes important in the intermediate region, contains difficulties and
ambiguities which led to conflicting results. The two different approaches, of Taketani
et al [24] and Brueckner and Watson [29] developed at the same time are discussed
in [30] and [31].

Around this time NN scattering was being analyzed indicating that a strong,
short–range spin-orbit interaction was also necessary to describe the experimental
data [32–34], particularly in accurately describing polarization data. Two-pion ex-
change could not provide a sufficiently large spin-orbit potential required by the anal-
yses. Gammel and Thaler suggested that this short range spin-orbit potential may
originate from the exchange of a meson heavier than the pion. Subsequently, it was
proposed by several authors that a heavy neutral vector meson arising from 3π exchange
could be the natural explanation for the spin-orbit potental and short range repulsion.
Not long after in 1961, the omega (ω) meson was discovered [35] followed by the rho
(ρ) meson [36] the following year. The experimental discovery of vector heavy mesons,
spurred the beginning of one boson exchange (OBE) models. These models assumed
that the multi-pion exchanges could be well represented as resonances from multi-pion
scattering, drastically simplifying calculations and indicating why multi-pion exchange
theories of the 1950’s did not do well, the absence of correlated (resonant) pion ex-
change [37].

More and more particles (K, Roper,. . .) were being discovered in particle accelera-
tors and bubble chambers. It was eventually deemed that not all of these particles could
be fundamental. Quark and parton models were appearing and the stage was being
set for the appearance of a new more fundamental theory, Quantum Chromodynamics
(QCD). The description of the strong nuclear force was changing to a description of
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Figure 2.1.2: Phase shifts versus energy for (a) 1S0 and (b) 1D2 partial waves. Data
obtained through NN-Online [40] and INS DAC [41] on 7/2/2014.

quark and gluon dynamics where the residual interaction between between hadrons can
be viewed as a kind of Van der Waals force in analogy to molecular interactions. The
first steps in this direction were by Gell–Mann [38] and Zweig [39], with the develop-
ment of the eightfold way and constituent quark models. QCD which was developed
by Gell–Mann and others as a local gauge theory of colour has now become the leading
theory for describing the strong interaction, relegating all meson exchange theories to
the status of phenomenological models. The formidable task of describing the NN
interaction from the underlying quark and gluon dynamics is of great importance,
but without some new deep physical insight to handle the QCD equations of motion
one must seriously consider effective and phenomenological models, especially those
which preserve the most important underlying features of the theory. Limited progress
has been achieved from first principles in the non-perturbative regime. QCD will be
reviewed in Section 2.2.

Over time massive amounts of data have been collected from pp and pn scattering
experiments. Low energy data is well suited to partial wave analysis, because fewer
partial waves are needed. Analysis of this data in terms of phase shifts of partial waves
has lead to the conclusion that at low energies the NN potential is attractive, this is
easily seen in Fig. 2.1.2 as the S-wave phase shift is positive. At higher energies the
potential becomes repulsive as the phase shift changes sign at about 250 MeV. This
is followed by many higher partial waves at even higher energies indicating a repulsive
core.

The repulsive core was suggested by Jastrow [42–44] to explain the isotropy seen
in pp scattering cross section between 20◦–90◦. His interaction potential was the only
one at that time that was consistent with the charge independence hypothesis. The
S-wave state is most influenced by the introduction of a repulsive core because of the
absence of angular momentum barrier. The hard core causes a change in sign of the
phase shift. The higher partial waves are relatively unaffected until higher energies are
reached. The D-wave and other even parity states will still mostly be influenced by
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the attractive part of the potential in the 0–350 MeV energy range and hence their
phase shifts remain positive. The cancellation between these phases decreases the
anisotropy seen without the repulsive core. It was suggested that the attractive part
was associated to the pion and the repulsive part with a heavier meson. Unfortunately,
detailed information about the repulsive core is unavailable because of the limited data
above ∼ 350 MeV and the absence of an unambiguous determination of the phase
shifts.

Much more can be learnt about the NN potential from partial wave analysis besides
the appearance of a repulsive core at short distances. One can also infer spin-orbit and
tensor contributions to the nuclear potential. The spin-orbit interaction is particularly
evident when considering the 3P0,1,2 partial waves. If the force was purely central then
3P0,1,2 would be essentially the same and would not reproduce the observed splitting.
An attractive spin-orbit force can give the correct splitting in these partial waves pro-
ducing repulsion for 3P1 and attraction for 3P2 [30]. To accurately reproduce these
phase shifts the tensor interaction is also required [30].

In the 1960s deviations from charge symmetry and independence were beginning
to be studied by Wong and Noyes [45], Heller et al [46], Henley and Morrison [47] and
Biswas et al [48]. Wong and Noyes concluded that measurement of the nn scattering
length (ann) would give a sensitive quantitative test of charge symmetry, because in a
charge symmetric theory ann = app and a charge independent theory ann = app = apn.
Studies during this period indicated that charge symmetry was better realised in nature
than charge independence.

Various phenomenological potentials were developed throughout the decades to
understand the nuclear force. Model parameters were constrained by analyzing two-
body NN scattering data with kinetic energies in the range 0–350 MeV along with the
properties of light nuclei. That is, the NN potential was inferred from this information
by performing a fit. There are numerous phenomenological potentials ranging from
early attempts to modern day potentials which are very accurate, being fitted to large
sets of NN scattering data and deuteron properties, achieving a χ2 per degree of
freedom of about 1. A few of the more historically significant and modern potentials are:
Gammel–Thaler [49], Hamada–Johnston [50], Yale [51], Paris [52], Reid [53], Argonne
V14 [54], V18 [55], Nijmegen [56], Bonn [37], and its charge dependent variation CD-
BONN [57].

Ambiguity in the determination of the NN interaction is emphasised by the exis-
tence of a number of very accurate and essentially phase shift equivalent potentials,
each of which has a rather different origin, —see, for example, the phase shifts for par-
tial waves 1S0 and 1D2 in Fig. (2.1.2). The potentials which utilise a meson exchange
picture of the NN interaction, like the Bonn, Nijmegen or Paris potentials, deserve
a special mention, as even with the advent of QCD, meson exchange potentials can
be well motivated from the point of view of effective field theory. In this context, the
nucleons and mesons, the low-energy degrees of freedom, are being used to describe
the low-energy physics. Meson exchange models provide a convenient way to describe
many of the features of the strong interaction in an effective way. For instance from
direct analogy with QED, the ω meson, a massive neutral vector meson, would produce
a short range (due to its mass) spin-orbit potential. The spin-orbit force in the NN
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interaction is considerably stronger than that felt by an electron in an atom and in
nuclei it is strongest near the surface [58]. It is strongest near the surface, because a
nucleon in the interior of the nucleus feels an equal number of spin up and spin down
nucleons all around it, except near the surface [58]. Thus, it is important for finite
nuclei but of little importance for infinite nuclear matter where surface contributions
are ignored. The latter form of matter will be the focus of this thesis. The tensor
interaction comes predominately from the π and ρ meson exchanges with very little
from the ω meson.

As discussed previously, pions being the lightest mesons describe the outer region,
whereas the heavier mesons describe the intermediate and short range regions. How-
ever, as one probes shorter and shorter distances by increasing the scattering energy
there is a need to describe the inner hard core of the potential more accurately. As
the scattered nucleons approach one another they can overlap and one is then faced
with the conceptual problem of going from a purely meson exchange model where
the hadrons are treated as point particles to incorporating both the quark substruc-
ture of the hadrons and their short range interactions within and between the colliding
nucleons as arising from the underlying quark-gluon dynamics. The inner region is gen-
erally handled either entirely phenomenologically or by artificially suppressing meson
exchanges using form factors. The suppression of the meson exchanges is motivated by
the finite extent of the nucleon. In NN scattering one-gluon and quark exchange effects
have been considered by some [59–62], but their effects are generally neglected even in
high precision potentials and are assumed to be incorporated phenomenologically into
the parameters of the model. Only when considering ∆ excitations and particularly the
extension of the two-body interaction to three-, four- and more generally many-body
interactions is nucleon substructure considered in more detail. Conventionally, one uses
a two-body potential possibly supplemented with a model for the three- or more-body
forces as input into a many-body formalism such as Dirac–Brueckner–Hartree–Fock
(DBHF) [63–65], Brueckner–Hartree–Fock (BHF) [66–72], variational methods [73, 74],
correlated basis function methods [75, 76], self consistent (SCGF) models [77, 78], quan-
tum Monte Carlo techniques [79–83] and chiral effective field theory [84, 85].

Many-body forces have been shown in a number of studies to be important to the
description of nuclear systems. As a particular example, a Green’s function Monte
Carlo method with the Argonne AV18 two-body potential supplemented with a three-
body force derived from pion exchange was used by Pieper et al in Ref. [86]. In
this work, nucleon substructure was minimally included in the form of ∆ excitations.
They demonstrated the importance of these three-body forces for producing the correct
binding in nuclei. More specifically, nuclei were found to be underbound, with their
underbinding increasing with mass number. The three-body force was found to be a
significant factor in predicting the experimental value. Moreover, it has been stressed
that many-body forces can result in increased pressure in pure neutron matter [87]. The
latter is an important first approximation to the material in the core of neutron stars.
These additional contributions from three-body forces can have important consequences
for the stability of neutron stars.

Mean-field methods offer an attractive alternative to the above methods present-
ing several desirable characteristics, particularly their computational simplicity and
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applicability to larger systems. In fact, the mean-field approximation becomes more
reliable with increasing density [58]. Both non-relativistic and relativistic mean-field
models have been developed. Two of the most notable non-relativistic mean field mod-
els are the Skyrme and Gogny interactions, the former employs an instantaneous zero
range contact interaction, whereas the latter incorporates a finite range. As for the
relativistic models, one begins with an effective Lagrangian and uses it directly. In
this thesis we will use this methodology to investigate the properties of nuclear mat-
ter and neutron stars. A relativistic quark level model, which treats baryons as a
colour–singlet, confined cluster of three quarks, will be utilised. Moreover, this model
naturally incorporates many-body forces through the in–medium modification of the
internal structure of the baryons. The calculations will be performed at a level of ap-
proximation such that the effects of pions and the tensor interaction as arising from
the exchange of vector mesons will be incorporated.

2.2 Basic Notions of Quantum Chromodynamics

In this section, we wish to review the essential background material regarding quantum
chromodynamics (QCD) with emphasis on its place in the standard model of particle
physics and its gauge and chiral symmetries. We refer the interested reader to more
complete discussions of QCD, particularly Ref. [88] and [89].

QCD is one of three components comprising the standard model of particle physics.
It is the component which describes the strongly interacting sector and is responsible
for the majority of mass seen in our universe. The remaining two components of
the standard model are described by electroweak theory, which is the amalgamation
of quantum electrodynamics (QED) with the Glashow-Weinberg-Salam theory of the
weak interactions. This “standard model” has been around for forty odd years and has
passed every experimental test to date.

The Lagrangian of the standard model has the local gauge symmetry SUc(3) ⊗
SUL(2) ⊗ UY (1) and has approximately 19 parameters. Even with the experimental
successes of the standard model, at a fundamental level it cannot be considered com-
plete. The standard model is not fully satisfying as a theory due to several deficiencies.
The most self-evident deficiency is that it does not include a quantum theory of grav-
itation. Moreover, it is formulated in a rather cut and paste manner. In particular, it
must be extended to explain massive neutrinos and their oscillations; and the scalar
boson (Higgs) sector, so crucial to electroweak theory is also included in a rather ad
hoc manner in contrast to the gauge bosons, which arise from gauge principles. As it
stands today, it is a very accurate theory, but there is certainly more interesting physics
and mathematics lurking beyond this model. Many suggestions for physics beyond the
standard model are littered throughout the literature, but we will not discuss these
possibilities.

QED is the archetypical quantum field theory. It was developed during the period
1927 to around 1950 by Feynman, Dyson, Schwinger and Tomonaga. It predates
QCD by several decades and was a fruitful template for developing the more intricate
quantum field theories making up the standard model. In fact, to go from QED to
QCD no fundamentally new principles are needed, just the familiar requirements of
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Property Up Down Strange Charm Bottom Top

Symbol u d s c b t
Q 2/3 -1/3 -1/3 2/3 -1/3 2/3
B 1/3 1/3 1/3 1/3 1/3 1/3
I3 1/2 -1/2 0 0 0 0

Mass 0.002–0.008 0.005–0.015 0.1–0.3 1.0–1.6 4.1–4.5 180± 12

Table 2.2.1: Quark properties [91], masses are in units of GeV.

causality, unitarity, gauge invariance and renormalizability.
Agreement between experiment and QED is impressive. The anomalous magnetic

moment of the electron is known to agree with theory to many significant figures. It
does not get much better than this for a confirmation of a theory. There are other tests
of this theory that have also had impressive results, such as the Lamb shift and the
quantum Hall effect in condensed matter. The theory of QED is tried and tested and
its impressive successes are well known. This is an ideal template to use as a starting
place to describe the strong nuclear force.

2.2.1 QCD Lagrangian and its Symmetries

QCD is based on the same guiding principles as QED—causality, unitarity, gauge
invariance, and renormalizability. It is the theory describing the dynamics of coloured
quarks and gluons, as proposed by Gell-Mann [38], Zweig [39], Neeman [90] and others
during the 1960s–1970s. The starting point for gauge field theories, such as QCD,
is to construct a Lagrangian density which is invariant under the local gauge group
such that it preserves the above mentioned requirements. The gauge group of QCD
describing colour is the non-Abelian group SU(3)c. Its non-Abelian nature introduces
new complications absent in QED leading to fascinating emergent phenomena. We will
not delve too deeply into the historical developments of QCD here, instead we wish to
simply review its formulation in terms of quarks and gluons, followed by a discussion
of its symmetries and emergent phenomena.

Quarks are spin–1/2 fermions and come in 6 flavours: up, down, strange, charm,
bottom and top. They are massive and carry fractional baryonic and electromagnetic
charge. Their properties are summarised in Table 2.2.1. Gluons on the other hand are
massless vector bosons—one associated to each generator of the gauge group. Both
quarks and gluons carry colour charge, so in contrast to photons in QED, gluons interact
with each other. This is due to the fact that the gauge group is non-Abelian. In the
case of the resonance ∆++ = |u ↑ u ↑ u ↑〉 the additional colour degree of freedom
allows for the preservation of the Pauli principle in the quark model, without which it
would be violated.

To construct the QCD Lagrangian density, we need a covariant kinetic term for
quarks and gluons and a mass term for the quarks. The quarks are in the fundamental
representation of the colour gauge group and the gluons are in the adjoint representa-
tion. In contrast to electroweak theory the gauge group is not broken, so the gluons
remain massless. The fermionic quark field q = (qfc) has a flavour index f ∈ (u, d,
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s, c, b, t), and a colour index c ∈ (r, g, b). Each qfc is a 4-component Dirac spinor.
Explicitly,

q = (qfc) =


quc
qdc
qsc
qcc
qbc
qtc

 =

 qfr
qfg
qfb

 . (2.2.1)

This quark field transforms under the gauge group as

q(x)→ q ′(x) = Ω(x)q(x) , Ω(x) ∈ SU(3)c . (2.2.2)

To define a gauge invariant kinetic term for the quarks, we define a covariant derivative

Dµ = ∂µ − igAµ(x) , (2.2.3)

where g is a dimensionless coupling. For the gauge field Aµ(x) we can choose a basis

{T a}a∈(1,...,8) such that Aµ(x) =
8∑

a=1

Aaµ(x)T a, where T a are the generators of the gauge

group and are usually given in terms of the Gell-Mann matrices T a =
λa

2
. The gauge

fields Aµ(x), like the Gell-Mann matrices, are 3×3 traceless hermitian matrices, which
transform under the gauge group as

Aµ(x)→ Ω(x)Aµ(x)Ω−1(x) +
1

ig
(∂µΩ(x))Ω−1(x) . (2.2.4)

We also need a covariant kinetic term for the gluons, if we define the field strength
tensor

Gµν(x) =
i

g
[Dµ, Dν ] = ∂µAν(x)− ∂νAµ(x)− ig [Aµ(x), Aν(x)] (2.2.5)

then the field strength tensor will transform as

Gµν(x)→ Ω(x)Gµν(x)Ω−1(x) . (2.2.6)

With this definition for the field strength tensor, we have that TrcGµνG
µν is gauge

invariant. We can now put it all together with a quark mass term to construct the
local gauge invariant QCD Lagrangian with an explicit quark mass term,

LQCD = q̄(iγµDµ −M)q − 1

2
Trc [GµνGµν ] (2.2.7)

= q̄f (iγ
µDµ −mf )qf −

1

4
Gµν
a G

a
µν , (2.2.8)

where Einstein summation notation and the standard normalization convention is
assumed. The flavour index is f ∈ (u, d, s, c, b, t) and a ∈ (1, . . . , 8) is the
group index. If we consider only the strong interaction the mass matrix is M =
diag (mu,md,ms,mc,mt,mb).
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Decomposition into subgroups

UL,R(3) ' SUL,R(3)⊗ UL,R(1)

Spontaneous Chiral Symmetry Breaking of
SUA(3)

SUL(3)⊗ SUR(3) ' SUV (3)⊗ SUA(3) −→ SUV (3)

Anomalous Breaking of UA(1)

UL(1)⊗ UR(1) ' UV (1)⊗ UA(1) −→ UV (1)

Flavour Symmetry (mu = md = ms 6= 0)

SUV (3) −→ SUF (3)

Figure 2.2.1: Summary of symmetries and their breaking.

For convenience we will drop the flavour and colour indices on the quark Dirac
spinor qfc, which is a 4-component spinor made of two 2-component spinors, Weyl
spinors. The two Weyl spinors transform irreducibly under the Lorentz group, whereas
the Dirac spinor is a reducible representation of the Lorentz group. That is

q =

(
qR
qL

)
,

where qR,L will not mix under Lorentz transformations.
The flavour index corresponds to a global symmetry SU(NF), where NF is the

number of quark flavours, in the limit of equal quark masses; whereas the colour index
corresponds to the local gauge symmetry SU(3)c. From the above Lagrangian one
can easily see that the non-Abelian nature of the gauge group gives rise to three- and
four-gluon vertices.

The QCD Lagrangian is constructed to be invariant under the local gauge group
SU(3)c, but is also invariant under a number of discrete and global continuous sym-
metries. The Lagrangian is invariant under charge conjugation C, parity P , time
reversal T and in the massless limit it also has scale invariance and the chiral symme-
try U(NF)L ⊗ U(NF)R. Chiral symmetry and its breaking is very important for QCD
and hence nuclear physics. Fig. (2.2.1) summarises the symmetries of QCD and their
breaking.

Using the projection operators, PL,R = (1±γ5)/2, we can decompose a Dirac spinor
into the left– and right–handed components. In terms of these Weyl spinors, the free
Dirac Lagrangian for a single quark flavour is

L = q̄L(iγµ∂µ −m)qL + q̄R(iγµ∂µ −m)qR −m(q̄LqR + qRqL) . (2.2.9)

As can be seen in Eq. (2.2.9) only the mass term couples the left and right handed
Weyl spinors. Only in the chiral limit (m → 0) do they decouple and can be treated
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as independent fields. In this limit, this Lagrangian is invariant under UL(1)⊗ UR(1).
More generally, for NF quark flavours we have U(NF )L⊗U(NF)R. These are known as
chiral symmetries. What is meant by this is that the symmetry group is broken up into
left and right components and the left and right spinors transform independently under
the left and right symmetry groups. Chiral symmetries are broken by the inclusion of
a mass term. Scale invariance is also lost because of the inclusion of a mass term.

It is possible to decompose chiral symmetries into a vector and axial-vector sym-
metry. The vector symmetry treats the left and right spinors equally, whereas the
axial-vector symmetry does not. More precisely, if g ∈ UV (1) then g = eiα, where
α ∈ R is the same for both the left and right spinors. For the axial-vector symmetry if
g ∈ UA(1) then g = eiαγ5 , where α ∈ R is the same for both the left and right spinors,
but because of the appearance of γ5 the transformation is different for the left and
right projected spinors.

Later we wish to study nuclear matter and the matter in the interior of neutron
stars. For both we will make the assumption that they are at zero temperature. Thus
it will be sufficient to consider QCD with just the 3 lightest flavours: up, down and
strange—as these are the only relevant flavours at the densities and temperatures of
interest to us. With this simplification the QCD Lagrangian has the global symmetry
U(3) which can be decomposed in the chiral limit as follows

U(3) ' SU(3)⊗ U(1)

' SUL(3)⊗ UL(1)⊗ SUR(3)⊗ UR(1)

' SUV (3)⊗ UV (1)⊗ SUA(3)⊗ UA(1) .

The UA(1) axial symmetry does not survive the classical to quantum transition and
is said to be anomalously broken. This is known as the UA(1) problem as there is
no ninth meson seen, so it cannot have been spontaneously broken. The symmetry
group is further broken spontaneously and also explicitly by current quark masses.
The symmetry SUA(3) is clearly broken as this symmetry implies the appearance of
degenerate parity partners. For the nucleon this would correspond to the N(1535),
which is obviously not degenerate. The spontaneous breaking of SUA(3),

SUL(3)⊗ SUR(3) ' SUV (3)⊗ SUA(3) −→ SUV (3),

is apparent in the particle spectrum through the appearance of 8 pseudo-scalar mesons
π±,0, K0,+K̄−,0 and η. These pseudo-scalar mesons have anomalously low masses and a
mass gap exists between them and the other mesons. The light masses and the existence
of a mass gap can be explained by spontaneously breaking SUA(3) and interpreting the
pseudo-scalar mesons as the Goldstone modes associated with the breaking of 8 group
generators. The other mesons are then interpreted as ordinary massive mesons. The
explicit breaking of the axial symmetry is the reason why the pseudo-scalar mesons
have finite masses. Even though they are not massless they are still called Goldstone
modes or pseudo Goldstone modes.

Non-zero current quark masses break the axial symmetry explicitly, but only break
the vector symmetry if they are non-degenerate. If the three lightest quarks: up,
down and strange were degenerate in mass, then the vector symmetry SUV (3) would



CHAPTER 2. FROM NUCLEAR PHYSICS TO QCD AND BACK AGAIN 21

be preserved and called flavour symmetry, denoted SUF (3). The two lightest quark
flavours have approximately the same masses, but the strange quark mass is consid-
erably larger, see Table 2.2.1, so the flavour symmetry is explicitly broken, but still
generally regarded as a good first approximation. The resulting quantum theory is
invariant under

SUc(3)⊗ UV (1) .

Goldstone modes associated with spontaneously broken symmetries are massless,
whereas the actual meson octet is not. Let’s consider why this is so for the case of pions.
Similar arguments hold for the remaining members of the meson octet. At low energy
the weak decay of pions to leptons can be described by a current–current interaction,
where the current can be broken up into a hadronic and leptonic part, Jµ = JH

µ + JL
µ .

The T–matrix associated to the decay is then [92]

T (π→µν) ∼ 〈µν |JµJµ| π(q)〉 =
〈
µν
∣∣Jµ,L∣∣ 0〉 〈0 ∣∣JH

µ

∣∣ π(q)
〉

. (2.2.10)

The hadronic portion is the part of interest. As the pions are pseudo-scalars, the
hadronic current is given by the axial vector current Aaµ (Note axial current not the
gauge field). The relevant matrix element can be put in the form〈

0
∣∣Aaµ(x)

∣∣ πb(q)〉 = ifπqµδabe
−iq·x , (2.2.11)

where a, b are flavour group indices. Taking the divergence of Eq. (2.2.11),〈
0
∣∣∂µAaµ(x)

∣∣ πb(q)〉 = fπq
2δabe

−iq·x = m2
πδabe

−iq·x , (2.2.12)

leads to the Partially Conserved Axial Current (PCAC) relation,

∂µAaµ(x) = fπm
2
ππa(x) . (2.2.13)

From Eq. (2.2.13) we see that in the limit mπ → 0 the axial current is conserved, or
conversely if the axial current is not conserved then pions are massive.

2.2.2 Asymptotic Freedom and Perturbation Theory

QED calculations are performed using perturbation theory. One assumes that the
interacting theory is a small perturbation away from the free theory which can be
solved. Physical quantities of interest like cross sections are given in terms of a power
series expansion of the QED coupling (or equivalently the fine structure constant).
The QED calculations that have agreed so well with experiment use this perturbative
expansion, which is usually represented pictorially by a growing succession of Feynman
graphs. The number of graphs at each order grows quickly. For this theory to make
meaningful predictions each term of the perturbation series should be finite and the
series must converge. Naively one would expect each term in the perturbation series
to be finite and for the whole series to converge due to the very small coupling in
QED. It was realised early on that higher order corrections, corresponding to graphs
with loops, were divergent. These divergences that plagued the theory were resolved
through the process of renormalization. The process of renormalization is not unique
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to quantum field theories. Renormalization is discussed in most texts on QFT, see
also the very pedagogical article “A hint of renormalization” by Delamotte [93] for a
discussion of renormalization. Recently perturbative renormalization in QFT has been
given a clear and rigorous mathematical interpretation by Connes and Kreimer [94–
96]. This mathematical formulation of renormalization utilises the underlying Hopf
algebraic structure of Feynman graphs.

Renormalization is concerned with taking care to express observable quantities in
terms of the measured physical parameters, i.e., the dressed or renormalised quantities
and not their bare counterparts. This process of renormalization rendered the higher
order corrections of QED finite, allowing QED to be used to make predictions of in-
credible accuracy. However, the story does not end there. From very simple arguments
by Dyson [97], based on the analyticity of the expansion parameter (coupling e or fine
structure αe) and the stability of the vacuum; this series has a zero radius of conver-
gence. Dyson’s argument was not a definite proof of the lack of convergence, but is
indicative that something may be amiss. One may then ask, Why does QED work so
well? It has been suggested and generally regarded that the perturbation expansion
is really only asymptotic and not convergent [98–100]. The agreement between theory
and experiment is due to the smallness of the coupling.

Lack of convergence of the perturbation series does not mean we need to abandon
the theory. The asymptotic nature of the perturbation series means that in calculating
up to higher orders we can only expect to improve the approximation up to a certain
order for a fixed value of the coupling, beyond which the error between the perturbation
series and the exact value will grow. This is also expected for other quantum field
theories, such as QCD. The order in the expansion to which the perturbation series
reflects a good approximation depends on the numerical value of the coupling and in
both QED and QCD the couplings run. It was shown by Gross, Wilczek and Politzer
in Ref. [101, 102] that QCD and a larger class of theories called non-Abelian Yang
Mills theories are asymptotically free, meaning that the coupling becomes small at high
energy or equivalently at short distances. QED on the other hand is not asymptotically
free, its coupling increases with increasing energy. As a consequence of renormalization,
the couplings and masses flow with energy scale and the evolution of the QED coupling
given to one loop order is

αe(Q) =
α

1− 2α
3π

ln Q
me

(2.2.14)

and for QCD it is

αs(Q) =
6π

(11Nc − 2NF)ln Q
ΛQCD

, (2.2.15)

where α = 1/137.03 . . ., NF the number of flavours for which the current quark mass is
less than |Q|, Nc = 3, ΛQCD = 200 MeV and their evolution is depicted in Fig. 2.2.2.

In QFT, quantities like charge and mass distributions are not fixed, but rather
depend upon the energy scale. From a practical point of view they depend on the
wavelength or energy of the probe used to measure them. A probe with a shorter
wavelength or higher energy will see deeper into the target. The running of the coupling
can be understood by a simple picture. For QED, an electron feels the quantum
fluctuations of the surrounding vacuum and unlike classical renormalization scenarios
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Figure 2.2.2: Running of couplings to one loop level in (a) QED and (b) QCD.

it can never be removed from its surroundings, so its bare parameters i.e. its bare charge
or bare mass cannot be known. In the seething vacuum where virtual particle–anti-
particle pairs and photons are popping in and out of existence the bare charge of the
electron is screened from the probe. At larger distances the charge is screened more and
at short distances it is screened less. The same occurs in QCD with quark–anti-quark
pairs and gluons with the added important difference that the gauge group of QCD
is non-Abelian. The gauge bosons of QCD carry colour charge and these gluons anti-
screen the charge. This anti-screening leads to the phenomena of asymptotic freedom
at high energies. As can be seen in Eq. (2.2.15) the competing contributions of the
quark and gluon polarisations depend on the number of quark flavours NF and the
number of colours Nc.

The running of the coupling means that the region relevant for nuclear physics, can-
not be described by the usual perturbation series approach and thus non-perturbative
methods must be used. The only first principles approach to QCD in this non-
perturbative region is Wilson’s lattice gauge theory, but unfortunately it is not suitable
for application to systems at finite density or equivalently finite chemical potential be-
cause of the so-called sign problem. There have been attempts to extend lattice QCD
calculations to systems with finite chemical potential, but it is still not feasible for
densities of interest in this thesis.

It is unknown if the coupling reaches an upper bound as it grows with separation.
Presumably it could require an infinite amount of energy to remove a quark or gluon
from a hadron. This is summarised by the confinement hypothesis, which states that
all coloured objects are confined to colour-singlet objects and cannot be observed in
isolation. The confinement hypothesis has not been proved, but to date nobody has
observed individual quarks or gluons—only a large number of colour neutral bound
states. Although quark structure has been inferred from deep inelastic scattering [103–
107].

The baryons and mesons are the fundamental bound states in QCD. They are rather
different to the ones resulting from the residual quark-gluon dynamics, leading to the
formation of nuclei or the bound states of QED, like the hydrogen atom or positronium.
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A key feature of these bound states is that their mass is not approximately equal to the
sum of their constituents masses as is the case for nuclei and QED bound states. Most
of the mass is generated dynamically by the complicated non-linear interactions of the
gluons with themselves and the quarks. This feature of the quark-gluon dynamics is
closely linked with the spontaneous breaking of chiral symmetry and is the reason why
three light quarks with mass of a few MeV can produce a bound state with a mass
(MN ∼ 1 GeV) greatly exceeding their sum. It is this mechanism that is responsible
for the majority of the visible mass seen in our universe.

Confinement, spontaneous chiral symmetry breaking and dynamical mass genera-
tion are complicated emergent phenomena arising from the non-perturbative nature of
low energy QCD. Arguments have been made that at high temperatures and/or den-
sities deconfinement and chiral symmetry restoration may occur . It may be possible
to find signals of such transitions4 in the extreme environments of heavy ion collisions
and neutrons stars.

A major focus of this thesis will be the matter in the core of neutron stars. Neutron
stars are only of intermediate density on the scale of the QCD phase diagram and can
be considered to be at zero temperature to good approximation. Matter of this type is
not amenable to perturbative QCD nor lattice QCD calculations. This portion of the
phase diagram is also not experimentally accessible, but portions of the phase diagram
corresponding to nuclear physics and heavy ion experiments are, which means we are
able to develop effective models constrained by experimental results in those regions.
Once constrained, these models can then be used to extrapolate to the region relevant
to neutron stars, allowing one to predict their properties and to make comparisons to
astronomical observations.

2.2.3 Chiral Effective Field Theory

Given the difficulties faced in solving a non-perturbative quantum field theory like
QCD, one could consider using these bound states as the relevant degrees of freedom
to develop effective low energy theories and models of QCD. During the latter half
of the previous century (1960–2000) phenomenological potentials incorporating boson
exchanges; like the Bonn, Nijmegen and the Argonne AV18 potential—which included
pion exchange; dominated over other approaches. These potentials are still in use
today, although the last two decades has seen the emergence of effective field theories
as a contender to describe the nuclear force at low energies.

Effective theories like chiral effective field theory (CEFT) [108] are simplified ver-
sions of the underlying theory which exploit a separation of scales. They employ a low
energy expansion in a ratio of momentum transfer and some chiral scale (e.g. pion or
kaon mass). In some sense CEFT is a return to pion theories of old, but it offers a
clear connection to QCD. It is a robust alternative to phenomenological models, some
of which like the very popular Argonne AV18 potential are only loosely connected to
QCD and its phenomena. CEFT on the other hand is designed to describe the same
low energy physics as QCD.

4They may not coincide.
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An attractive feature possessed by CEFT is that it allows for a systematic deter-
mination of theoretical error and inclusion of many-body forces in a methodical way,
which is rather difficult if not impossible in phenomenological models. This is con-
tingent of course on the chiral expansion converging. However, at suprasaturation
densities convergence may be slow. By reason of slow convergence and the necessity of
relativity at high density we cannot use CEFT for the applications of interest in this
thesis. For this reason in addition to the added simplicity we will rely on a relativis-
tic phenomenological model incorporating many of the features of QCD, namely the
Quark-Meson Coupling (QMC) model. Comparisons of our phenomenological model
calculations of Pure Neutron Matter (PNM) with N3LO CEFT will be made in Chap-
ter 4 at low density where the convergence of the chiral expansion should be sufficiently
fast and relativistic effects should be small.

2.3 Nuclear Matter

In this thesis, we are primarily concerned with calculating the equation of state (EoS)
for strongly interacting matter at finite density. In particular, we intend to study the
nuclear EoS of isospin symmetric and asymmetric nuclear matter (SNM and ANM) in a
relativistic model incorporating the quark degrees of freedom of the baryons. The major
application of this model which will be of interest will be to model neutron star interiors
with the aim of predicting their observable properties. This is a formidable task and the
simplifying assumptions of nuclear matter allow calculations to be performed readily.

Nuclear matter is a hypothetical form of strongly interacting matter. It is an
idealised system with an infinite and homogeneous distribution of nucleons that are
assumed not to interact electromagnetically. This is a useful first approximation to
large nuclei as surface effects become less important for these and negligible in the
limit of infinite radius. On the other hand neutron stars have considerably larger radii
(R ∼ 10km) than nuclei (a few fermis) and as such may provide the only natural
realization of nuclear matter in our universe.

The characteristics of the strong nuclear force were discussed in Section 2.1; as a con-
sequence of the attractive short range with repulsive core, the nuclear force saturates.
This is particularly evident from the observations that the radii of nuclei R ∝ A−1/3

and the binding energy per nucleon is approximately constant at 8 MeV for increasing
number of nucleons A. The density at which saturation occurs is ρ0 ∼ 0.16 fm−3, which
is deduced from the analysis electrons scattering from heavy nuclei.

The binding energy is well described using the liquid drop model by the semi-
empirical Bethe–Weizsacker formula,

B(A,Z) = avolA− asurfA
2/3− acoul

Z(Z − 1)

A1/3
− aasym

(N − Z)2

A
+ apair

δ(A,Z)

A1/2
, (2.3.1)

where Z is the atomic number, i.e., the number of protons, and N is the number of
neutrons. The pairing energy is given by

δ(A,Z) =


1 even–even
0 odd–even
−1 odd–odd

. (2.3.2)
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Term Parameter Value [MeV]

Volume avol = 15.85
Surface asurf = 18.34

Coulomb acoul = 0.71
Symmetry aasym = 23.21

Pairing apair = 12.0

Table 2.3.1: Typical parameter set for the Bethe-Weizacker formula [109]

A typical parameter set for the Bethe–Weizacker formula is given in Table 2.3.1. These
values are obtained by fitting to a large data set of nuclei.

The energy per nucleonE is related to the binding energy per nucleon byB/A = −E
and in the large A (thermodynamic) limit reduces to

E ' avol + aasymβ
2 , (2.3.3)

where

β =
(N − Z)

A
−→ ρn − ρp

ρ
. (2.3.4)

For equal numbers of neutrons and protons, known as symmetric nuclear matter
(SNM), it is just the volume term. The volume term corresponds to the energy of
the bulk volume of the nuclear system—it is identified with the binding energy per
nucleon in symmetric nuclear matter.

Light stable nuclei consist of an approximately equal number of protons and neu-
trons, so experimental observations of nuclei can be used to infer the properties of SNM
and vice versa, the SNM EoS can be used to predict the bulk properties of nuclei. For
nuclear matter, its characterizing feature is its EoS. This is the relationship between
thermodynamic state variables, such as energy per particle and the baryonic density,
pressure and temperature. In this thesis, we will only be interested in nuclear matter
in the zero temperature limit, because the temperature kBT (kB is the Boltzmann con-
stant) of the particles is generally very much less than their Fermi energy EF , even in
neutron stars.

The nuclear EoS can be calculated if you know the nuclear force or have a model
representing its key attributes. There are many nuclear models in the literature from
which we can calculate the EoS. They range from non-relativistic Skyrme and Gogny
models to relativistic meson exchange models like quantum hadrodynamics (QHD) and
the quark-meson coupling (QMC) model. The latter are well suited to investigating
hadrons in medium as relativistic effects become important with increasing density.
These relativistic models will be discussed in sections 2.5 and 2.6, respectively.

At the saturation density, properties of finite nuclei or a small set of properties in
SNM can be used to constrain the main parameters of a model, the coupling constants
in the case of the QHD and QMC models. Common properties that are usually taken
to constrain models are the minimum of binding energy E0, the symmetry energy S0

and the compression modulus or incompressibility, K0, at the saturation density. Other
parameter sets for these models can also be obtained by fitting to properties of finite
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nuclei. Using a given parameter set, the SNM EoS can then be calculated and also
extrapolated to obtain the EoS of ANM. No matter the fitting procedure, the model
should predict realistic values for both nuclear matter and the properties of finite nuclei.

In this work, when we calculate energy per baryon E = εHAD/ρ or the hadronic
energy density, εHAD, we will always take into account the rest mass energy of the
baryons, so that the binding energy of nuclear matter (or binding energy per nucleon
in the limit A→∞) is

E =
1

ρ

(
εHAD −

∑
B

MBρB

)
, (2.3.5)

where the binding energy at saturation density, ρ0, is denoted E0 ≡ E(ρ0) and known
to be approximately −16 MeV [110, 111].

The second term in Eq. 2.3.3 is the asymmetry term and its coefficient is equal to
the symmetry energy S at equilibrium. The symmetry energy is defined as

S(ρ) =
1

2

∂2E

∂β2

∣∣∣∣
β=0

, (2.3.6)

where the isospin asymmetry parameter β is defined by Eq. (2.3.4) and aasym ≡ S0 ≡
S(ρ0). It corresponds to a contribution to the energy which is isospin dependent
and as such, crucial for asymmetric systems like heavy nuclei, nuclei far from the
line of stability and the matter found in astrophysical systems (i.e supernovae and
neutron stars). The symmetry energy acts as a kind of restoring force providing a
source of repulsion for neutrons and attraction for protons in neutron rich matter. At
saturation density and just below it is reasonably well constrained and is known to
be approximately 32.5 MeV [110, 111] at equilibrium in SNM. It’s density dependence
above saturation on the other hand is rather uncertain and if one ignores issues related
to phase transitions and deconfinement it is the leading ambiguity in the nuclear EoS.
Understanding the isospin dependence of the in-medium strong force is crucial for
nuclear physics and astrophysics. In the recent article by Horowitz et al [112] an
overview of the current experimental and theoretical status of the symmetry energy is
presented with suggestions for finding a way forward.

Pressure is related to the energy per particle by

P (ρ) = ρ2∂E

∂ρ
, (2.3.7)

where in SNM at saturation the pressure, P0 ≡ P (ρ0) = 0, since the first derivative of
the energy per baryon vanishes because it is minimised at this point. If the symmetry
energy has a strong density dependence it will contribute significantly to the pressure
in asymmetric matter influencing the structure of nuclei, particularly neutron skins in
heavy nuclei as well as the radii of neutron stars [113, 114].

A measure of the curvature of the energy density with respect to density about the
minimum is given by the incompressibility or compression modulus. In terms of the
pressure it is

K(ρ) = 9
∂P (ρ)

∂ρ
= 18

P

ρ
+ 9ρ2∂

2E

∂ρ2
(2.3.8)
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and its value at saturation simplifies to

K0 = K(ρ0) = 9ρ2
0

∂2E

∂ρ2

∣∣∣∣
ρ=ρ0

. (2.3.9)

This quantity is one of the major constraints on nuclear models and its value at satura-
tion has been under debate for several decades. A recent examination of experimental
data estimates it to lie in the range 250 MeV–315 MeV [115]. A larger curvature naively
implies more pressure at higher density leading to predictions of larger maximum neu-
tron star masses. This assumes that no change in the behaviour of the EoS occurs at
higher density and the high density behaviour is entirely determined at saturation.

In finite nuclei, surface and Coulomb effects—which are absent by definition in
nuclear matter—contribute to the incompressibility. It is commonly assumed that a
leptodermous expansion of the incompressibility of a finite nucleus KA of a nucleus A
is valid [116–118]; such an expression takes the form

KA(A, β) = Kvol +KsurfA
−1/3 +KcurvA

−2/3 +KcoulA
−4/3 +Kτβ

2 (2.3.10)

where
Kτ = Kτ,v +Kτ,sA

−1/3 . (2.3.11)

The coefficients Kvol, Ksurf , Kcoul and Kτ have analogous physical meanings to the
coefficients in the Bethe–Weizsacker formula. The isospin contribution to the incom-
pressibility, Kτ , is further broken up into a volume Kτ,v and surface Kτ,s contribution.
In calculations the surface contribution is more complicated to evaluate and usually
neglected. The Kcurv is the curvature term. The volume component is identified with
the incompressibility of SNM at saturation. These coefficients can be extracted by
fitting to empirical data from giant resonances.

Other higher order derivatives of the energy per particle with respect to either
density or the asymmetry parameter can be calculated to further determine the density
and isospin dependence of the EoS. The higher order derivatives can be compared with
values extracted from empirical data to further evaluate and constrain models. The
next higher derivative with respect to ρ of the energy per particle i.e the third derivative,
is known as the skewness and is given by

Q(ρ) = 27ρ3∂
3E

∂ρ3
. (2.3.12)

Its value at equilibrium is denoted Q0 and is not very well determined by experiment.
The chosen normalizations of the higher order derivatives of the energy per particle

and symmetry energy along with their connection to the EoS can be more easily under-
stood as follows. The energy per nucleon is a function of density ρ, isospin asymmetry
parameter β, and the temperature T . As stated above we are only interested in the
zero temperature limit such that

E = E(ρ, β, T ) −−−→
T→0

E(ρ, β) , (2.3.13)
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which, if assumed to be a well behaved function of both variables, can be expanded

as a Taylor series in either variable. For SNM (β =
ρn − ρp

ρ
= 0) it can be expanded

about the saturation density as a function of density as follows:

E(ρ) ≡ E(ρ, β = 0)

= E(ρ0) +
∂E

∂ρ

∣∣∣∣
ρ=ρ0

(ρ− ρ0)

+
1

2!

∂2E

∂ρ2

∣∣∣∣
ρ=ρ0

(ρ− ρ0)2 +
1

3!

∂3E

∂ρ3

∣∣∣∣
ρ=ρ0

(ρ− ρ0)3 + . . .

(2.3.14)

Note that the second term on the RHS of Eq. (2.3.14) vanishes as the energy per particle
is minimised at the saturation density by definition. Eq. (2.3.14) can be rewritten
in terms of the incompressibility and skewness at saturation using Eq. (2.3.8) and
Eq. (2.3.12) as

E(ρ) = E(ρ0) +
K(ρ0)

2!
χ2 +

Q(ρ0)

3!
χ3 + . . . (2.3.15)

where χ =
ρ− ρ0

3ρ0

. One sees immediately from Eq. (2.3.15) that around 3–4 ρ0, den-

sities relevant to neutron stars and heavy ion collisions, that the skewness coefficient
Q0 ≡ Q(ρ0) can potentially give a non-negligible contribution to the EoS, albeit for
SNM.

Determination of the isospin dependence of the nuclear EoS is of far-reaching im-
portance in nuclear physics. Important for understanding large and exotic nuclei, core
collapse supernovae and neutron stars. In neutron stars the symmetry energy influences
particle content, phase transitions and stability against gravitational collapse.

Neutron stars are isospin asymmetric systems and as a first approximation can be
modelled by pure neutron matter (PNM), albeit this is an excited state and susceptible
to weak decay—to reach beta equilibrium. In contrast to SNM, neither PNM nor
Neutron Star Matter (NSM) are bound by the strong interaction, although the latter
is gravitationally bound.

Likewise for ANM, we can make an expansion in terms of the asymmetry parameter
β. To the same order we have

E(ρ, β) = E(ρ, β = 0) +
∂E

∂β

∣∣∣∣
β=0

β +
1

2!

∂2E

∂β2

∣∣∣∣
β=0

β2 +
1

3!

∂3E

∂β3

∣∣∣∣
β=0

β3 + . . .

= E(ρ) +
1

2!

∂2E

∂β2

∣∣∣∣
β=0

β2 + . . . . (2.3.16)

Only even powers of β survive due to the assumption of isospin symmetry of the nuclear
force and so to third order in the asymmetry parameter β we have

E(ρ, β) ' E(ρ) + S(ρ)β2 + O(β4) . (2.3.17)
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It is also informative to expand the symmetry energy as a Taylor series as a function
of density, to second order it is

S(ρ) ≡ 1

2!

∂2E

∂β2

∣∣∣∣
β=0

' S(ρ0) + L(ρ0)χ +
Ksym(ρ0)

2!
χ2 + O(χ3) . (2.3.18)

The second and third terms on the RHS are imaginatively called the slope and curvature
of the symmetry energy. The former is explicity,

L(ρ) = 3ρ
∂S(ρ)

∂ρ
, (2.3.19)

while the latter is given by,

Ksym(ρ) = 9ρ2∂
2S(ρ)

∂ρ2
. (2.3.20)

The values of the slope and curvature at saturation are also denoted with a subscript
or superscript zero, i.e. L0, K0

sym. Their values at saturation determine, respectively,
the first and second order density dependence of the symmetry energy and are not very
well determined by either theory or experiment.

Utilizing the above expansion one may write the volume component of the isospin
incompressibility at saturation in terms of the above higher order derivatives, taking
the form

K0
τ,v = K0

sym − 6L0 −
Q0

K0

L0 . (2.3.21)

One sees that the incompressibility is influenced by the higher order derivatives of the
symmetry energy.

The above properties are generally not measured directly, but are extracted from
empirical data using various models. Despite being extracted in a model dependent
way, all realistic models of nuclear matter should be able to reproduce these quantities
correctly. A summary of experimental and theoretical knowledge of these quantities is
discussed next in Section 2.4.

2.4 Experimental and Theoretical Knowledge of the

Nuclear EoS

Here we provide a very brief overview of the experimental and theoretical knowledge of
the EoS. Through theoretical calculations quite a few physical observables have been
identified that are potentially sensitive enough to bulk nuclear matter properties to
constrain the EoS. The bulk properties of the nuclear EoS can be constrained empir-
ically from various nuclear structure experiments and heavy ion collisions. From the
nuclear structure experiments we can only hope to learn about the behaviour of the
EoS at saturation density and below, whereas heavy ion collisions provide us with the
opportunity to probe the EoS not only at normal nuclear matter densities, but also
suprasaturation densities. We will discuss only the most promising observables related
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to the incompressibility and the symmetry energy. Further constraints on the high
density behaviour of the EoS come from astronomical observations of neutron stars.
These will be discussed in Ch. 3.

The size of nuclei and the distribution of nucleons within them are among the
most basic nuclear structure properties. Only the distributions of protons in nuclei are
well known from experiment. These are well reproduced by theory, whereas a large
variation of predictions exist for the neutron distribution and hence the corresponding
root mean square (rms) radius and neutron skin thickness in neutron rich nuclei. The
structure of finite nuclei is intimately connected to the bulk nuclear EoS. In Ref. [119],
Brown pointed out by using a set of 18 Skyrme models, that the PNM EoS is not well
constrained and each model can be characterised by the density slope of the energy per
neutron at ρn = 0.1 fm−3. Moreover, he found a strong linear correlation between the
neutron skin thickness in heavy nuclei and the slope of the PNM EoS. This neutron
skin thickness is defined as

∆R = 〈r2
n〉1/2 − 〈r2

p〉1/2 (2.4.1)

where 〈r2
n〉1/2 and 〈r2

p〉1/2 are the rms radii of neutrons and protons respectively. Subse-
quent investigations involving other Skyrme [120] and also relativistic mean field [120–
122] models found the same correlation. It was also found using realistic potentials
in a Brueckner–Hartree–Fock approach [123]. The density slope of the energy per
neutron is intrinsically related to the density dependence of the symmetry energy by
Eq. (2.3.18) and the pressure by Eq. (2.3.7). This explicitly demonstrates that there
is a large theoretical uncertainty in the density dependence of the symmetry energy
in phenomenological models. Microscopic or realistic models [124] tend to agree sig-
nificantly better with each other, especially at low density, but significant variation is
still present at high density. All of the above predict a linear increase in the neutron
skin ∆R with the slope L0, which is not surprising since the pressure in PNM increases
with L0 and therefore neutrons are pushed out further, increasing the the neutron rms
radius and hence the neutron skin thickness. As suggested originally by Brown [119]
and further evidenced by later studies with a larger class of models, a measurement of
a neutron skin thickness in a heavy nucleus could severely constrain the PNM EoS and
hence the density dependence of the symmetry energy.

Because of the strong linear correlation, an accurate measurement of the neutron
radius even for a single nucleus would be able to discriminate among models. Unfortu-
nately only proton radii are accurately know. Their radii are determined quite precisely
through unpolarised electron scattering, whereas neutron radii determinations have re-
lied on hadronic probes. The use of hadronic probes to determine the neutron radii
complicates the situation due to the uncertainty in the interaction between the probe
and the nucleus.

Donnelly et al [125] were the first to suggest that parity violating scattering of
electrons would be an accurate probe of neutrons in nuclei. Due to advances in both
experiment and theory [126], there is at present a major experimental effort to use
this technique to measure the neutron skin thickness of 208Pb. This is known as the
lead radius experiment or PREX. In this experiment the scattered electrons interact
by exchanging photons (parity conserving) and Z bosons (parity violating). From the
electromagnetic (Qn

EM = 0, Qp
EM = 1) and weak charges (Qn

W ' −1, Qp
W ' 0.08), it is
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known that the photons couple to the protons and Z bosons couple predominantly to
the neutrons.

The aim of PREX is to measure the parity violating asymmetry APV, which is the
difference in cross sections of positive and negative helicity electrons. The small value
of APV is difficult to measure. It is small because the neutrons only couple weakly
to the Z bosons. It has been measured at a single momentum transfer, which can
be related to the neutron skin thickness by expanding the neutron and proton form
factors about Q2 = 0, but unfortunately the error in the measurement is too large to be
a useful constraint on the EoS. We are eagerly awaiting for the experiment to be redone
more carefully. This electroweak probe offers the best hope to date for an accurate and
model independent determination of the neutron skin thickness of lead. Therefore it
is also a crucial constraint on the nuclear EoS through the density dependence of the
symmetry energy.

Continuing on the same vein of using nuclear structure experiments to constrain
the nuclear EoS, excited states of nuclei can and have provided useful additional in-
formation. Excited state information is crucial as ground state observables have not
been sufficient to constrain the nuclear EoS. Numerous studies both theoretical and
experimental have been carried out on excited states of nuclei in the hope of making
progress. A number of observables were identified as being potentially enlightening,
such as the main features of giant and pygmy resonances; their energies, widths, decay
modes and the E1 dipole polarizability just to name a few. In this approach, the nu-
cleus is studied by perturbing it, then its response to the perturbation is analysed. We
will briefly describe giant resonances and their usefulness as it pertains to constraining
the EoS of nuclear matter. For further information on giant resonances we direct the
interested reader to Harakeh’s monograph [127] and also Ref. [110].

The so called giant resonances which appear as prominent peaks in nuclear cross
sections have played a pivotal role in understanding the EoS. These resonances have
provided useful information on several key properties like the incompressibility, sym-
metry energy, effective (in-medium) nucleon mass and even the neutron skin in finite
nuclei. By comparison with experimental data, giant resonances are interpreted as
collective excitations of nuclei induced by electromagnetic or hadronic probes. That
is, by photoabsorption or inelastic scattering of hadrons. This collective phenomenon
arises from the superposition of many one-particle–one-hole (1p–1h) excitations from
a mean field ground state. In the mean field approximation (MFA), nucleons in a
nucleus only feel a self consistently generated averaged one body potential. As a first
approximation the MFA describes the nucleus rather well, but it is known that the
residual interaction can give rise to collective excitations and therefore this approxi-
mation is not sufficient. It does not allow for p–h excitations, so one must consider
a more sophisticated approximation such as the random phase approximation (RPA).
Both relativistic and non-relativistic models are able to predict giant resonances.

Giant resonances are among the most easily generated excitations of the nucleus.
They are peaked at energies of 10–30 MeV with typical widths of a few MeV. There are
many and they are characterised by their orbital angular momentum or multipolarity
~L, spin ~S and isospin ~T . Orbital angular momentum can take any value L = 0, 1, 2, . . .
(monopole, dipole, quadrupole, . . .), but the spin and isospin are constrained to either



CHAPTER 2. FROM NUCLEAR PHYSICS TO QCD AND BACK AGAIN 33

0 (electric/isoscalar) or 1 (magnetic/isovector) due to the p–h nature of the excitation.
In general, many modes are excited in a perturbed nucleus at once. Particular modes
can be related to different nuclear properties and to isolate a particular mode, the
probe and the observed scattering angle must be carefully chosen.

The isoscalar giant monopole resonance (ISGMR or isoscalar E0, L = S = T = 0),
or so called breathing mode, is associated to compression and expansion of the nucleus,
where neutrons and protons oscillate in phase with each other. Inelastic scattering of an
alpha particle is used to excite this mode and it is enhanced about 0◦. Non-relativistic
and relativistic phenomenological models have been used to calculate the excitation
energy EGMR of this resonance, a correlation between EGMR and the incompressibility
has been found. This mode has been used many times over to extract the incompress-
ibility of a finite nucleus using different models. See references [115, 116, 128–131] and
references therein. The incompressibility obtained is that of a finite nucleus, which
is non-trivially related to the incompressibility of nuclear matter, generally through a
leptodermous expansion of the form Eq. (2.3.10), or a variation thereof.

The extraction of the incompressibility is somewhat model dependent and it is quite
well known that non-relativistic models of Skyrme and Gogny type predict consistently
lower values than relativistic mean field models. A recent reanalysis [115] of giant
resonance data aimed at extracting the incompressibility of nuclear matter concluded
that the nuclear surface plays an important role in determining its value. In this study,
it was found that when the ratio c = Ksurf/Kvol is fixed to the value −1, then the
generally accepted range of 240 ± 20 MeV is obtained from fits to experimental data,
but the fits were significantly improved when c was allowed to deviate from this value.
The best fits to the data were obtained for −2.4 ≤ c ≤ −1.6 and the corresponding
incompressibility range was 250–315 MeV.

The isovector giant resonances are used to explore the isospin dependence of the
nuclear interaction. In isovector modes, neutrons and protons oscillate out of phase
with each other. These modes are sensitive to the symmetry energy and the neutron
skin in heavy nuclei. To excite them photons are typically used as hadronic probes like
protons (T p

3 = 1/2) are not isospin selective. Protons will excite both T = 0 and T = 1
modes, whereas photons will only excite T = 1 modes.

There has been great interest in the past decade or so, both experimentally and
theoretically, in the isovector giant dipole resonances (IVGDR or isovector E1, L = 1,
S = 0, T = 1) and the low-lying electric dipole E1 resonances found energetically
just below them in neutron rich nuclei. Giant resonances contain the majority of the
strength in an excitation, but in exotic nuclei and in some stable nuclei, low-energy E1
modes near the nucleon separation threshold exist. The modes have been known to exist
since the 70’s and have been predicted in numerous models. Recently studies have been
extended to examine more neutron rich and unstable nuclei. They are rather common
and have been found in 208Pb [132, 133]; 138Ba, 140Ce, and 144Sm [134]; 130,132Sn [135];
129–132Sn and 133,134Sb [136]; 136Xe [137] and 68Ni [138]. They are generally referred
to as soft or pygmy dipole resonances (PDR) as their cross sections are quite small
compared to the main portion of the excitation. They typically exhaust only about
1% of the energy weighted sum rule (EWSR).

Despite their long history the microscopic explanation of the low-energy electric
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dipole strength is unclear. The nature of the pygmy resonances, such as its collec-
tivity and its usefulness as a constraint on the symmetry energy is currently under
debate. There has been some indication that these PDR can be interpreted as a col-
lective excitation [139], where the neutron skin oscillates against the isospin symmetric
neutron-proton core. Although not all models agree with this interpretation [140, 141].

From the interpretation of the PDR resonance as an oscillation of the neutron skin
against the isospin saturated core, one would expect this to be a good observable to
measure the neutron skin and also constrain the symmetry energy. In the correlation
analysis of Reinhard and Nazarewicz [142, 143], the dipole polarizability, from which
the PDR contributes 20–25% [144], was found to have a strong correlation with the
neutron skin, whereas the strength of the PDR was found to be only weakly correlated.
This is in contrast to other studies that did find a correlation, for instance the studies
of Piekarewicz [144, 145] or Klimkiewicz et al [136], who found a linear relationship
between the relative pygmy strength and the neutrons skin thickness. Measurements of
the dipole polarizability may constitute a complementary alternative to parity violating
electron scattering to determine the neutron skin thickness [144]. In addition to these,
Carbone et al [146] found using a set of both non-relativistic and relativistic mean
field models, a linear correlation between Thomas–Reiche–Kuhn (TRK) EWSR and
the slope of the symmetry energy L0. From the experimental data on 68Ni and 132Sn
they extracted the value L0 = 64.8± 15.7 MeV and were able to infer the neutron skin
thickness in 68Ni, 132Sn and 208Pb.

Another means by which to study the nuclear EoS comes from colliding heavy
ions. These experiments provide us with the only way to probe the EoS at higher
densities in a laboratory setting. In these collisions high density and temperature
matter is momentarily produced for approximately 10−23s. Subthreshold production of
kaons and flow measurements have provided constraints on the nuclear EoS [147, 148].
Interestingly, the constraints placed on the slope of the symmetry energy L0, predict a
somewhat larger value than constraints from other experiments, but with larger error
bars they partially overlap. Of course there a number of hurdles to be overcome in the
associated modelling of the collisions and the extraction of constraints on the EoS. For
more detailed information regarding heavy ion collisions and the constraints they can
place on the nuclear EoS we refer the reader to Tsang et al [87] and Li et al [149].

The symmetry energy as discussed is a crucial factor characterizing the EoS of
ANM. Despite its importance and numerous studies its density dependence is still not
very well understood. Nevertheless, advances in its understanding at saturation and
subsaturation densities have occurred in recent years from a number of experiments,
along with the identification of promising observables which are expected to constrain
it further [87]. More detailed and systematic work is needed to understand the high
density behaviour. Heavy ion experiments will play an prominent role in this regard,
as the isospin dependence, in addition to the density dependence, of the collision can
be probed by colliding nuclei with differing isospin. This will continue to be so with
the commissioning of new radioactive ion beam experiments and facilities. There is a
truly global effort to understand the physics involved and numerous heavy ion facilities
are located world wide, such as: CSR (China), FAIR an extension of GSI (Germany),
LHC at CERN (Switzerland), NSCL at MSU (United States), RHIC at BNL (United
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States), RIKEN (Japan), and SPIRAL2 at GANIL (France).
These facilities enable the acceleration of unstable nuclei with increased isospin

asymmetry, allowing us to probe regions of the nuclear chart away from the line of
stability. This will permit us to investigate the development of EoS with increasing
asymmetry and density. With this goal in mind, a number of observables have been
suggested in the literature to be sensitive to the symmetry energy and its density
dependence in heavy ion reactions. Several of the most sensitive are: isospin transport
and diffusion, n-p spectra and flows , π+ versus π− production and flow.

2.5 Quantum Hadrodynamics and the Relativistic

Mean Field Approximation

The purpose of this and the following section is to review the basic concepts behind the
relativistic mean field approximation and its application to quantum hadrodynamics
(QHD) and the quark-meson coupling (QMC) model. Emphasis will be placed on
two particular parametrizations, QHD-II and NL3, and their connection to the QMC
model. Quantum hadrodynamics is discussed in several textbooks and reviews, see for
example Ref.[58, 110, 111, 150–152].

Historically, non-relativistic approaches were widely used to describe nuclear matter
and finite nuclei. This was partly because of being experimentally limited in the early
days of nuclear physics to low energies and nuclei close to the line of stability. Even
with the development of modern experimental techniques, allowing us to probe higher
energies and more exotic nuclei, non-relativistic models are still in use. The reason
for this lies in their simplicity and rather accurate description of empirical data. Two
of the most notable non-relativistic mean field models are the Skyrme and the Gogny
models. The former employs an instantaneous zero range contact interaction, whereas
the latter incorporates a finite range. Despite their numerous successes in describing
empirical observations, these models are far from being fundamental and offer little
explanation for the origin of the empirically proved existence of nuclear saturation or
the spin-orbit force.

Two important points to be aware of are: (i) in these non-relativistic models the
spin-orbit interaction is included in a rather ad hoc manner and (ii) the smallness of the
binding energy of nucleons is used for the justification of the non-relativistic approach.
A deeper understanding of these phenomena can be achieved by consideration of ef-
fective relativistic interactions mediated by meson exchange. Of particular importance
is the inclusion of relativity which most importantly in the context of nuclear systems
maintains the distinction between a scalar potential and the temporal component of
a 4-vector potential. This in contrast to other systems where relativity becomes im-
portant because of kinematics. A relativistic treatment is also necessary for correctly
treating the compact stellar objects known generically as neutron stars. It is important
for the preservation of causality at high density.

Non-linear self-interactions of a scalar field were suggested by Schiff [153, 154] as
early as 1951 as a possible mechanism for saturation. This idea was further developed
by Johnson and Teller [155] who demonstrated that a moving nucleon immersed in
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a classical potential, whose quanta are neutral scalar mesons, could account for sev-
eral nuclear properties. The subsequent investigation of Duerr [156] reformulated their
idea in a relativistically invariant way. He considered a number of Lorentz structures,
but argued that only a scalar interaction and the temporal component of a vector
field could lead to a velocity dependent potential that transformed as a scalar in the
non-relativistic limit. In addition to other nuclear properties, it was found that this
interaction produced a strong spin-orbit interaction comparable in strength used phe-
nomenologically in shell model calculations.

These works paved the way for Walecka’s 1974 paper [157], in which he formulated
the nuclear interaction as a relativistic quantum field theory. His model has been ap-
plied to nuclear matter, finite nuclei and neutron stars [150]. The effective Lagrangian
used in his original work included only nucleons and two mesons. This model and its
variants have become known as quantum hadrodynamics (QHD) as all of its degrees of
freedom are hadrons. In the original version of QHD introduced by Walecka, which we
will denote (QHD-I), the baryons interact via the exchange of a scalar-isoscalar meson
and a vector-isoscalar meson, now commonly denoted σ and ω respectively. These
mesons couple directly to nucleons and are responsible for the intermediate range at-
traction and the short distance repulsion, respectively.

In the past, non-relativistic models were justified on the basis that the binding
energy of nucleons in a nucleus is small; with their binding energy being only a fraction
of the free nucleon mass and thus relativistic corrections were thought to be small
too. But in a relativistic meson exchange model saturation comes naturally from a
cancellation of a large attractive scalar potential produced by σ exchange with a large
repulsive vector potential from the ω exchange. Both of these potentials are of the
order of the nucleon’s mass and it is their sum that is small. Clearly, a relativistic
treatment must be pursued if this is the correct origin of saturation. The spin-orbit
force also arises naturally in this framework, with the contributions from the σ and
ω adding constructively to produce a strong spin-orbit interaction. The existence of
these large scalar and vector potentials in nuclei is now generally accepted as empirical
fact. Moreover, as a consequence of its relativistic formulation, causality is preserved
in dense matter from the outset. This is in contrast to non-relativistic models which
can violate causality at large densities.

QHD was shown to be a renormalisable meson theory, characterised by the meson
masses and their couplings to the nucleons. Despite being renormalizable, a perturba-
tive expansion is not possible as the coupling parameters are not small. Typical loop
expansions are not convergent as higher order corrections are significant [158]. As it
stands today, it is considered as an effective phenomenological model as the couplings
are adjusted to reproduce properties of finite nuclei and nuclear matter at equilibrium
and not the free NN scattering data like the Bonn, Nijmegen or Paris boson exchange
potentials. In Ref. [159], Glendenning made a comparison between the renormalizable
and effective mean field versions of QHD. He demonstrated that with or without that
the vacuum polarization the EoS varies insignificantly if the model parameters are con-
strained to the saturation properties. This is very pleasing due to the complications
with higher order corrections and in practice the model is generally applied using either
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the relativistic mean field (RMF) approximation (also known as the Hartree approxi-
mation) or an extension thereof, for instance exchange (Fock) terms or random phase
approximation (RPA).

Pions are the lightest mesons and as such are paramount to the description of the
nuclear interaction, particularly in the long range. For this reason, the pion should
also be included explicitly in QHD, but to lowest order (Hartree approximation) in
which quantum fluctuations are neglected, the pion does not contribute because of
its negative parity. The meson resonances, on the other hand, can contribute and
are generally treated as point like mesons with no width. The physical σ meson,
despite its troubling history, is generally identified with the correlated (s-wave) two
pion exchange and the ω with three-pion exchange. In QHD, these mesons should
not strictly be construed as the physical mesons one finds in experiment, instead they
should be considered as fields with the same quantum numbers. Meson masses are set
to their experimental values, while their couplings to the nucleons are treated as free
parameters constrained to nuclear observables. For example, the ω meson is meant to
describe the repulsive vector-isoscalar part of the interaction. This repulsive ω exchange
can be viewed as being made up of the physical ω exchange and the repulsion generated
from quark exchange at very short distances.

Modern incarnations of QHD are among the leading phenomenological nuclear
structure models. They are capable of quantitatively describing many ground and
excited state properties of nuclei as well as the bulk properties of nuclear matter.
There still remains considerable uncertainty in the QHD formulation of the nuclear in-
teraction, particularly in the isovector sector. During the intervening years numerous
extensions of this model have occurred to improve the quantitative description of nu-
clear properties. The original version QHD-I is the simplest version of all the variants
and is the basis for all descendant variations as it has been found that the σ and ω
exchange are by far the most important. Variations of QHD have supplemented QHD-I
with extra meson degrees of freedom, baryons containing strange quarks i.e hyperons,
meson self-couplings and additional couplings between mesons. Different data sets have
also been used for constraining coupling constants including both bulk nuclear matter
and finite nuclei properties.

Among the most crucial extensions of QHD is the enhancement of the isovector
sector, which occurred shortly after the conception of the model, where the model
was extended to include a third meson, the vector-isovector ρ meson. This meson is
needed to distinguish between neutrons and protons and hence improve the description
of asymmetric matter. At the mean field level, the ρ meson is important for the EoS
of ANM, but has no effect in SNM. We will simply refer to this version of QHD as
QHD-II.

The effective Lagrangian density used in QHD-II is given by a combination of
nucleon and meson components

L = LN + Lm , (2.5.1)

where the baryon Lagrangian density is expressed as

LN = Ψ̄N

(
iγµ∂

µ −MN + gσσ − gωγµωµ −
gρ
2
γµτ · ρµ

)
ΨN , (2.5.2)
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where τ is the vector of isospin Pauli matrices and the ΨN denotes the nucleon isodou-
blet spinor expressed explicitly as

ΨN =

(
ψp

ψn

)
. (2.5.3)

The meson Lagrangian density is

Lm =
1

2
(∂µσ∂

µσ −m2
σσ

2)− 1

4
ΩµνΩ

µν +
1

2
m2
ωωµω

µ

−1

4
Rµν ·Rµν +

1

2
m2
ρρµ · ρµ , (2.5.4)

for which the anti-symmetric vector meson field strength tensors are

Ωµν = ∂µων − ∂νωµ and Rµν = ∂µρν − ∂νρµ . (2.5.5)

Note that there is no photon vector field, Aµ, as nuclear matter does not include the
electromagnetic interaction. In calculations of finite nuclei this interaction is included.

From this Lagrangian, Eq. (2.5.1), we obtain through Hamilton’s principle of sta-
tionary action

δS = δ

∫
dt

∫
d3xL(~x, t) = 0 , (2.5.6)

the Euler-Lagrange equations

∂L
∂φα
− ∂µ

∂L
∂(∂µφα)

= 0, (2.5.7)

where φα is any of the above mentioned fields. This leads naturally to a coupled
system of non-linear partial differential equations for the quantum fields. Nucleons
being spin-1/2 fermions are described by a Dirac equation of the form,(

iγµ∂µ − gωγµωµ −
gρ
2
γµτ · ρµ −MN + gσσ

)
ΨN = 0 . (2.5.8)

As for the mesons, the scalar-isoscalar σ meson is described by a Klein-Gordon equa-
tion,

(∂µ∂
µ +m2

σ)σ = gσΨ̄NΨN , (2.5.9)

together with the ω and ρ vector mesons, which are given by the following Proca
equations,

∂µΩµν +m2
ωω

ν = gωΨ̄Nγ
νΨN , (2.5.10)

∂µR
µν +m2

ρρ
ν =

gρ
2

Ψ̄Nτγ
νΨN , (2.5.11)

the system is complete. This is a difficult system of equations to solve and to make
the problem tractable approximations are applied. Static, no sea and mean field ap-
proximations are typically used. The static approximation refers to neglecting time
dependence and no sea refers to ignoring the Dirac sea of negative energy states.
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In the mean field approximation the meson field operators are replaced by their
ground state expectation values. Thus their fields are essentially treated classically.
The ground state is assumed to be of definite spin and parity, 0+. As we are considering
infinite uniform (homogeneous) nuclear matter in the above approximations, we have
translational and rotational invariance and thus the space-like components of the meson
fields vanish allowing us to write:

σ → 〈Ψg.s.|σ|Ψg.s.〉 ≡ 〈σ〉 ≡ σ̄ , (2.5.12)

ωµ → 〈Ψg.s.|ωµ|Ψg.s.〉 ≡ 〈ωµ〉 = 〈δµ0ωµ〉 ≡ ω̄ , (2.5.13)

ρµ → 〈Ψg.s.|ρµ|Ψg.s.〉 ≡ 〈ρµ〉 = 〈δµ0δa3ρµa〉 ≡ ρ̄ , (2.5.14)

where a refers to the isospin index. The nucleon fields remain operators and are the
sources for the meson fields. They must therefore be evaluated by acting on the ground
state. In the equations of motion for the meson fields Eqs. (2.5.9–2.5.11) the baryon
operators are replaced by their normal ordered ground state expectation values:

Ψ̄NΨN → 〈Ψg.s.| : Ψ̄NΨN : |Ψg.s.〉 ≡ 〈Ψ̄NΨN〉 , (2.5.15)

Ψ̄Nγ
µΨN → 〈Ψg.s.| : Ψ̄Nγ

0ΨN : |Ψg.s.〉 ≡ 〈Ψ†NΨN〉 , (2.5.16)

Ψ̄Nτγ
µΨN → 〈Ψg.s.| : Ψ̄Nτ3γ

0ΨN : |Ψg.s.〉 ≡ 〈Ψ†Nτ3ΨN〉 . (2.5.17)

The crux of the mean field approximation is that in the many-body system the nucle-
ons are thought of as moving independently in a one-body potential which is gener-
ated self-consistently by their interaction amongst themselves. The one-body potential
originates from the meson fields. This approximation is increasingly more reliable with
increasing baryonic density and therefore appropriate to the nuclear matter in neutron
stars.

This is usually called the Hartree or relativistic mean-field (RMF) approximation.
In this lowest order approximation the quantum fluctuations of the meson fields are
ignored and the pion does not contribute because of parity considerations. Of the ρ
mesons, only the neutral ρ contributes and is non-zero only in ANM. After applying
these approximations the meson equations of motion Eqs. (2.5.9–2.5.11) become

m2
σσ̄ = gσ〈Ψ̄NΨN〉 = gσ

(
ρs

p + ρs
n

)
= gσρ

s , (2.5.18)

m2
ωω̄ = gω〈Ψ†NΨN〉 = gω

(
ρv

p + ρv
n

)
= gωρ

v , (2.5.19)

m2
ρρ̄ =

gρ
2
〈Ψ†Nτ3ΨN〉 =

gρ
2

(
ρv

p − ρv
n

)
=
gρ
2
ρv

3 . (2.5.20)

In Eqs. (2.5.18–2.5.20), ρs, ρv and ρv
3 represent the total scalar, vector and isovector

baryon number densities, where ρs
i and ρv

i are the individual nucleon contributions,
(i ∈ {p, n}), which are given by

ρs =
∑

i∈{p,n}

ρs
i =

(2JN + 1)

(2π)3

∑
i∈{p,n}

∫
|~p|≤pF,i

d3p
M∗

N√
~p 2 +M∗ 2

N

(2.5.21)

and

ρv =
∑

i∈{p,n}

ρv
i =

(2JN + 1)

(2π)3

∑
i∈{p,n}

∫
|~p|≤pF,i

d3p . (2.5.22)
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In Eq. (2.5.21) and Eq. (2.5.22), pF,i denotes the Fermi momentum of nucleon type i.
These integrals are evaluated by making use of spherical symmetry. Our notation is
such that, ∫

|~p|≤pF,i

d3p (Integrand) =

∫ pF,i

0

dk k24π (Integrand) . (2.5.23)

After performing the above approximations the Dirac equation for the nucleons also
becomes simplified, (

iγµ∂µ − gωγ0ω̄ − gρ
2
γ0τ3ρ̄−M∗

N

)
ΨN = 0 , (2.5.24)

where we have defined the effective nucleon mass, M∗
N = MN− gσσ̄. The effective mass

M∗
N is significantly smaller than its bare value.
To summarise, the RMF or Hartree approximation results in a semi-classical theory

of nucleons immersed in the averaged or classical meson fields. This is the lowest order
approximation which neglects quantum fluctuations. The extension beyond the lowest
order is not unique and can be derived in number of different but essentially equivalent
ways. In Chapter 4 we will use the same method as used in Refs. [160–163], but it can
also been achieved by reformulating QHD in terms Dyson’s equation for nucleons [150].

To calculate the EoS of nuclear matter we will need to construct the energy mo-
mentum tensor from the effective Lagrangian Eq. (2.5.1), which can be defined as

Tµν = −gµνL+
∂φα
∂xν

∂L
∂(∂φα/∂xµ)

(2.5.25)

where φα denotes each physical field, i.e., both nucleons and mesons.
Under the assumption that the infinite and homogeneous nuclear matter can be

treated as a perfect fluid the energy momentum tensor takes the form

Tµν = (E + P )uµuν − Pgµν , (2.5.26)

where E and P are the total energy density and pressure. The four vector uµ is the four-
velocity of the perfect nuclear fluid. In the local rest frame of the fluid the four-velocity
is uµ = (1, 0, 0, 0) and the energy-momentum tensor simplifies to

Tµν =


E 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

 . (2.5.27)

From the QHD Lagrangian, one can derive the total ground state energy density E ,
which is given by the normal ordered ground state expectation value of the 00 com-
ponent of the energy momentum tensor, i.e E = 〈T00〉 . Following the usual meth-
ods [110, 111] one arrives at

E =
2JN + 1

(2π)3

∑
i∈{p,n}

∫
|~p|≤pF,i

d3p
√
~p 2 +M∗ 2

N +
1

2
m2
σσ̄

2 +
1

2
m2
ωω̄

2 +
1

2
m2
ρρ̄

2 , (2.5.28)
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for the total ground state energy density and

P =
1

3

(2JN + 1)

(2π)3

∑
i∈{p,n}

∫
|~p|≤pF,i

d3p
~p 2√

~p 2 +M∗ 2
N

− 1

2
m2
σσ̄

2 +
1

2
m2
ωω̄

2 +
1

2
m2
ρρ̄

2 (2.5.29)

for its pressure. In the ground state at zero temperature, the total baryonic vector
number density ρv with the energy density E and pressure P given in Eq. (2.5.28) and
Eq. (2.5.29) comprise the complete set of thermodynamic variables needed to describe
the QHD nuclear matter EoS. This is a thermodynamically consistent approximation
and the mean field equations of motion can be obtained, by minimizing the total energy
density with respect to the physical fields and likewise the pressure can be obtained
through Eq. (2.3.7).

The binding energy, saturation density and symmetry energy at saturation are quite
well understood. In particular, the symmetry energy at saturation is generally con-
sidered to be within a few MeV of 32.5 MeV. This makes these observables useful in
constraining our coupling constants, whereas the density dependence of the symmetry
energy, its slope L0, the incompressibility K0 and the remaining nuclear matter prop-
erties are considerably more uncertain experimentally. The parameter sets of QHD-II
and NL3 are given in Table 2.5.1 and 2.5.2.

In SNM, the QHD-I and QHD-II parametrizations are equivalent as the ρ mesons
do not contribute. These parametrizations unfortunately produce a SNM EoS which
is too stiff, by which we mean that the incompressibility is too large. An EoS is
generally said to be stiffer than another EoS if greater pressure is produced for a given
energy density. To overcome this failing of the most basic parameters sets it was first
proposed by Boguta and Bodmer [164] to incorporate non-linear self-interactions of
the scalar field, incorporating both cubic and quartic terms. The two extra couplings
provide additional flexibility in the EoS to fit two more observables traditionally the
incompressibility K0 and the effective nucleon mass M∗

N at equilibrium [111]. The
scalar potential in linear QHD models (QHD-I, QHD-II) is simply of the form

Us(σ) =
1

2
m2
σσ

2 , (2.5.30)

which becomes

Us(σ) =
1

2
m2
σσ

2 +
κ

3!
(gσσ)3 +

λ

4!
(gσσ)4 (2.5.31)

upon inclusion of scalar self-interactions. Generally, this non-linearity in the scalar
field is interpreted as being related to a density dependence of the scalar coupling. It
can also be interpreted as arising from nucleon substructure and many-body forces.
There are many other parameter sets in the literature, obtained, for example by fitting
different data or incorporating additional non-linear self-interactions [165–167], density
dependent couplings [168] and meson-meson interactions [169].
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Parameter Set g2
σ g2

ω g2
ρ κ λ

QHD-II [150] 109.626 190.431 65.226 - -
NL3 [167] 104.3871 165.5854 79.6000 3.8599 -0.01591

Table 2.5.1: Two typical QHD parameter sets. Coupling constants are dimensionless
except for κ which is given in MeV. The parameter sets are given using the convention
that the scalar field is positive. See the above references for the details of the fitting
procedure.

Parameter Set MN mσ mω mρ K0

QHD-II [150] 939 520 783 770 545
NL3 [167] 939 508.194 783.501 763.0 271.76

Table 2.5.2: Masses and incompressibility for the two typical QHD parameter sets
given in Table 2.5.1. The masses and incompressibility are given in MeV.

2.6 The Quark-Meson Coupling Model

Employing baryons and mesons as the relevant degrees of freedom has provided a
fruitful description of many nuclear properties. Important examples of this include
the description of deuteron properties by pion exchange and realistic potentials like
those from Bonn and Nijmegen that describe the NN scattering data with a high level
of accuracy. But hadrons have been known to have structure in the form of quarks
and gluons for decades. The usefulness of the quark model in describing the hadronic
spectrum combined with the successful description of experimental data by QCD in
the perturbative regime leaves little room for any other interpretation than that QCD
is the correct theory of strong interactions. The question then naturally arises, are
quarks and gluons relevant to the description of nuclear systems or are the effective
hadron degrees of freedom are all that are needed? At normal nuclear densities this is
a difficult question to answer, but theoretical studies of the EMC effect suggest that
they may be important, see for example Ref. [170].

As the density increases the nucleons will begin to overlap and hence the underlying
structure is likely to play an increasingly important role. It has been theorised that, at
some high density and/or temperature, a phase transition may occur where hadronic
matter may deconfine. Whether or not the densities in the interior of neutron stars
are great enough to achieve such a phase transition is uncertain. This is one of the
questions we will address using relativistic quark level models in Ch. 7.

The previous sections concentrated on introducing a formulation of QHD for nuclear
matter. It is a model by which point like nucleons interact by exchanging point like
mesons. All structure of the hadrons is completely neglected in this model. We would
like to move beyond the simplification of structureless hadrons and investigate the
properties of nuclear matter and neutron stars in a model treating baryons as a cluster
of three quarks. With this goal in mind, we introduce in this section a relativistic quark
level model known as the QMC model. This model is closely connected to QHD, but
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incorporates hadron structure by modelling nucleons as MIT bags with mesons being
exchanged between quarks in different bags.

The MIT bag model originated in the 60’s with Bogolioubov [171] and was later
improved upon by the MIT group [172, 173]. Bag models are phenomenological, al-
lowing us in a simple way to impose the physical observation that quarks are confined
within colour-singlet hadrons and never seen in isolation. A rigid boundary condition
is implemented confining the quarks, also making the restriction that only those bound
quarks should exist inside the bag cavity and that different bags should not overlap.
This negates the main supposition of the model that mesons couple directly to the
quarks and also its application to dense matter. In the strict definition of the bag
model these bags should not overlap, but this statement is really too restrictive and
the bag model picture should be interpreted as a simplified picture of the complicated
confinement mechanism [161]. This is the point of view taken and why we believe that
the model may be valid within the density ranges to be considered in this thesis. For
a more detailed explanation of the bag model we refer the reader to [174–176], where
this model is thoroughly discussed.

Through the inclusion of internal structure the model offers natural explanations
from the quark level for origin of nuclear saturation and of the non-linear scalar in-
teraction, which is phenomenologically needed to provide a quantitative description
of nuclear properties, particularly for the incompressibility. Moreover, it provides a
connection between hadron structure and many-body forces in non-relativistic Skyrme
models. It is a phenomenological model which has had success in predicting the prop-
erties of both nuclear matter and finite nuclei. In particular, the binding energies
of Λ-hypernuclei are well reproduced and Σ-hypernuclei are predicted to be unbound
in qualitative agreement with experiment. The salient feature of the QMC model is
that it incorporates quark substructure into the baryons by modelling them as bags
and coupling the exchanged mesons directly to the quarks as opposed to the baryons,
which is the case in QHD. The model was introduced using the bag model, but it can
be implemented more generally by changing the model for hadronic structure. The
quark mean-field (QMF) model [177–180] shares essentially the same features as the
QMC model.

The QMC model first appeared in Ref. [181], where Guichon suggested a new kind of
saturation mechanism for nuclear matter originating from the quark level. The nucleons
were taken to be MIT bags containing three massless quarks which were coupled directly
to the exchanged mesons modifying their motion. The model supplemented the usual
MIT bag Lagrangian with the simplest local couplings of the σ and ω mesons to the
confined quarks. That is, the couplings were taken to be gqσ q̄qσ and gqω q̄qω, where
q is the SU(2) isodoublet of light quarks. It was later improved and generalised to
finite nuclei by Guichon, Rodinov and Thomas [182]. The model was treated in the
mean field approximation as is the case with most subsequent papers using the QMC
model. More recent versions of the QMC model go beyond this approximation by
including Fock terms [183] or considering a fluctuation term which also amounts to a
Fock term [161].

In the QMC model the coupling of the quarks to the mesons produces the mean
fields which in turn modify the equations of motion of the quarks. As described in
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Figure 2.6.1: Schematic picture of the QMC Model.

Ref. [181], the vector mean field ω̄ is linear in density whereas the scalar mean field
σ̄ is dependent on a source term. The response of the quark wave function ultimately
results in a decrease of the source term meaning that σ̄ does not increase as fast as ω̄ as
the density increases. That is, the quark structure introduces an effect that opposes the
scalar field. Eventually the repulsive ω exchange is larger than that of the attractive
σ exchange resulting in the saturation of nuclear matter.

Opposition to the applied scalar field is the only way in which the internal structure
affects nuclear matter. By performing an explicit QMC model calculation directly
solving the bag model equations one is able to produce a parametrization for the in-
medium mass of a baryon. Given in terms of the nucleon coupling gσN and the applied
scalar field it takes the form,

M∗
B = MB − wσBgσN σ̄ +

d

2
w̃σB(gσN σ̄)2 , (2.6.1)

where the weightings wσB and w̃σB simply allow the use of a unique coupling to nucle-
ons. The parameter d, which is obtained from the fit, is called the scalar polarizability
in analogy with electric polarizability. One can therefore replace the explicit descrip-
tion of the internal structure of the baryons by constructing an effective Lagrangian
on the hadronic level and proceed to solve the relativistic mean field equations in a
standard way [150]. This is done by reformulating the QMC Lagrangian density by
redefining the scalar field σ in terms of a new scalar field φ = φ(σ), such that the
nuclear mass depends linearly on φ and the resultant QHD equivalent Lagrangian is
supplemented by non-linear self-interactions of the new scalar φ field [184, 185]. In
this manner, the non-linear dependence on the scalar field can be considered as the
originating from the internal structure of the baryon. In QHD models, the non-linear
scalar potentials can differ considerably for large values of the scalar field. Whereas
in the QMC model it has been shown using several models for the nucleon, it has the
same general behaviour regardless of the confinement mechanism.
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The quark level couplings are in one to one correspondence to the hadronic cou-
plings, thus once the couplings are fixed at the quark level, the hadronic couplings
follow for free and vice versa. These couplings are determined by fitting the saturation
properties of symmetric nuclear matter. Only the scalar coupling is density dependent
and that dependence is calculated self-consistently through the parametrization of the
in-medium effective mass obtained through the bag equations. The quadratic depen-
dence of the effective mass induced by the internal structure of the nucleon presents
itself in the equation of motion for the scalar field,

σ̄ = − 1

m2
σ

(2JN + 1)

(2π)3

∑
i∈{p,n}

∫
|~p|≤pF,i

d3p
M∗

N√
~p 2 +M∗ 2

N

∂M∗
N

∂σ̄
(2.6.2)

=
1

m2
σ

(2JN + 1)

(2π)3

∑
i∈{p,n}

gσNCN(σ̄)

∫
|~p|≤pF,i

d3p
M∗

N√
~p 2 +M∗ 2

N

, (2.6.3)

where

− ∂M∗
N

∂σ̄
= gσNCN(σ̄) = gσN − dg2

σN σ̄ . (2.6.4)

The internal structure of the nucleon modifies the self-consistent equation to be solved,
in turn changing the density dependence of the in-medium mass. The quadratic de-
pendence of the in-medium mass on the scalar field means that the QMC model can
avoid the unfortunate prediction of negative masses at high density that occur in simple
QHD parametrizations [185].

In Ref. [186], Guichon and Thomas derived a Skyrme type effective force with two-
, three- and four-body forces from the QMC model. This was later improved upon
by Guichon et al [160] by removing the need to expand about σ̄ = 0. A connection
between the many-body interactions in Skyrme functionals and nucleon structure was
emphasised. The scalar polarizability, d, was shown to be the key ingredient, with the
many-body terms shown to be proportional to powers of d and thus a consequence of
nucleon structure.

Many modifications and extensions of the original QMC model have been developed.
The review article by Saito et al [187] gives a complete and critical evaluation of the
QMC model up to 2007. Since this comprehensive review, the effect on the binding
of hypernuclei by inclusion of one-gluon exchange (between quarks in the same bag) is
a particularly interesting new development. This inclusion has the effect of changing
the density dependence of the effective baryon mass and most importantly lifting the
degeneracy seen in the baryon octet between the Λ and Σ hyperons. Encouragingly,
the results of Ref. [188] which self-consistently incorporates the effect of the scalar field
on this hyperfine interaction predicted Λ-hypernuclei to be bound and Σ-hypernuclei
unbound in qualitative agreement with experiment. This is the version of the bag model
we will be using for modelling the baryons and the quadratic mass parametrization
obtained in Ref. [188] is included in the appendix for easy reference.



2.6. THE QUARK-MESON COUPLING MODEL 46



3
General Relativity and the Astrophysics of

Neutron Stars

This chapter aims to introduce neutron stars, their general relativistic structure and
the important role they play in constraining the nuclear equation of state. There
exists a vast literature on neutron stars, a few of the most useful textbook references
are [111, 189–191], see also the recent reviews [192–194].

Neutron stars have a long history, first proposed by Baade and Zwicky [195] in 1934
to be the end product of a supernova and observed by Hewish and Bell in 1967 [196].
They are quite extreme and complex objects, where all four known forces play a role.
Their densities (1–10ρ0) are far greater than what we are capable of maintaining in a
laboratory. Heavy ion collisions are able to momentarily achieve high densities, but
pale in comparison to neutron stars. They are the densest forms of matter this side of
an event horizon and an ideal place to test phenomenological nuclear physics models
in an extreme environment.

Astronomical observations provide us with information on these fascinating objects.
Typical observables consist of mass, radius, photon red-shift, temperature, cooling
rate, angular velocity, glitches, and their moment of inertia. These can be observed or
inferred and then compared to a calculated value within a chosen model. In this thesis,
we will only be interested in their masses and radii, as these two properties can place
severe constraints on the high density behaviour of the EoS of neutron star matter
(NSM). Unfortunately, only masses are well known empirically. Measurements of radii
suffer a number of technical problems, but are generally regarded to be ∼10 km, see
for example Refs. [197–201].

As discussed in Sec. 2.4 the measurement of the neutron skin thickness (∆R) of
a heavy nucleus, like 208Pb, could constrain the EoS of nuclear matter. It would
impose a constraint on its behaviour at or below the saturation density, particularly the
slope of the symmetry energy. In Refs. [113, 114], it was pointed out that combining
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such a measurement with the complementary observation of a neutron star radius
(RNS) could together impose a significant constraint on the EoS, as radii of neutron
stars are mostly sensitive to the EoS at high density. They showed, using a RMF
model supplemented with non-linear couplings between isoscalar and isovector mesons,
that there was a correlation between ∆R and RNS. The non-linear meson couplings
allowed the manipulation of the density dependence of the symmetry energy, so by
adjusting these couplings they were able to vary ∆R. Obtaining EoSs under this
variation of couplings, the standard equations of hydrostatic equilibrium (i.e. the
TOV equations, see later) were integrated revealing that larger ∆R corresponded to
larger RNS. For example they conjectured, based on this finding, that if a larger ∆R
were to be measured in an experiment, such as PREX, and the radius of a neutron star
could be accurately determined to be small, this could indicate a phase transition to
some other form of matter, as smaller radii generally correspond to softer EoS at high
density.

Historically, masses of neutron stars have been found to be MNS ∼ 1.4 M�, but
recently there has been observations of not one, but two, large mass neutron stars with
MNS ∼ 2.0 M� [202, 203]. These observations used different techniques with similarly
small errors, allowing confidence in the existence of large mass neutron stars. The
observation of such high mass neutron stars poses a difficult problem for theory, as
the inclusion of additional degrees of freedom beyond nucleons and leptons will result
in softening1 of the EoS, leading to the prediction of lower mass stars. The softening
occurs because, the Fermi momenta of the particles is distributed over more Fermi
seas. However, there is no known mechanism to inhibit the appearance of exotic forms
of matter, such as hyperons, if they become energetically favourable, and there lies the
problem—reconciling realistic models, which include all energetically possible particles,
with observation.

All neutron stars that have been observed do in fact rotate—some incredibly fast—with
periods of rotation P ∼ 1.6 ms–4.6 s. Their periods do increase very slowly, but by and
large they make very good clocks. The inclusion of rotation is important, because as
the star rotates space-time is warped differently. The shape of a rotating star deviates
from having spherical symmetry. It becomes fatter and flatter about its axis of rota-
tion, again affecting space-time2. In this thesis, we will be content with the simplified
non-rotating model of neutron stars. It is of course possible to consider such rotating
compact stars. However, the solutions to Einstein’s equation for a rotating neutron
star, of arbitrary angular velocity are considerably more complicated, because of the
added dependence of the metric on the angular velocity of the star. Slowly rotating
neutron stars were studied by Hartle in the 60’s [204, 205], where he performed a second
order expansion in angular velocity of the Einstein equation for a rotating star. More
modern calculations are able to model rapidly rotating neutron stars, their merger
with other compact objects and their gravitational wave emissions [206–210]. These
offer another way to constrain the EoS through numerical modelling of gravitational
wave forms, which can be compared with future observations using gravitational wave
detectors.

1less pressure for a given energy density
2One must also consider frame dragging
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Neutron stars have strong magnetic fields and non-zero temperatures, but these
aspects will not be considered. Temperature effects are generally small for old and
hence cold neutron stars, because the temperature, kBT , of the star is very much less
than the Fermi energy of the particles making up the star. Although, for a newly
minted neutron star, a proto-neutron star, temperature can be important. The effects
of magnetic fields on neutron stars are usually ignored as a first approximation, but
if the magnetic field is large enough it can affect its EoS and other properties, see for
example Refs. [211–217].

3.1 Hydrostatic Equilibrium

Observationally stars are quite stable. They are the result of a balance of forces, an out-
ward pressure force and the contracting gravitational force. During the main sequence
of a star the pressure comes predominantly from the thermonuclear reactions (p–p chain
and CNO cycle) within the star, i.e. from fusion of hydrogen, helium and so on. Only
the more massive stars produce heavier elements like neon, magnesium, silicon, all the
way up the nuclear chart until it reaches the most stable nucleus, iron—which has the
greatest binding energy per nucleon. Once iron is produced, stellar nucleosynthesis
stops, as there are no more exothermic nuclear reactions that can occur to generate
additional pressure. Eventually the fuel (the lighter elements) becomes depleted and
the outward pressure can no longer prevent the gravitational collapse of the star. The
star begins to contract and depending on the initial mass of the star, typically one of
three final states can be obtained: a white dwarf, a neutron star or even a black hole.
White dwarfs and neutron stars are held up by degeneracy pressure, whereas black
holes are a victory for gravity. The masses of these stellar corpses are summarised in
Fig. (3.1.1).

For lower mass compact stars the balance of forces, hydrostatic equilibrium, can be
described quite adequately using Newtonian physics. The equations of structure for
such stars are given by the following coupled differential equations:

dP

dr
= −GM(r)ρ(r)

r2
= −GM(r)ε(r)

(rc)2
, (3.1.1)

dM

dr
= 4πr2ρ(r) = 4πr2 ε(r)

c2
, (3.1.2)

where M(r) is the total mass inside radius r. Note that in the second equality there
has a been a departure from completely Newtonian physics to a relativistic regime in
relating the mass density to the energy density. To solve these equations we need to
express the energy density in terms of the pressure. That is, we need an EoS but
which model should be used to derive it? In white dwarf stars, the pressure balancing
the gravitational force comes from the Fermi pressure of electrons [111, 189–191]. A
non-interacting Fermi gas of electrons would be the simplest of such models that could
give us an equation of state that includes the quantum effect of the Pauli principle
giving rise to the pressure in the white dwarf.

The Newtonian structure equations, Eq. (3.1.1) and Eq. (3.1.2), are only suitable
if the mass of the star under consideration is not massive enough to significantly warp
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White Dwarf:

MWD < 1.4M�, Progenitor M ≤ 7.0M�

Neutron Star:

1.4M� ≤MNS ≤ 3.0M�, Progenitor M ∼ 8–20M�

Black Hole:

MBH > 3.0M�

Figure 3.1.1: Summary of typical estimates for the masses of main sequence star corpses
and their progenitors [218].

space-time. General relativistic effects become important when the (compactness) ratio

GM

c2R

becomes non-negligible. For neutron stars it is necessary to include effects due to gen-
eral relativity. When general relativistic effects become important the first differential
equation describing the pressure gradient within the star becomes modified. We will
only be interested in the simplified model, where neutron stars are modelled as static,
spherically symmetric, and non-rotating; as considered by [219, 220]. The line element
associated with this static and spherically symmetric mass in space-time is

ds2 = eλ(r)dr2 + r2(dθ2 + sin2 θdφ2)− eµ(r)dt2 . (3.1.3)

This line element (Eq. (3.1.3)), which matches to the Schwarzchild solution on the
surface of the star, describes the space-time outside of the star as well as the internal
structure. From the line element, Eq. (3.1.3), and the energy-momentum tensor of
a perfect fluid, one can obtain the generalisation of Eq. (3.1.1) through Einstein’s
equation. The pressure gradient is modified by general relativistic corrections, such
that

dP

dr
= − G

(cr)2

(ε(r) + P (r))
(
M(r) + 4πr3 P (r)

c2

)
(1− 2GM(r)

c2r
)

(3.1.4)

= −Gε(r)M(r)

(cr)2
(1 +

P (r)

ε(r)
)(1 +

4πr3P (r)

M(r)c2
)(1− 2GM(r)

c2r
)−1 , (3.1.5)

whereas the second equation (Eq. (3.1.2)) remains unaltered. As can be seen in the
second equality, the terms that modify the pressure gradient are all positive definite,
so gravity considered in the framework of general relativity has a stronger pull than
in the Newtonian setting. This equation was first derived by Tolman [219] and inde-
pendently by Oppenheimer and Volkoff [220]. Today the general relativistic equations
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of hydrostatic equilibrium (Eq. (3.1.5) and Eq. (3.1.2)) are simply called the TOV
equations.

The TOV equations can be supplemented with a third differential equation, which
can be integrated to obtain the total number of baryons, A, inside the star. To sum-
marise, the three TOV equations are

dM

dr
= 4πr2ε(r) , (3.1.6)

dP

dr
= −(ε+ P (r))

(M(r) + 4πr3P (r))

r2(1− 2M(r)/r)
, (3.1.7)

dA

dr
=

4πr2ρ√
1− 2M(r)/r

. (3.1.8)

In Eqs. (3.1.6–3.1.8) we use units in which G = c = 1. The difference between the total
gravitational mass and baryonic mass within a radius R is defined by M(R)−A(R)MN .

To integrate the TOV equations we express the pressure and energy density in
terms of the density, so we have a closed system of equations. Through this EoS, the
microscopic physics involved in the strong interaction impacts upon the properties of
the neutron star. We can then integrate out from the centre of the star to its surface,
imposing the following initial conditions: M(r = 0) = 0 and P (r = 0) = P0. The
pressure at the centre of the star, P0, is specified by a chosen central density and the
surface is identified with zero pressure. The radius at which the pressure vanishes
defines the radius RNS and mass MNS = M(RNS) of the neutron star. In solving these
equations for a given model, one obtains a set of masses and radii parametrised by the
core density. In particular, a limit is placed on the maximum mass of stable neutron
stars. A realistic model should be able to predict a mass–radius relationship compatible
with astronomical observations.

3.2 The Neutron Star EoS

To integrate the TOV equations, we need a model to calculate the EoS. Many models
are available in the literature, but which one should be used? There have been many
models developed to calculate the EoS, ranging from degenerate Fermi gases and other
simple parametrisations to quite complex models. Ideally, we would like to derive it
directly from QCD. This unfortunately does not seem feasible at the moment without
some new insight. Instead, we can try them all and filter them on general properties.
Any reliable model should be able to describe more than just one class of observables.
It should be based on sound theoretical principles and encapsulate all the necessary
physics, such that it is able describe a large class of different observables well. Neutron
stars are interesting in their own right, but are particularly useful in placing new
constraints on nuclear models through the high density behaviour of the nuclear EoS.
Observations of these compact stellar objects provide stringent constraints allowing
certain models to be ruled out. A few key factors to consider in filtering models are:
relativity, particle content, astrophysical observables, bulk properties of nuclear matter,
finite nuclei and hypernuclei observables.
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Crust
Outer Core
Inner Core

Figure 3.2.1: Schematic cross section of a neutron star, see for example Refs. [111,
189, 191]. Crust: nuclei, electrons and neutrons. Outer core: Nuclear liquid consisting
of neutrons, protons, electrons and muons. Inner core: Content uncertain, commonly
thought that hyperons, Bose condensates or quark matter could exist.

The first numerical calculation was done by Oppenheimer and Volkoff. They per-
formed the calculation with a simple EoS, assuming the matter inside the neutron star
to be an ideal gas of free neutrons. They found a maximum mass MNS = 0.7 M� and
a corresponding radius RNS = 9.6 km with a central density of ρc = 5 × 1015gcm−3.
It was smaller than the maximum mass of supernova cores, thus it could not be the
end product of supernovae collapse as suggested by Baade and Zwicky [195]. For quite
sometime afterwards, neutron stars were mostly ignored. A crucial ingredient had
been ignored, the strong interaction—the strong interaction is very strong! In 1959,
Cameron [221] showed using a Skyrme model that nuclear forces significantly stiffen
the EoS, predicting the limiting neutron star to have a mass of MNS ∼ 2.0 M�, which
is very much greater than the non-interacting ideal gas of neutrons and therefore it
can be formed in a supernova. These early calculations are rather simple and not very
realistic. Relativity is ignored, nor does it include the different types of particles which
could appear through weak interactions.

Relativity is important for several reasons, which have been mentioned previously.
It is a fundamental symmetry, which is important in describing nuclear systems and
neutron stars, but most importantly for preserving causality3 in dense matter. We need
not work with a model in curved space-time. Special relativity is perfectly adequate for
calculating the EoS, even in the core of neutron stars, where the stars themselves curve
space-time. The use of the flat metric is valid, as the variation in the metric over the
average distance of baryons is incredibly small (≤ 10−19) [111]. This variation is so small
that even the variation over a distance stretching across an extremely large number

3prevents superluminal speed of sound in matter
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baryons is negligible, so we can safely work with a flat metric and the assumption of
infinite matter is also reasonable [111].

The composition of the neutron star core beyond nucleons and leptons is uncertain,
although it is generally thought that at higher densities cold neutron stars will reach
generalised β-equilibrium with respect to all possible reactions. Fig. 3.2.1 shows a
schematic cross section of a neutron star. The particle content of the inner core is
rather uncertain and several hypotheses exist for its contents, such as Bose condensates,
hyperons and quark matter. In this thesis we will only consider the possibility of
hyperons and strange quark matter. It has been conjectured that strange quark matter
is stable and is the true ground state of matter, being even more tightly bound than
iron [222, 223]. Hyperonic matter will be investigated in Ch. 5 and quark matter in
Ch. 6 and 7.

For matter in generalised beta equilibrium, only two quantities are conserved. They
are the total charge, which is zero in neutron stars and the total baryon number.
Strangeness and lepton number are not conserved quantities in neutron stars. To
determine the chemical composition one solves a system of equations [111], between
chemical potentials for the number densities of the particles. These equations will be
derived in Ch. 5 for hyperonic matter.

Determination of chemical composition is important, so for clarity, we will expand
on this further. The only possible constituents of dense matter in thermodynamic
and beta equilibrium are the particles which cannot decay or escape from the star.
Photons and neutrinos are assumed to be completely radiated away from old and hence
cold neutron stars—therefore lepton number is not conserved. In free space, the only
stable particles are the proton and electron. The neutron is unstable and can decay in
minutes. For finite nuclei, neutrons and protons are conditionally stable. They decay
only if the the energetically allowed final states are not already occupied. In infinite
nuclear matter, which is the approximation with which we will be working, protons and
neutrons are once again conditionally stable due to the Pauli exclusion principle. It is
necessary to also include electrons and muons to maintain charge neutrality. Hyperons,
can also appear, because of the short time scale of the weak interaction 10−9 s.

The new particles beyond the basic three (neutron, proton and electron) can occur
through weak and strong interactions. The weak nuclear force in neutron stars behaves
as a kind of regulator allowing one species of particle to change into another so that
the energy of the entire system remains at a minimum. For example, as the chemical
potential of the electrons increases the Fermi levels are filled and when µe reaches and
exceeds 105 MeV it becomes more favourable to create a muon than an electron.

The muon is a new degree of freedom which contributes more to the energy density
than to the pressure. Resulting in a slight softening of the EoS. The next lightest nega-
tively charged particles that could appear by the same argument are π− and K−. These
pions and anti-kaons are bosons and when considering cold neutron stars these mesons
should macroscopically condense to a single state, forming a Bose condensate. The
possibility of pion, kaon and anti-kaon condensation has been suggested and studied
by many [224–237]. There have been conflicting results from various models about, at
what density and even if these condensates are predicted at all. The π− mesons are now
generally thought not to occur, because of repulsive in-medium interactions resulting
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in a larger in-medium mass inhibiting their production. The attractive nature of the
K̄N interaction, which has been supported by experiments on kaonic atoms, suggests
that the anti-kaon mass will decrease in-medium. So even though pions are far lighter
in vacuum than anti-kaons, this does not necessarily hold in dense matter. Anti-kaons
are further complicated, because of the shallow versus deep problem regarding their
optical potential, see for example Refs. [238, 239]. For these reasons meson condensates
will not be considered in this thesis, instead we will restrict our attention to the baryon
octet and transitions to quark matter.

Hyperons must be considered, based on the time scales of the weak interactions
(10−9 secs) and because, as the density increases, so do the chemical potentials of the
nucleons. Eventually it will become energetically favourable to turn nucleons at the
top of the Fermi sea into hyperons. They are generally expected to occur at 2 − 3ρ0,
irrespective of the model used to describe the baryon-baryon interaction. Although
the dominant hyperon and the order in which they appear does depend significantly
on the model used, most models including hyperons predict the appearance of either
Λ or Σ− first.

To constrain the in-medium nucleon-hyperon (NY ) and hyperon-hyperon (Y Y ) in-
teractions, data is needed. There is very limited to no NY and Y Y scattering data,
with most information on the in-medium hyperon interactions coming from hypernu-
clear experiments. Systematic searches and studies have been performed, but hypernu-
clear experiments have been mostly restricted to Λ-hypernuclei. As for Σ-hypernuclei,
only one very light Σ–hypernucleus has been found experimentally. The absence of
medium to heavy Σ-hypernuclei indicates that phenomenologically the Σ–A interac-
tion is repulsive. The fraction of Σ hyperons should therefore be reduced in dense
matter. This is not the case for Λ-hypernuclei, whereas for Ξ-hypernuclei we are await-
ing results from JPARC. Information on Ξ-hypernuclei will be most useful in shedding
light on their interaction with the nuclear medium. They may also indicate which
hyperon is likely to be dominant in dense matter. It is generally thought that the Λ
hyperon will be the most dominant, but the mass differences (MΛ −MN) ∼ 170 MeV
and (MΞ −MN) ∼ 380 MeV, suggest that for matter in β-equilibrium we could have
Ξ− and Λ competing for dominance depending on their internal structure and its mod-
ification through interaction with the surrounding medium. This is possible since
µΞ− = µn + µe, where µe ∼ 200 MeV4 [240].

It should be noted that the widely used phenomenological potentials, such as AV18
or Nijmegen potentials, require the use of a large number of parameters. These parame-
ters are fitted to NN scattering data and to the properties of light nuclei—to be able to
describe the three-body force. Due to the lack of information on hyperon interactions
this method is not feasible. Thus it would be highly desirable to develop a different
approach. The QMC model is a relativistic quark level model that utilises a minimal
set of parameters, the couplings of the quarks to the mesons, which are adjusted to
nuclear matter saturation properties. The introduction of hyperons in the model intro-
duces no new parameters. Moreover, the prediction of unbound Σ-hypernuclei has been
explained very naturally within the QMC model to be a result of one-gluon exchange.

The softening of the EoS associated with the appearance of hyperons, leads to the

4Neutrinos neglected.
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prediction of a smaller maximum mass of the star. This has led to many models in-
corporating hyperons being ruled out due to the recent neutron star observations of
Demorest et al [202](1.97 ± 0.04 M�) and of Antoniadis et al [203] (2.01 ± 0.04 M�).
Since there is no known mechanism to prevent the appearance of hyperons if they
are energetically favourable, one should always include them and concentrate on de-
veloping more sophisticated models consistent with both terrestrial experiments and
astronomical observations. A QMC model incorporating hyperon degrees of freedom
predicted a limiting neutron star mass of 1.98 M� [161], three years before the high
mass observation of Demorest et al [202]. The use of simplified Fock terms were an
important factor in achieving the large mass prediction with hyperons.

Heavier mesons such as the hidden strangeness vector meson φ(1020) have been
considered in other works Ref. [241–243] which have found that they can produce extra
vector repulsion delaying the onset of hyperons. Just as QHD can be supplemented
with these additional heavier mesons, so can the QMC model. The inclusion of these
mesons will mean the strange quark will no longer be just a spectator in the baryon-
baryon interactions, as these mesons will couple directly to the strange quark. The
additional vector repulsion between hyperons supplied by the φ-meson will shift their
appearance to higher density in the QMC model as well, reducing the softening of the
EoS. This is another possible mechanism to reconcile hyperon degrees of freedom with
high mass neutron star observations.

In Ch. 4 and 5, we investigate the effect of including the full structure of the Fock
terms, as it is the treatment of the lightest mesons that is the most important, and
the inclusion of heavier mesons would necessarily be more model dependent. For this
reason, in this thesis we have restricted ourselves to just σ, ω, ρ and π mesons and
instead focussed on improving the model by incorporating more sophisticated Fock
terms incorporating the tensor interaction of the vector mesons.
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4
Hartree-Fock QMC Applied to Nuclear

Matter

In this chapter we study the properties of nuclear matter using the QMC model in the
Hartree-Fock approximation. Portions of the material presented in this chapter are
adapted from Whittenbury et al [244]. We will endeavour to explain more clearly the
equations stated very succinctly in Ref. [244] and the approximations used therein. All
our parameters are fixed at saturation density in Symmetric (N=Z) Nuclear Matter
(SNM). Properties at and around saturation density are considered first in SNM, then
in Pure Neutron Matter (PNM). In Ch. 5 we extrapolate the model to investigate high
density matter in Generalised Beta-Equilibrium (GBEM), which is relevant to neutron
stars.

We extend the QMC model by performing a Hartree–Fock calculation including the
full vertex structure for the vector mesons. This extension only alters the exchange
contribution, including not only the Dirac vector term, as was done in [161], but also
the Pauli tensor term. These terms were already included within the QMC model by
Krein et al. [183] for symmetric nuclear matter and more recently by [245]. We gener-
alise the work of Krein et al. by evaluating the full exchange terms for all octet baryons
and adding them, as additional contributions, to the energy density. A consequence of
this increased level of sophistication is that, if we insist on using the hyperon couplings
predicted in the simple QMC model, with no coupling to the strange quarks, the Λ
hyperon is no longer bound.

The present line of research compliments the work of Ref. [245], which also con-
sidered the tensor interaction in a variation of the QMC model, by investigating an
extended set of nuclear matter properties with comparisons to heavy-ion collision data
and other theoretical models. The present version of the QMC model differs from [245]
as we use couplings as derived within the model and treat contact terms differently.
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As is very well known from RMF [150, 246] and QMC [183] Hartree-Fock calcula-
tions the scalar Σs(k) and temporal vector Σ0(k) self-energy components are essentially
independent of momentum and the spatial vector component is very small. For these
reasons we make the assumption that the self-consistency can be treated approximately
as in [161] and as in [183] , where the latter included a Fock correction to the scalar
field. To state this more precisely we neglect the small spatial vector component of the
baryon self-energy such that ~k∗ = ~k + ~kΣv(k) ' ~k and the remaining components are
treated as momentum independent. This approximate self-energy,

Σ(k) = Σs(k)− γ0Σ0(k) + ~γ · ~kΣv(k) ' Σs − γ0Σ0 (4.0.1)

has a form identical to the usual mean-field (Hartree) result and the Fock corrections
to these components can be included by requiring thermodynamic consistency, which
amounts to minimising the total energy density with respect to the meson fields. This
results in a small correction to the scalar field.

In our calculation the Fock terms are included, as in Ref. [161], as additional con-
tributions to the energy density. We wish go beyond this to include effects of the Pauli
term, form factors and modifications to the scalar mean field coming from the exchange
terms as in Ref. [183], where they considered only nucleons in symmetric matter.

In this chapter we derive the equation of state of symmetric and asymmetric nu-
clear matter from the QMC model using the Hartree–Fock approximation. We present
numerical results for an extensive set of nuclear matter properties including incom-
pressibility, symmetry energy and higher order derivatives of the EoS as defined in
Ch. 2. We also evaluate the hyperon optical potentials at saturation density in SNM.
We then conclude this chapter with a discussion and comparison with experimental
constraints.

4.1 The Hartree-Fock QMC

On the surface the QMC model appears to be very similar to the commonly used Rela-
tivistic Mean Field (RMF) model. In fact, it is very closely related but fundamentally
different. The underlying difference is that the baryons are modelled as MIT bags
immersed in self-consistently generated mean fields and it also provides a different ex-
planation for the origin of saturation in nuclear matter coming from the quark level.
In the point-like RMF models the mesons couple to the baryons and the saturation of
nuclear matter comes about self-consistently from the balance of large scalar and vector
potentials. In the QMC model this also occurs, but the mesons are coupled directly
to the quarks. This interaction between the quarks and the mesons self-consistently
modifies the mass of the quarks and shifts their energy, leading to in-medium modi-
fication of the baryons through the non-linear bag equations. From this quark level
coupling of the mesons, the saturation of nuclear matter is now dependent on the self-
consistency condition between the quarks and the mesons. In the QMC model [181],
the quark mass is modified by this scalar field, altering the quark scalar density and
ultimately producing a different explanation for the saturation of nuclear matter . The
in-medium changes of the baryon masses are calculated through the bag equations and
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then parametrised as functions of the scalar field as

M∗
B = MB − wσBgσN σ̄ +

d

2
w̃σB (gσN σ̄)2 , (4.1.1)

(where the weightings wσB and w̃σB simply allow the use of a unique coupling to nucle-
ons). Using this parametrisation and a corresponding density dependent coupling, we
can solve for the equation of state in the same standard way as the Walecka model [150],
that is at the hadronic level. In this way the sub-structure of the baryons is entirely
contained in the mass parametrisation. We use the parametrisation given in Ref. [188],
which includes the effects of one gluon exchange. For convenience, this parametrisation
is included in Appendix A.1.

There are a number of motivations for going beyond the mean field approximation
and performing a Hartree-Fock calculation. Most importantly, in the mean field ap-
proximation the pion does not contribute at all because of its parity. On the other
hand, the corresponding Fock term has been show in previous versions of the QMC
model to reduce the incompressibility [161]. Also, isovector mesons do not contribute
at the Hartree level in isospin symmetric systems. Moreover, from earlier discussions in
Ch. 2, we know there is a significant tensor component to the nuclear force, but in the
mean field approximation of spin saturated nuclear matter its effect is not included.
These shortcomings of the mean field approximation could affect our ability to model
nuclear matter realistically. In particular, from experiment the ρN vector coupling is
known to be small. If this small value for the ρN coupling were used in mean field
calculations, rather than using the phenomenologically adjusted value, the calculated
value of the symmetry energy would be significantly lower than the experimental value.
As the tensor interaction is ignored altogether, we are neglecting the experimental fact
that the ρN tensor interaction is rather strong, fρN ∼ 3.7gρN , which could contribute
significantly to the symmetry energy.

4.2 The Lagrangian Density

The interaction between the pions and nucleons, or more generally with the spin-1/2
baryon octet under consideration here, is generally treated as either a pseudo-scalar or
pseudo-vector coupling governed by

Lp.s.
πN = gp.s.

πNNΨ̄Niγ5τ ·ΨNπ or Lp.v.
πN = gAΨ̄Nγµγ5τ ·ΨN∂

µπ , (4.2.1)

respectively. These different forms of the pion nucleon coupling lead to the same one
pion exchange potential in the non-relativistic limit if their couplings are related by
the Goldberger-Treiman relation

gA =
fπg

p.s.
πNN

MN

. (4.2.2)

These different descriptions of the πN interaction behave differently in-medium, with
the pseudo-scalar interaction predicting unrealistically large self-energy corrections.
For this reason the pseudo-vector coupling is generally used when modelling nuclear
matter and finite nuclei [110, 150, 247–250].
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Alternatively, one can derive an effective leading order pion baryon interaction using
chiral perturbation theory, where one starts with the most general Lagrangian that is
consistent with the relevant symmetries and has the smallest number of derivatives.
This effective πN Lagrangian is given by [251]

L(1)
πN = Ψ̄N

(
i /D −MN +

gA

2
γµγ5uµ

)
ΨN , (4.2.3)

which to lowest order gives1 rise to the following effective pion-nucleon interaction
Lagrangian [251]

LπN = − gA

2fπ
Ψ̄Nγµγ5τ ·ΨN∂

µπ = i
gA

2fπ
Ψ̄N/kγ5τ ·ΨNπ . (4.2.4)

It is important to note that there is a change of sign between Eq. (4.2.4) and the
conventionally used pseudo-vector coupling in Eq. (4.2.1) [251], which is used in typical
Hartree-Fock RMF calculations [110]. Although, in the approximation we are using
the change in the sign will not alter the pionic contribution to the energy density, as
επ ∼ γµγ5γµγ5 = γ5γµγ5γµ.

Generalisation to the whole baryon octet is straightforward and the hyperon cou-
plings are simply related to the nucleon pseudo-vector coupling by SU(3) flavour sym-
metry. The pion-baryon interaction in this thesis is assumed to be described by an
SU(3) invariant Lagrangian with the mixing parameter α = 2/5 [161] from which the
hyperon-pion coupling constants can be given in terms of the pion nucleon coupling,

gp.v.
πBB′ = gp.v.

πNNχBB′ =
gA
2fπ

χBB′ [161, 162, 252].

In our calculations of nuclear matter we consider only the spin-1/2 octet baryons.
These baryons interact via the exchange of mesons which couple directly to the quarks.
The exchanged mesons included are the scalar-isoscalar (σ), vector-isoscalar (ω), vector-
isovector (ρ), and pseudo-vector-isovector (π) bosons. These mesons only couple with
the light quarks by the phenomenological OZI rule. We include the full vertex structure
for the vector mesons, that is, we include both the Dirac and Pauli terms.

The QMC Lagrangian density used in this work is given by a combination of baryon
and meson components

L =
∑
B

LB +
∑
m

Lm , (4.2.5)

for the octet of baryons B ∈ {N,Λ,Σ,Ξ} and selected mesons m ∈ {σ, ω, ρ, π} with
the individual Lagrangian densities

LB = Ψ̄B

(
iγµ∂

µ −MB + gσB(σ)σ − gωBγµωµ −
fωB
2MN

σµν∂µων (4.2.6)

−gρBγµt · ρµ −
fρB

2MN

σµνt · ∂µρν −
gA

2fπ
χBBγ

µγ5τ · ∂µπ
)

ΨB ,

∑
m

Lm =
1

2
(∂µσ∂

µσ −m2
σσ

2)− 1

4
ΩµνΩ

µν +
1

2
m2
ωωµω

µ

1Here uµ = i
(
u†∂µu− u∂µu†

)
and u = exp

(
iτ · π
2fπ

)
' 1 + i

τ · π
2fπ

+ . . ..
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−1

4
Rµν ·Rµν +

1

2
m2
ρρµ · ρµ +

1

2
(∂µπ · ∂µπ −m2

ππ · π) , (4.2.7)

for which the vector meson field strength tensors are Ωµν = ∂µων − ∂νωµ and Rµν =
∂µρν − ∂νρµ. For the baryon masses we take the average over the isospin multiplet
of their experimental values, whereas for the mesons we simply use the experimental
values. We also include a πΛΣ pseudo-vector interaction, as in Ref. [161], which is
not shown in the above Lagrangian (Eq. (4.2.6)). As this term is only relevant when
both Λ- and Σ-hyperons are present, it has essentially no effect on our results. This is
because Σ-hyperons are not energetically favoured. The isospin baryon multiplets are

ΨN =

(
ψp

ψn

)
, ΨΛ =

(
ψΛ

)
, ΨΣ =

 ψΣ+

ψΣ0

ψΣ−

 , ΨΞ =

(
ψΞ0

ψΞ−

)
. (4.2.8)

Note that there is no photon vector field, Aµ, as nuclear matter does not include the
electromagnetic interaction. In calculations of finite nuclei this interaction is included.

4.3 Equations of Motion and the MFA

From the Lagrangian given in Eq. 4.2.5 we obtain through the Euler-Lagrange equa-
tions,

∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

= 0, (4.3.1)

where φ is any of the above mentioned fields, a system of coupled non-linear partial
differential equations for the quantum fields,

(∂µ∂
µ +m2

σ)σ =
∑
B

−
(
∂

∂σ
M∗

B

)
Ψ̄BΨB , (4.3.2)

∂µΩµν +m2
ωω

ν =
∑
B

{
gωBΨ̄Bγ

νΨB −
fωB
2MN

∂µ
(
Ψ̄Bσ

µνΨB

)}
, (4.3.3)

∂µR
µν +m2

ρρ
ν =

∑
B

{
gρBΨ̄Btγ

νΨB −
fρB

2MN

∂µ
(
Ψ̄Btσ

µνΨB

)}
, (4.3.4)

(∂µ∂
µ +m2

π)π =
∑
B

gA

2fπ
χBB∂

µ
(
Ψ̄Bγµγ5τΨB

)
, (4.3.5)

along with a Dirac equation for the baryon spinors

(iγµ∂µ − gωBγ
µωµ −

fωB
2MN

σµν∂µων (4.3.6)

− gρBγ
µt · ρµ −

fρB
2MN

σµνt · ∂µρν

− gA

2fπ
χBBγ

µγ5τ · ∂µπ −MB + gσB(σ)σ

)
ΨB = 0 .

This is a difficult system of equations to solve and to make the problem tractable
approximations are applied. Static, no sea and mean field approximations are typically
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used. The static approximation means that there is no time dependence included and
no sea refers to ignoring the Dirac sea of negative energy states. In the mean field
approximation the meson field operators are replaced by their expectation values, and
as such their fields are essentially treated classically. The idea is that the many body
system of baryons is thought of as sitting in an average or mean nuclear field generated
by themselves, which in turn modifies them and this is how they interact. In mean
field theories the self consistent determination of this nuclear mean field is key.

The mesons σ, ω, ρ and π need not be precisely the mesons you find in experiment,
they are simply meant to represent the scalar, vector-isoscalar, vector-isovector and
pseudo-vector-isovector channels of interaction between the baryons. Of these, the
first three generate a mean field in which the baryons reside. It is worth commenting
that this approximation is increasingly more reliable with increasing baryonic density
and therefore appropriate to the matter in neutron stars.

As we are considering infinite uniform (homogeneous) nuclear matter in the above
approximations, we have translational and rotational invariance and therefore space-
like components of the meson fields vanish allowing us to write:

σ → 〈σ〉 ≡ σ̄ , (4.3.7)

ωµ → 〈ωµ〉 = 〈δµ0ωµ〉 ≡ ω̄ , (4.3.8)

ρµ → 〈ρµ〉 = 〈δµ0δa3ρµa〉 ≡ ρ̄ , (4.3.9)

π → 〈π〉 ≡ π̄ = 0 , (4.3.10)

where a refers to the isospin index. The baryon fields remain operators acting as
sources for the meson fields. In the equations of motion, the currents are replaced
by their normal ordered ground state expectation values. This is usually called the
Hartree mean-field approximation. In this approximation the pion does not contribute
because of parity considerations. After applying the static and Hartree mean field
approximation, the equations of motion (Eqs. (4.3.2–4.3.5)) become

m2
σσ̄ =

∑
B

−
(
∂

∂σ̄
M∗

B

)〈
Ψ̄BΨB

〉
, (4.3.11)

m2
ωω̄ =

∑
B

gωB

〈
Ψ†BΨB

〉
and (4.3.12)

m2
ρρ̄ =

∑
B

gρ

〈
Ψ†Bt3BΨB

〉
(4.3.13)

for the mesons. The Dirac equation for the baryons also becomes simplified.

4.4 The Hamiltonian Density

To calculate the EoS of nuclear matter we will need the Hamiltonian density, which is
related to the Lagrangian density through the following Legendre transformation:

H =
∑
j=B,α

Πj∂0φj − L , (4.4.1)
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where the conjugate momentum for particle field j is

Πj(x) =
∂L

∂(∂φj/∂t)
. (4.4.2)

Specifically for each particle

ΠB(x) = iΨ†B(x) , (4.4.3)

Πσ(x) = ∂0σ(x) , (4.4.4)

Πν
ω(x) = Ων0 +

∑
B

fωB
2MN

Ψ̄Bσ
ν0ΨB , (4.4.5)

Πν
ρ(x) = Rν0 +

∑
B

fρB
2MN

Ψ̄Btσ
ν0ΨB , (4.4.6)

Ππ(x) = ∂0π(x)−
∑
B

(
gA

2fπ

)
χBBΨ̄Bγ

0γ5τΨB . (4.4.7)

From the Hamilton density the total energy density is given by

εtotal =

〈
Ψg.s.|

∫
d3r : H : |Ψg.s.

〉
V

, (4.4.8)

where |Ψg.s.〉 is the ground state.
From Eq. (4.4.1), the full Hamiltonian density, can be shown to be

H =
∑

B∈{N,Λ,Σ,Ξ}

Ψ̄B

[
−i~γ · ~∇+MB − gσB(σ)σ − gA

2fπ
χBBγ5τ · (~γ · ~∇)π (4.4.9)

+gωBγµω
µ − fωB

2MN

σµi∂
iωµ + gρBγµt · ρ µ − fρB

2MN

σµit · ∂iρ µ

]
ΨB

+
1

2
σ̇2 +

1

2
~∇σ · ~∇σ +

1

2
m2
σσ

2 + Ωµ0ω̇
µ +

1

4
ΩµνΩ

µν − 1

2
m2
ωωµω

µ

+Rµ0 · ρ̇µ +
1

4
Rµν ·Rµν − 1

2
m2
ρρµ · ρ µ +

1

2
π̇ · π̇ +

1

2
~∇π · ~∇π +

1

2
m2
ππ · π .

We apply the static approximation to the Hamiltonian density (Eq. (4.4.9)) meaning
that the meson fields are treated as time independent and hence time derivatives of
their fields do not contribute. Specifically for the ω-meson, this means

Ωµ0ω̇
µ +

1

4
ΩµνΩ

µν − 1

2
m2
ωωµω

µ

= (∂µω0 − ∂0ωµ)ω̇µ − 1

2
m2
ωωµω

µ +
1

4
(∂µων − ∂νωµ)(∂µων − ∂νωµ)

= (∂µω0 − ∂0ωµ)ω̇µ − 1

2
m2
ωωµω

µ +
1

2

(
(∂µων)

2 − (∂ · ω)2
)

Static Approx.−−−−−−−−→ −1

2

[
~∇ωµ · ~∇ωµ + (~∇ · ~ω)2 +m2

ωωµω
µ
]

. (4.4.10)

The Hamiltonian density in the static approximation then becomes

H =
∑

B∈{N,Λ,Σ,Ξ}

Ψ̄B

[
−i~γ · ~∇+MB − gσB(σ)σ − gA

2fπ
χBBγ5τ · (~γ · ~∇)π (4.4.11)
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+gωBγµω
µ − fωB

2MN

σµi∂
iωµ + gρBγµt · ρ µ − fρB

2MN

σµit · ∂iρ µ

]
ΨB

+
1

2
~∇σ · ~∇σ +

1

2
m2
σσ

2 − 1

2

[
~∇ωµ · ~∇ωµ + (~∇ · ~ω)2 +m2

ωωµω
µ
]

−1

2

[
~∇ρµ · ~∇ρµ + (~∇ · ~ρ)2 +m2

ρρµ · ρµ
]

+
1

2
~∇π · ~∇π +

1

2
m2
ππ · π .

This can be decomposed into its baryon and meson components as

H =

∫
d3r

K +
∑

m∈{σ,ω,ρ,π}

Hm

 , (4.4.12)

where

K =
∑
B

Ψ̄B

[
−i~γ · ~∇+MB − gσB(σ)σ

]
ΨB , (4.4.13)

Hσ =
1

2
~∇σ · ~∇σ +

1

2
m2
σσ

2 , (4.4.14)

Hω =
∑
B

Ψ̄B

[
gωBγµω

µ − fωB
2MN

σµi∂
iωµ
]

ΨB (4.4.15)

−1

2

[
~∇ωµ · ~∇ωµ + (~∇ · ~ω)2 +m2

ωωµω
µ
]

,

Hρ =
∑
B

Ψ̄B

[
gρBγµt · ρ µ − fρB

2MN

σµit · ∂iρ µ

]
ΨB (4.4.16)

−1

2

[
~∇ρµ · ~∇ρµ + (~∇ · ~ρ)2 +m2

ρρµ · ρµ
]

,

Hπ = −
∑
B

Ψ̄B

[
gA

2fπ
χBBγ5τ · (~γ · ~∇)π

]
ΨB +

1

2
~∇π · ~∇π +

1

2
m2
ππ · π .

(4.4.17)

4.5 Hartree-Fock Approximation

To solve the equations of motion for the mesons the standard methods of Green’s
function theory are used [253]. Specifically for the σ meson, one first defines the
propagator ∆̃σ, such that

(∂2 +m2
σ)∆̃σ(x− y) = −δ(4)(x− y) . (4.5.1)

Following the usual procedure one finds the following solution to the homogeneous
Klein-Gordon differential operator in energy-momentum space,

∆̃σ(k) =
1

k2 −m2
σ + iε

, (4.5.2)

where the extra Feynman iε term is put in by hand to avoid the poles on the real axis.
In the static approximation this becomes

∆̃σ(k)
Static Approx.−−−−−−−−→ ∆static

σ (~k) =
−1

~k2 +m2
σ

, (4.5.3)
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which is related to the Yukawa propagator by ∆σ(~k) = −∆static
σ (~k). Using the Yukawa

propagator the inhomogeneous Klein-Gordon equation can be solved order by order.
To perform the Hartree-Fock approximation we follow Refs. [160–163] by consid-

ering each meson field to be decomposed into two parts, a mean field part 〈φ〉 and a
fluctuation part δφ, such that φ = 〈φ〉 + δφ and solve the equations of motion order
by order. The fluctuation terms are to be considered small with respect to the mean
field contribution, the exception to this being the π and ρ meson fluctuations. In this
fashion, the σ meson equation of motion is decomposed according to(

−~∇2 +m2
σ

)
(σ̄ + δσ) = −∂K

∂σ
= −∂K

∂σ
(σ̄)− δσ∂

2K
∂σ2

(σ̄)− . . . , (4.5.4)

where

− ∂K
∂σ

=
∑
B

(
−∂M

∗
B

∂σ
Ψ̄BΨB

)
(4.5.5)

and

− ∂2K
∂σ2

=
∑
B

(
−∂

2M∗
B

∂σ2
Ψ̄BΨB

)
. (4.5.6)

Eq. (4.5.6) would be zero in a point-like model of hadrons and is only non-zero due
to the quadratic dependence of the baryon masses on the scalar field—see for example
the mass parametrisation given Eq. (4.1.1), obtained in Ref. [188] from the QMC
model using a bag model including self-consistent one-gluon exchange. The following
shorthand notation is introduced:

∂K
∂σ̄
≡ ∂K
∂σ

(σ̄) ,
∂2K
∂σ̄2

≡ ∂2K
∂σ2

(σ̄) , . . . . (4.5.7)

Expanding Eqs. (4.5.5–4.5.6) about their expectation values we have

∂K
∂σ̄

=

〈
∂K
∂σ̄

〉
+ δ

[
∂K
∂σ̄

]
=

〈
∂K
∂σ̄

〉
+

(
∂K
∂σ̄
−
〈
∂K
∂σ̄

〉)
(4.5.8)

and

∂2K
∂σ̄2

=

〈
∂2K
∂σ̄2

〉
+ δ

[
∂2K
∂σ̄2

]
=

〈
∂2K
∂σ̄2

〉
+

(
∂2K
∂σ̄2
−
〈
∂2K
∂σ̄2

〉)
. (4.5.9)

We are assuming that all the fluctuation terms

δσ , δ

[
∂K
∂σ̄

]
, δ

[
∂2K
∂σ̄2

]
, . . . (4.5.10)

are small. We now proceed to solve the σ meson equation of motion order by order.
At the mean field or Hartree level we obtain(

−~∇2 +m2
σ

)
σ̄ = −

〈
∂K
∂σ̄

〉
=
∑
B

(
−∂M

∗
B

∂σ̄

〈
Ψ̄BΨB

〉)
(4.5.11)
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and at the Fock level(
−~∇2 +m2

σ

)
δσ = −

(
∂K
∂σ̄
−
〈
∂K
∂σ̄

〉)
− δσ

[〈
∂2K
∂σ̄2

〉
+

(
∂2K
∂σ̄2
−
〈
∂2K
∂σ̄2

〉)]
(4.5.12)

= −∂K
∂σ̄

+

〈
∂K
∂σ̄

〉
− δσ∂

2K
∂σ̄2

, (4.5.13)

where to this order (δσ)
∂2K
∂σ̄2

−−−→
〈
∂2K
∂σ̄2

〉
. (4.5.14)

The fluctuation equation of motion becomes(
−~∇2 +m2

σ

)
δσ = −∂K

∂σ̄
+

〈
∂K
∂σ̄

〉
− δσ

〈
∂2K
∂σ̄2

〉
. (4.5.15)

Eq. (4.5.15) can be re-expressed in terms of an in-medium σ-meson mass and the
fluctuation of the scalar baryon current as(

−~∇2 +m∗ 2
σ

)
δσ =

∑
B

−∂M
∗
B

∂σ̄

(
Ψ̄BΨB −

〈
Ψ̄BΨB

〉)
, (4.5.16)

where

m∗ 2
σ = m2

σ +

〈
∂2K
∂σ̄2

〉
= m2

σ +
∑
B

∂2M∗
B

∂σ̄2

〈
Ψ̄BΨB

〉
. (4.5.17)

This in-medium σ meson mass is only relevant to the fluctuating part and does not
appear in the mean field portion of the σ meson’s equation of motion. This in-medium
modification due to the baryons internal structure was included in Ref. [160–162], but
we will not include it here. We are neglecting this in-medium modification as we are
approximating the Fock terms in the static approximation, omitting all other meson
retardation effects and implementing a crude method of subtracting the contact terms
that arise in the Fock terms. For these reasons it is reasonable to disregard it and use
the free σ meson mass in the Fock term, thereby treating it in the same manner as the
other mesons.

The expectation value of the σ field is given by

σ̄ = − 1

m2
σ

〈
∂K
∂σ̄

〉
= − 1

m2
σ

∑
B

∂M∗
B

∂σ̄

〈
Ψ̄BΨB

〉
, (4.5.18)

which is then determined numerically. Krein et al. also considered an additional
correction involving the mean scalar field from the Fock terms. This can be done by
considering the energy density as a functional and requiring it to be thermodynamically
consistent, meaning that the total energy density, ε, is minimised with respect to σ̄ such
that,

σ̄ = − 1

m2
σ

∂ε

∂σ̄
. (4.5.19)
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This amounts to Eq. (4.5.18) plus an additional term because of the dependence of the
Fock contribution to the energy density on σ̄.

The fluctuation of the σ field can now be written in terms of the σ meson’s Green
function as

δσ(~r) =

∫
d3r′ ∆σ(~r − ~r ′)

(
−∂K
∂σ̄

+

〈
∂K
∂σ̄

〉)
(~r ′) (4.5.20)

=
∑
B

∫
d3r′ ∆σ(~r − ~r ′)

[
−∂M

∗
B

∂σ̄

(
Ψ̄BΨB −

〈
Ψ̄BΨB

〉)
(~r ′)

]
(4.5.21)

=
∑
B

∫
d3r′

d3q

(2π)3
ei~q·(~r−~r

′)∆σ(~q)

[
−∂M

∗
B

∂σ̄

(
Ψ̄BΨB −

〈
Ψ̄BΨB

〉)
(~r ′)

]
.

(4.5.22)

To obtain the Fock contribution, we have approached the problem in the same
manner as Refs. [160–163] by considering the meson fields decomposed into a mean
field part and a fluctuating part. As can be seen in Eq.(4.5.16) and (4.5.22), this is
related to a similar decomposition of the baryon currents, where they are composed of
a mean field part and a fluctuation part. We introduce the following notation:

Ψ̄BΓ̃αBΨB =
〈

Ψ̄BΓ̃αBΨB

〉
+ (Ψ̄BΓ̃αBΨB −

〈
Ψ̄BΓ̃αBΨB

〉
) (4.5.23)

=
〈

Ψ̄BΓ̃αBΨB

〉
+ δ(Ψ̄BΓ̃αBΨB) , (4.5.24)

where Γ̃αB denotes one of the interaction currents associated with the mesons appearing
in the Lagrangian (Eq. (4.2.6)).

The solution of the vector meson equations of motion follow in the same manner, but
with an added complication. In four dimensional space-time a spin-1 massive vector
field has four components, but only 2s + 1 = 3 independent spin components—two
transverse and one longitudinal polarisation states. We need to impose a constraint to
remove the extra component. It follows naturally from the equation of motion.

For the vector fields a Lorentz gauge-like condition naturally follows from the equa-
tions of motion (Eqs. (4.3.3–4.3.4)) by taking a partial derivative. It is not actually a
gauge condition, as the Proca equation is not gauge invariant, but rather a consistency
condition. In the case of the ω meson, that is

∂ν∂µΩµν +m2
ω∂νω

ν =
∑
B

[
gωB∂ν

(
Ψ̄Bγ

νΨB

)
− fωB

2MN

∂ν∂µ
(
Ψ̄Bσ

µνΨB

)]
, (4.5.25)

where the first term on the l.h.s. and the second term on the r.h.s. are zero because a
symmetric tensor is fully contracted with an anti-symmetric tensor. The first term on
the r.h.s. is also zero as it expresses the four-divergence of the baryonic current, which
is conserved. This coupling of the ω meson to the conserved baryonic current allows
the further simplification of the Hamiltonian density given in Eq. (4.4.12) by

∂µω
µ = 0

Static Approx.−−−−−−−−→ ~∇ · ~ω = 0 . (4.5.26)
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Moreover, the Lorentz structure of the corresponding equations of motion is simplified
from Proca equations to Klein-Gordon equations, where each component of the vector
fields separately satisfies a Klein-Gordon equation.

∂µΩµν +m2
ωω

ν = ∂µ(∂µων − ∂νωµ) +m2
ωω

ν (4.5.27)

= ∂2ων − ∂ν(∂ · ω) +m2
ωω

ν (4.5.28)
Static Approx.−−−−−−−−→ −∇2ων + δνi ∂

i(~∇ · ~ω) +m2
ωω

ν (4.5.29)
Lorentz Cond.

= (−∇2 +m2
ω)ων . (4.5.30)

This can similarly be done for the the ρ meson.
It is possible to combine the 4 Klein-Gordon equations and the Lorentz condition

into a single equation using a projection operator,

P̃ µν
ω,ρ ≡

3∑
s=1

εµω,ρ(
~k, s)ενω,ρ(

~k, s) = −gµν +
kµkν

m2
ω,ρ

, (4.5.31)

which corresponds to a sum over polarisation states of the particle. The Lorentz condi-
tion then becomes a condition on the polarisation tensor εµ. Moreover, the momentum
dependence of the propagator is independent of the spin structure and takes the same
form as Eq. (4.5.2). In the static limit the vector meson propagator is

∆̃µν
ω,ρ(k) = P̃ µν

ω,ρ∆̃ω,ρ(k)
Static Approx.−−−−−−−−→ −P µν

ω,ρ∆ω,ρ(~k) . (4.5.32)

Where in Eq. (4.5.32) we denote the static limit of the projection operator by P µν
ω,ρ,

which has the following components:

P 00
ω,ρ = −1 , P 0i

ω,ρ = P i0
ω,ρ = 0 , P ij

ω,ρ = δij +
kikj

m2
ω,ρ

. (4.5.33)

Fourier transforming to obtain the projection operator in position space one makes use
of kµ → i∂µ.

Using the following notation for source of the ω-B interaction in configuration space
(Eq. 4.3.3):

Γ̃µωB = gωBγ
µ − fωB

2MN

∂iσ
iµ , (4.5.34)

the separation of the ω meson equation of motion follows in the same manner as for the
σ meson. Only the temporal component of the vector mesons survive at the mean field
level because of spatial isotropy. This also implies the tensor contribution vanishes at
this order, such that

(−∇2 +m2
ω)ω̄ ≡ (−∇2 +m2

ω)ω0 (4.5.35)

=
∑
B

−(Pω)0
0

〈
Ψ̄BΓ̃0

ωBΨB

〉
=

∑
B

[
−(Pω)0

0gωB
〈
Ψ̄Bγ

0ΨB

〉
+ (Pω)0

0

fωB
2MN

∂i
〈
Ψ̄Bσ

i0ΨB

〉]
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=
∑
B

gωB

〈
Ψ†BΨB

〉
.

The mean ω meson field is then

ω̄ =
1

m2
ω

∑
B

gωB

〈
Ψ†BΨB

〉
. (4.5.36)

The fluctuation part of the ω meson equation of motion is given by

(−∇2 +m2
ω)δωµ =

∑
B

−(Pω)µν

(
Ψ̄BΓ̃νωBΨB −

〈
Ψ̄BΓ̃νωBΨB

〉)
. (4.5.37)

The second part of the projection operator can be ignored from here on because when
it is contracted with Ψ̄BΓ̃νωBΨB the outcome is zero. This follows as a result of the con-
tinuity equation and the full contraction of a symmetric tensor with an anti-symmetric
tensor. Eq. (4.5.37) can then be written as

(−∇2 +m2
ω)δωµ =

∑
B

gµν

(
Ψ̄BΓ̃νωBΨB −

〈
Ψ̄BΓ̃νωBΨB

〉)
(4.5.38)

=
∑
B

δ
(

Ψ̄BΓ̃µωBΨB

)
. (4.5.39)

Using standard Green’s function methods again, the fluctuation of the ω meson
field is

δωµ(~r) =
∑
B

∫
d3r′

d3q

(2π)3
ei~q·(~r−~r

′)∆ω(~q ) δ(Ψ̄BΓ̃µωBΨB)(~r ′) (4.5.40)

The analogous equations for the remaining mesons follow in same manner. Here we
summarise the equations of motion for all mesons decomposed into mean field and
fluctuation components(

−~∇2 +m2
σ

)
σ̄ =

∑
B

(
−∂M

∗
B

∂σ̄

〈
Ψ̄BΨB

〉)
, (4.5.41)

(−∇2 +m2
ω)ω̄ =

∑
B

gωB

〈
Ψ†BΨB

〉
, (4.5.42)

(−∇2 +m2
ρ)ρ̄ =

∑
B

gρB

〈
Ψ†Bt3BΨB

〉
(4.5.43)

(4.5.44)

and (
−~∇2 +m2

σ

)
δσ =

∑
B

−∂M
∗
B

∂σ̄

(
Ψ̄BΨB −

〈
Ψ̄BΨB

〉)
=
∑
B

δ
(

Ψ̄BΓ̃σBΨB

)
,

(4.5.45)

(−∇2 +m2
ω)δωµ =

∑
B

δ
(

Ψ̄BΓ̃µωBΨB

)
, (4.5.46)
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(−∇2 +m2
ρ)δρ

µ =
∑
B

δ
(

Ψ̄BΓ̃
µ

ρBΨB

)
, (4.5.47)

(−∇2 +m2
π)δπ =

∑
B

δ
(

Ψ̄BΓ̃πBΨB

)
. (4.5.48)

In Eqs. (4.5.45–4.5.48), the meson-baryon interaction sources are written in terms of
the appropriate Lorentz and isospin structures , Γ̃αB, in configuration space.

All meson mean fields and fluctuations can be calculated by using the same methods
as used above for the σ and ω mesons. The expressions for the meson mean fields are:

σ̄ = − 1

m2
σ

∑
B

∂M∗
B

∂σ̄

〈
Ψ̄BΨB

〉
, (4.5.49)

ω̄ =
1

m2
ω

∑
B

gωB

〈
Ψ†BΨB

〉
, (4.5.50)

ρ̄ =
1

m2
ρ

∑
B

gρB

〈
Ψ†Bt3BΨB

〉
, (4.5.51)

π̄ = 0 . (4.5.52)

The expression for each meson field fluctuation can be condensed to

δφ(~r ) =
∑
B

∫
d3r′ ∆φ(~r − ~r ′)δ(Ψ̄BΓ̃φBΨB)(~r ′) , (4.5.53)

where ∆φ is the Yukawa propagator for the meson φ ∈ {σ, ω, ρ, π} determined by

(−∇2 +m2
φ)∆φ(~r − ~r ′) = +δ(3)(~r − ~r ′) . (4.5.54)

The decomposition of the meson fields also occurs in the Hamiltonian. The Hamil-
tonian describing the free σ meson is expanded as

Hσ =
1

2

∫
d3r

[
~∇σ · ~∇σ +m2

σσ
2
]

(4.5.55)

=
1

2

∫
d3r

[
~∇(σ̄ + δσ) · ~∇(σ̄ + δσ) +m2

σ(σ̄ + δσ)2
]

(4.5.56)

=
1

2

∫
d3r

[
~∇σ̄ · ~∇σ̄ +m2

σσ̄
2 + ~∇δσ · ~∇δσ +m2

σδσ
2 (4.5.57)

+2~∇σ̄ · ~∇δσ + 2m2
σσ̄δσ

]
.

Using integration by parts we obtain

Hσ =

∫
d3r

[
1

2
σ̄(−∇2 +

1

2
m2
σ)σ̄ (4.5.58)

+
1

2
δσ(−∇2 +

1

2
m2
σ)δσ + δσ(−∇2 +m2

σ)σ̄

]
,

where we have neglected surface terms, as surface terms do not contribute in infinite
matter. Analogous expressions can be obtained for the remaining terms. Expanding
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K about the mean fields and combing it with Eq. (4.5.58) we see that to second order
in the scalar fluctuation∫
d3r [K +Hσ] =

∫
d3r

[
K(σ̄) + δσ

∂K
∂σ̄

+
1

2
δσ2∂

2K
∂σ̄2

(4.5.59)

+
1

2
σ̄(−∇2 +

1

2
m2
σ)σ̄ +

1

2
δσ(−∇2 +

1

2
m2
σ)δσ

+ δσ(−∇2 +m2
σ)σ̄

]
.

Using Eq. (4.5.14), (4.5.41) and (4.5.45) this amounts to∫
d3r [K +Hσ] =

∫
d3r

[
K(σ̄) +

1

2
δσ

(
∂K
∂σ̄
−
〈
∂K
∂σ̄

〉)
+

1

2
m2
σσ̄

2

]
(4.5.60)

=

∫
d3r

[∑
B

Ψ̄B

[
−i~γ · ~∇+MB − gσB(σ̄)σ̄

]
ΨB

+
1

2

∑
B

∂M∗
B

∂σ̄
δσ(~r)δ

(
Ψ̄BΨB

)
(~r) +

1

2
m2
σσ̄

2

]
.

(4.5.61)

The first term in the last line is the σ meson’s Fock term contribution to the energy
and is further evaluated using Eq. (4.5.53), such that

1

2

∑
B

∫
d3r

∂M∗
B

∂σ̄
δσ(~r)δ

(
Ψ̄BΨB

)
(~r)

= −1

2

∑
B,B′

∂M∗
B

∂σ̄

∂M∗
B′

∂σ̄

∫
d3rd3r′ ∆σ(~r − ~r ′)δ

(
Ψ̄B′ΨB′

)
(~r ′)δ

(
Ψ̄BΨB

)
(~r) .

(4.5.62)

In the Lagrangian under investigation, Eq. (4.2.6), in the Fock terms isoscalar
mesons are only exchanged between like baryons. Isovector mesons are exchanged
between different baryons, but only between baryons from the same isospin multiplet.
With this in mind, Eq. (4.5.62) simplifies to

1

2

∑
B

∫
d3r

∂M∗
B

∂σ̄
δσ(~r)δ

(
Ψ̄BΨB

)
(~r)

= −1

2

∑
i

(
∂M∗

i

∂σ̄

)2 ∫
d3rd3r′ ∆σ(~r − ~r ′)δ

(
ψ̄iψi

)
(~r ′)δ

(
ψ̄iψi

)
(~r) .

(4.5.63)

To proceed further, we must first explain how the in-medium Dirac equation for the
baryons is solved in the Hartree-Fock approximation. This is presented in Sec. 4.6 and
we provide a detailed evaluation of Eq. (4.5.63) in Sec. 4.7. In the process of doing
this, we Fourier transform to momentum space, where the energy density of nuclear
matter is more easily evaluated.
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4.6 The In-medium Dirac Equation

The in-medium Dirac equation, for a baryon i in nuclear matter, can be written as(
/p−Mi − Σi(p)

)
ui(p, s) = 0 , (4.6.1)

where Σi(p) is the self-energy of the baryon. The self-energy takes into account the
self-consistent generation of the nuclear mean fields. From parity conservation and
translational, rotational and time reversal invariance, the self-energy can be decom-
posed into three scalar functions in the nuclear matter rest frame. Written in terms of
these functions it is expressed as [150]

Σi(p) = Σs
i(p) + γ0Σ0

i (p) + ~γ · ~pΣv
i (p) . (4.6.2)

The exact decomposition given in Eq. (4.6.2) can vary among different works, where
other definitions of the scalar functions are used. The functions Σs

i(k), Σ0
i (k) and

Σv
i (k) are the scalar, temporal vector and spatial vector components of the self-energy

and can be obtained by taking appropriate traces of Eq. (4.6.2), see App. A.2. In
general, the self-energy of a particle can be complex, but throughout this thesis we
make the assumption that the self-energies of the baryons are entirely real. This is
usually referred to as the quasi-particle approximation and is common in calculations
of this type.

If we introduce the following effective quantities

M∗
i (p) = Mi + Σs

i(p) , (4.6.3)

E∗i (p) = Ei(p) + Σ0
i (p) =

√
~p ∗ 2 +M∗ 2

i , (4.6.4)

~p ∗ = ~p (1 + Σv
i (p)) , (4.6.5)

the Dirac equation can be written as(
/p
∗ −M∗

i

)
ui(p, s) = 0 , (4.6.6)

which is formally equivalent to the Dirac equation in vacuum. Therefore, as in vacuum,
the positive energy solution to Eq. (4.6.6) is

ui(p, s) =

√
M∗

i + E∗i
2E∗i

 1
~σ · ~p ∗

M∗
i + E∗i

χs , (4.6.7)

where χs are Pauli spinors and we have used the normalisation convention

u†i (p, s)ui(p, s) = 1 (4.6.8)

for the spinor. This normalization differs from the usual convention used in intro-
ductory texts on QFT (c.f. Refs. [253, 254]) as it is more useful for studying nuclear
matter [150]. The isospin baryon multiplets are

uN =

(
up

un

)
, uΛ =

(
uΛ

)
, uΣ =

 uΣ+

uΣ0

uΣ−

 , uΞ =

(
uΞ0

uΞ−

)
. (4.6.9)
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From fully self-consistent calculations performed using QHD [150, 246] and QMC [183]
models, it is known that the scalar and temporal vector self-energy components are
approximately momentum independent and the spatial vector component is very small.
Therefore, we proceed by carrying out the self-consistency approximately, as in Eq. (4.0.1).
The self-energy then has a form identical to the usual mean-field (Hartree) result and
the Fock corrections to these components can be included by requiring thermodynam-
ical consistency, which amounts to minimising the total energy density with respect to
the meson fields. This results in a small correction to the scalar field. Moreover, we

have ui(p, s) = ui(~p, s) and E∗i (p) = E∗i (~p) =
√
~p 2 +M∗ 2

i .

In this approximation, the effective mass is only dependent on the mean scalar
field. As we are working with the QMC model, the baryons are modelled as MIT bags
immersed in this scalar field. By solving the non-linear bag equations, the effective
mass can then be parametrised as a function of the the scalar coupling and mean scalar
field. The scalar self-energy component is then Σs

i(σ̄) = M∗
i (σ̄) −Mi, where we use

the parametrisation of the effective mass, including self-consistent one-gluon exchange,
obtained in Ref. [188]. For convenience, the baryon effective mass parametrisations for
the spin-1/2 octet are given in App. A.1.

The no sea approximation is used, i.e., the negative energy states of the baryons
are ignored. Therefore, the in-medium propagators for baryons propagating on-shell
in the nuclear matter rest frame is given entirely by the Dirac portion of the baryon
propagator [150]

Gi
αβ(p) =

iπ

E∗i (p)
(/p
∗ +M∗

i )αβδ(p
0 − E(p))Θ(pF,i − |~p|) . (4.6.10)

With the above approximations and definitions, the Fock contribution can be eval-
uated. In Sec. 4.7, we present the detailed evaluation of the σ meson contribution to
the energy density.

4.7 Detailed Evaluation of σ Meson Fock Term

What we actually want is the energy density, which is defined by Eq. (4.4.8). To
evaluate the σ meson contribution to the energy density (see Eq. (4.5.63), we need to
evaluate the following ground state expectation value〈

δ
(
ψ̄iψi

)
(~r ′)δ

(
ψ̄iψi

)
(~r)
〉

=
〈(
ψ̄iψi −

〈
ψ̄iψi

〉)
(~r ′)

(
ψ̄iψi −

〈
ψ̄iψi

〉)
(~r)
〉

(4.7.1)

=
〈
ψ̄i(~r

′)ψi(~r
′)ψ̄i(~r)ψi(~r)

〉
−
〈
ψ̄i(~r

′)ψi(~r
′)
〉 〈
ψ̄i(~r)ψi(~r)

〉
.

To simplify further we transform the field operators to the Heisenberg representa-
tion. Specifically for the first term in the last line we find

A ≡
〈
ψ̄i(~r

′)ψi(~r
′)ψ̄i(~r)ψi(~r)

〉
(4.7.2)

=
〈
eiHt1ψ̄i(~r

′)e−iHt1eiHt1ψi(~r
′)e−iHt1eiHt1ψ̄i(~r)e

−iHt1eiHt1ψi(~r)e
−iHt1

〉
(4.7.3)
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=
〈
ψ̄i(~r

′, t1)ψi(~r
′, t1)ψ̄i(~r, t1)ψi(~r, t1)

〉
(4.7.4)

= lim
t′1→t1

〈
ψ̄i(~r

′, t′1)ψi(~r
′, t′1)ψ̄i(~r, t1)ψi(~r, t1)

〉
(4.7.5)

= lim
t′1→t1
t′1>t1

〈
T
[
ψ̄i(~r, t1)ψi(~r, t1)ψ̄i(~r

′, t′1)ψi(~r
′, t′1)

]〉
. (4.7.6)

Using Wick’s theorem to simplify further, only fully contracted terms survive

A = lim
t′1→t1
t′1>t1

ψ̄i(~r, t1)ψi(~r, t1)ψ̄i(~r
′, t′1)ψi(~r

′, t′1) + ψ̄i(~r, t1)ψi(~r, t1)ψ̄i(~r
′, t′1)ψi(~r

′, t′1)

(4.7.7)

= lim
t′1→t

+
1

Tr
[
iGi(~r, t1;~r, t1)iGi(~r ′, t′1;~r ′, t′1)

]
− Tr

[
iGi(~r ′, t′1;~r, t1)iGi(~r, t1;~r ′, t′1)

]
(4.7.8)

= lim
t′1→t

+
1

Tr
[
iGi(x;x)iGi(x′;x′)

]
− Tr

[
iGi(x′;x)iGi(x;x′)

]
. (4.7.9)

The first term in Eq. (4.7.9) cancels the second term in Eq. (4.7.2). We evaluate the
second term by using the momentum space representation of the baryon’s in-medium
Greens function (Eq. (4.6.10),

lim
t′1→t

+
1

−Tr
[
iGi(x′;x)iGi(x;x′)

]
(4.7.10)

= lim
t′1→t

+
1

−i
∫

d4p

(2π)4
Gi
αβ(p)e−ip·(x

′−x)i

∫
d4p′

(2π)4
Gi
βα(p′)e−ip

′·(x−x′) (4.7.11)

=

∫
d4p

(2π)4

d4p′

(2π)4
Gi
αβ(p)Gi

βα(p′)ei(~p−~p
′)·(~r ′−~r) (4.7.12)

=

∫
d4p

(2π)4

d4p′

(2π)4

(
/p
∗ +M∗

i

)
αβ

iπ

E∗i (p)
δ(p0 − Ei(p))Θ(pF,i − |~p|)

×
(
/p
′∗ +M∗

i

)
βα

iπ

E∗i (p
′)
δ(p′0 − Ei(p′))Θ(p′F,i − |~p ′|)e+i(~p−~p ′)·(~r ′−~r) .

(4.7.13)

Performing the p0 and p′0 integrals we obtain

lim
t′1→t

+
1

−Tr
[
iGi(x′;x)iGi(x;x′)

]
(4.7.14)

= −
∫

d3p

(2π)3

d3p′

(2π)3

Tr
[(
/p ∗ +M∗

i

) (
/p ′∗ +M∗

i

)]
4E∗i (p)E

∗
i (p
′)

×e+i(~p−~p ′)·(~r ′−~r)Θ(pF,i − |~p|)Θ(p′F,i − |~p ′|) .
(4.7.15)

Using Eq. (4.7.15) and (4.5.63), the σ mesons Fock contribution to the energy density
is

εFσ = − 1

V

1

2

∑
i

(
∂M∗

i

∂σ̄

)2 ∫
d3r

∫
d3r′

∫
d3q

(2π)3
∆σ(~q )e−i~q·(~r

′−~r)
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− ∫
|~p|≤ pF,i

d3p

(2π)3

∫
|~p ′|≤ p′F,i

d3p′

(2π)3

Tr
[(
/p ∗ +M∗

i

) (
/p ′∗ +M∗

i

)]
4E∗i (p)E

∗
i (p
′)

e+i(~p−~p ′)·(~r ′−~r)

 .

(4.7.16)

Making use of the exponential representation of the Dirac delta function,

(2π)3δ(3)(~p− ~p ′) =

∫
d3re−i(~p−~p

′)·~r , (4.7.17)

to perform the d3r and d3r′ integrals we obtain,

εFσ =
1

2V

∑
i

(
∂M∗

i

∂σ̄

)2 ∫
d3q

(2π)3

∫
|~p|≤pF,i

d3p

(2π)3

∫
|~p ′|≤p′F,i

d3p′

(2π)3

× ∆σ(~q )
Tr
[(
/p ∗ +M∗

i

) (
/p ′∗ +M∗

i

)]
4E∗i (p)E

∗
i (p
′)

× (2π)3δ(3)(~p− ~p ′ − ~q) (2π)3δ(3)(−~p+ ~p ′ + ~q) . (4.7.18)

Now performing the d3q integral and using V = (2π)3δ(3)(0) from Eq. (4.7.17), we
finally obtain

εFσ =
1

2

∑
i

(
∂M∗

i

∂σ̄

)2 ∫
|~p|≤pF,i

d3p

(2π)3

∫
|~p ′|≤p′F,i

d3p′

(2π)3
∆σ(~q )

Tr
[(
/p ∗ +M∗

i

) (
/p ′∗ +M∗

i

)]
4E∗i (p)E

∗
i (p
′)

,

(4.7.19)

where the trace is evaluated by the usual methods [253] to be

Tr
[(
/p
∗ +M∗

i

) (
/p
′∗ +M∗

i

)]
= 4(E∗i (p)E

∗
i (p
′)− ~p · ~p ′ +M∗ 2

i ) . (4.7.20)

As can be seen in Eq. (4.7.19), there is an additional scalar dependence in this Fock
term, which appears after explicit evaluation. A correction to the mean scalar field can
easily be included numerically. This is a small contribution and it is included in the
scenarios labelled “Fock δσ”. This will be discussed further later. The other mesons
also have an additional scalar dependence and their expressions are straightforwardly
obtained in the same manner.

4.8 Final Expressions for the Fock Terms

Before giving the expressions for the remaining mesons we consider a naive amplifica-
tion of the tensor interaction and introduce form factors.

We introduce a crude method to amplify the effect of the tensor interaction,

fηB
2MN

−−−→ fηB
2M∗

N

, (4.8.1)
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neglecting any additional corrections to δσ and ultimately the σ-meson Fock energy
density that may ensue. We also introduce form factors, because of the extended nature
of the baryons, by

gαB −−−→ gαBF
α(k2) . (4.8.2)

The σ, ω, ρ and π form factors are all taken to have the dipole form F (k2) ' F (~k2)
with the same cut-off Λ. We explore values of the cut-off mass in the range 0.9 –
1.3 GeV. Clearly, these form factors are only of concern for the Fock terms as these
allow for a finite momentum transfer, whereas Hartree contributions do not. We make
specific note of the two terms which contribute to the vector meson vertices, a vector
‘Dirac’ term and a tensor ‘Pauli’ term.

Taking into account these modifications, the Fock level contributions to the energy
density can be expressed as in Ref. [244]. These terms involve the meson baryon vertices
which are expressed as

ΓσB = gσBCB(σ̄)F σ(k2)1 = −∂M
∗
B

∂σ̄
F σ(k2)1 , (4.8.3)

ΓηB = εµηΓµηB = εµη

[
gηBγµF

η
1 (k2) +

ifηBσµν
2M∗

B

kνF η
2 (k2)

]
t ;

η ∈ {ω, ρ} , (4.8.4)

ΓπB = i
gA
2fπ

F π(k2)γµkµγ5τ , (4.8.5)

with the isospin matrix t only applicable to isovector mesons. For nucleons and cascade

particles t =
τ

2
. For the ρ meson the flavour dependence is contained completely in

the isospin matrix, such that gρB = gρN = gρ.
Note that we have written the vector meson, ΓηB, with an effective baryon mass,

M∗
B in the denominator of Eq. (4.8.4). The expressions are worked out using this form.

To obtain the standard form of the equations, without this amplification, the ratios of
tensor to vector couplings κB(ω,ρ) = fB(ω,ρ)/gB(ω,ρ) given in Table 4.9.1 are rescaled using
the free proton mass

κB(ω,ρ) → κB(ω,ρ) ×
M∗

B

Mp

. (4.8.6)

Equation (4.8.6) is used in all variants of the model (“scenarios”), considered in this
work except where a result is labeled “Eff. Proton Mass”, where it is rescaled using the
effective proton mass instead. The reason for this choice is that the derivation of the
QMC model is based on an order by order expansion in the effect of the scalar field.
Using the effective mass of the proton in the Pauli term coupling assumes that the scalar
field does not appear in some other way at the level of momentum dependent couplings.
A systematic expansion would ensure that all effects are included consistently to a given
order. In the absence of such a derivation it would be natural to write the couplings
in terms of the free baryon mass as is done in Ref. [245, 255] and not include just one
effect of the scalar field at this order.

Within the QMC model, the hadronic energy density εhadronic is the sum of the of
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the baryonic energy density in nuclear matter which is

εB =
2

(2π)3

∑
B

∫
|~p|≤pF

d3p
√
~p 2 +M∗ 2

B , (4.8.7)

and the mesonic energy density εσωρπ. This can be divided into two parts, the Hartree
εH = εB + εHσωρ and the Fock εF = εFσωρ + επ contribution. The total mesonic energy

density is given by εσωρπ = εHσωρ + εF , where the Hartree and Fock components of the
mesonic energy density are given respectively by

εHσωρ =
∑

α∈{σ,ω,ρ}

1

2
m2
αᾱ

2 (4.8.8)

where ᾱ refers to the mean field value of meson α and

εF =
1

(2π)6

∑
m∈{σ,ω,ρ,π}

∑
BB′

Cm
BB′

∫
|~p|≤pF

∫
|~p ′|≤pF ′

d3pd3p′ Ξα
BB′ , (4.8.9)

where Cσ
BB′ = Cω

BB′ = δBB′ . C
ρ
BB′ and Cπ

BB′ , which arise from symmetry considerations,
are given in Ref. [161] and Ξα

BB′ , is explained below. The meson mean fields are
given by applying the mean field approximation to the above system of equations,
this is a minimisation of the energy density, leading to the self-consistency equations.
Including exchange terms to the meson energy density gives an additional term from the
minimisation to the scalar mean field which is evaluated numerically. This additional
self-consistency significantly increases computation time and only makes a small change
in our results. For this reason we include only one full calculation demonstrating its
correction to the σ mean field. For the mean scalar field (σ̄) at a given density it is
self-consistently expressed as

σ̄ = − 1

m2
σ

∂εB
∂σ̄
− 1

m2
σ

∂εF
∂σ̄

= − 2

m2
σ(2π)3

∑
B

∫
|~p|≤pF

d3p
M∗

B√
~p 2 +M∗ 2

B

∂M∗
B

∂σ̄
− 1

m2
σ

∂εF
∂σ̄

, (4.8.10)

where εb, εF are the baryon and Fock contributions to the energy density. The vector
meson mean fields are given by

ω̄ =
∑
i

gωi
m2
ω

ρv
i , (4.8.11)

ρ̄ =
∑
i

gρi
m2
ρ

t3iρ
v
i . (4.8.12)

The total baryonic vector and scalar densities are given by

ρs =
∑
i

ρsi =
2

(2π)3

∑
i

∫
|~p|≤pF,i

d3p
M∗

i√
~p 2 +M∗ 2

i

(4.8.13)
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and

ρv =
∑
i

ρvi =
2

(2π)3

∑
i

∫
|~p|≤pF,i

d3p . (4.8.14)

In Eq.(4.8.13) and Eq.(4.8.14), pF,i denotes the Fermi momentum of a baryon of type
i. These integrals are evaluated by making use of spherical symmetry.

For εF , the integrand has the form

Ξm
BB′ =

1

2

∑
s,s′

|ūB′(p′, s′)ΓmBuB(p, s)|2∆m(~k) , (4.8.15)

where ∆m(~k) is the Yukawa propagator for meson m with momentum ~k = ~p− ~p′ and
uB are the baryon spinors. The integrands take the following form for B = B′

Ξσ
B =

1

2

(
gσBCB(σ̄)F σ(~k2)

)2

E∗(~p ′)E∗(~p)

{
M∗ 2

B + E∗(~p ′)E∗(~p)− ~p ′ · ~p
}

∆σ(~k) .

(4.8.16)

Here for the vector meson integrands we denote η = ω, ρ

ΞηV
B = −

(
gηBF

η
1 (~k 2)

)2

E∗(~p ′)E∗(~p)

{
2M∗2

B − E∗(~p ′)E∗(~p) + ~p ′ · ~p
}

∆η(~k) (4.8.17)

ΞηV T
B = (gηB)2 κηBF

η
1 (~k 2)F η

2 (~k2).

{
−3M∗2

B + 3E∗(~p ′)E∗(~p))− 3~p ′ · ~p
E∗(~p ′)E∗(~p)

}
∆η(~k)

(4.8.18)

ΞηT
B = −

(
gηBκηBF

η
2 (~k 2)

)2

E∗(~p ′)E∗(~p)
.

.

{
(5M∗2

B − E∗(~p ′)E∗(~p) + ~p ′ · ~p)
4M∗2

B

.(M∗2
B − E∗(~p ′)E∗(~p) + ~p ′ · ~p)

}
∆η(~k)

(4.8.19)

and for the pion

Ξπ
B = −

2M∗2
B ( gA

2fπ
Fπ(~k 2))2

E∗(~p)E∗(~p ′)

{
M∗2

B − E∗(~p)E∗(~p ′) + ~p ′ · ~p
}

∆π(~k). (4.8.20)

where E∗(~p) =
√
~p 2 +M∗2

B . In the above integrands we expand the terms in the braces

multiplied by the propagator to isolate the momentum independent pieces and multiply
these contact terms by the variable ξ which we use to investigate the consequences of
contact subtraction. We emphasise here the importance of subtraction of the momen-
tum independent piece, which when transformed to configuration space corresponds
to a delta function. In this manner our subtraction is implemented by the variable ξ,
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such that δ(~r) 7→ ξ × δ(~r). The removal of the contact terms is a common procedure
due to the fact that these contact terms represent very short range, effectively zero
range correlations between the baryons, which is not consistent in this model which
treats the baryons as clusters of quarks and not as point-like objects. Moreover, it is
also required because of the suppression of the relative wave function at short distance
originating from the repulsive hard core. We give this explicitly for the Vector-Vector
piece of the vector mesons

2M∗2
B − E∗(~p ′)E∗(~p) + ~p′ · ~p

~k2 +m2
η

=
2M∗2

B − p′ · p
~k2 +m2

η

'
M∗2

B −
~k2

2

~k2 +m2
η

=
M∗2

B

~k2 +m2
η

− 1

2

~k2

~k2 +m2
η

=
M∗2

B +
m2
η

2

~k2 +m2
η

− 1

2
ξ (4.8.21)

the remaining subtractions follow in the same manner, see Appendix A.

4.9 Model Parameters

The expression for total energy density is dependent on just the three main adjustable
coupling constants, which control the coupling of the mesons to the two lightest quarks,
gqσ, gqω, and gqρ for q = u, d (gsα = 0 for all mesons α). In addition, one has the meson
masses, the value of the cut-off parameter Λ appearing in the dipole form factors needed
to evaluate the Fock terms and finally the bag radius of the free nucleon. The σ, ω,
and ρ couplings to the quarks are constrained to reproduce the standard empirical
properties of symmetric (N=Z) nuclear matter; the saturation density ρ0 = 0.16 fm−3,
the binding energy per nucleon at saturation of E(ρ = ρ0) = −15.865 MeV as well as
the asymmetry energy coefficient aasym ≡ S0 ≡ S(ρ0) = 32.5 MeV [161] (see also Ch. 2,
Secs. 2.3–2.6).

The ω, ρ and π meson masses are set to their experimental values. The ambiguity
in defining the mass of the σ after quantising the classical equations of motion was
explained in detail in Ref. [182]. Here it is set to the value that gave the best agreement
with experiment for the binding energies of finite nuclei in a previous QMC model
calculation [160], which was 700 MeV. This is a common value taken for the σ meson
mass which is generally considered in RMF models to be in the range 400–800 MeV.

The form factor cut-off mass, Λ, controls the strength of the Fock terms Eqs. (4.8.3
- 4.8.5). We considered a range of values; 0.9 GeV ≤ Λ ≤ 2.0 GeV, with the preferred
value, as we shall see, being 0.9 GeV. For simplicity we have used the same cut-off for
all mesons. Since the pion mass is much lower than that of the other mesons, we have
confirmed that using a lower cut-off for the pion does not significantly influence the
results. This is not surprising as Fock terms are expected to be more significant at
higher density where we have found that the pion does not contribute greatly.
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Relation Magnetic Moments [n.m.] κB(IS,IV ) =: κB(ω,ρ)

µp = 1 +
1

2
(κNIS + κNIV ) µn = −1.913 κNIS = −0.12

µn =
1

2
(κNIS − κNIV ) µp = 2.793 κNIV = 3.706

µΛ = κΛ
IS µΛ = −0.61 κΛ

IS = −0.61

µΣ+ = 1 + (κΣ
IS + κΣ

IV ) µΣ− = −1.16 κΣ
IS = 0.649

µΣ− = −1 + (κΣ
IS − κΣ

IV ) µΣ+ = 2.458 κΣ
IV = 0.809

µΞ0 =
1

2
(κΞ

IS + κΞ
IV ) µΞ− = −0.65 κΞ

IS = −0.9

µΞ− = −1 +
1

2
(κΞ

IS − κΞ
IV ) µΞ0 = −1.25 κΞ

IV = −1.5993

Table 4.9.1: Relations between baryon magnetic moments and anomalous isoscalar
and isovector magnetic moments κB(IS,IV ) =: κB(ω,ρ) = fB(ω,ρ)/gB(ω,ρ) using experimental
magnetic moments [256].

All the other coupling constants in the expression for the total energy density
are calculated within the QMC model or determined from symmetry considerations
without further need for adjustable parameters. The one exception is gσB(σ̄), which
shows a weak dependence on the free nucleon radius Rfree

N . We checked that changes
of order 20% in Rfree

N , consistent with nucleon properties, have no significant effect on
the properties of nuclear matter and chose Rfree

N = 1.0 fm.
The baryon-meson coupling constants gσN(0), gωB, and gρB (or equivalently the

three quark-meson coupling constants) are determined by fitting the saturation prop-
erties of symmetric nuclear matter. Only gσB is density dependent and that dependence
is calculated self-consistently according to

∂

∂σ̄
[gσB(σ̄)σ̄] = gσB(0)CB(σ̄) = − ∂M

∗
B

∂σ̄
≡ − ∂M

∗
B(σ̄, gσN , R

free
N )

∂σ̄
, (4.9.1)

where M∗
B is calculated in the QMC model using the MIT bag with one gluon exchange

for the baryon structure. The couplings gωB and gρB are expressed in terms of the quark
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level couplings as:
gωB = nBu,dg

q
ω ; gρB = gρN = gqρ , (4.9.2)

where nBu,d is the number of light quarks in baryon B.
At densities ∼ 2 – 3 ρ0 one expects, simply because the Fermi level of the neutrons

rises rapidly, that for matter in beta-equilibrium hyperons must be considered. There
is very little experimental data on the N–Y and Y –Y interactions, which makes the
traditional approach through phenomenological pair-wise interactions very difficult.
There is certainly no hope of determining the relevant three-body forces which are
expected to be critical at high density. One of the attractive features of the QMC
model is that it predicts all of these forces in terms of the underlying quark-meson
couplings, the scalar meson mass and the particular quark model chosen (the MIT bag
here). Furthermore, the density dependence of the scalar couplings to each baryon is
also determined by the bag model mass parametrisation. The inclusion of this density
dependent, in-medium interaction is equivalent in a density independent framework to
including the appropriate three-body force between all baryons.

Remarkably, in the absence of the Pauli Fock terms, the model predicted realistic
Λ binding energies and, at the same time realistic Σ repulsion in matter [188]. As
we show later in Sec. 5.2, the additional repulsion associated with the Fock term,
is not adequately compensated and the agreement is lost. In this work we assess
the magnitude of the needed change by artificially modifying the σ–couplings for the
hyperons to match the empirical observations. This procedure will serve as a guidance
in the future development of the model.

It is well known that the coupling of the ρ meson to a particular baryon has a rel-
atively large Pauli, or tensor, coupling (i.e. fρB in Eq. (4.8.4)). The value used varies
from one model of the nuclear force to another. In the QMC model the prediction
of the tensor coupling at zero momentum transfer is unambiguous—it is exactly the
anomalous, iso-vector magnetic moment of the baryon in the MIT bag model. Simi-
larly, the tensor coupling of the ω, which in the case of the nucleon is much smaller
than for the ρ, is determined by the isoscalar magnetic moment. Since the MIT bag
model reproduces the experimental values of the magnetic moments quite well, the
tensor coupling required within the QMC model is equivalent to using vector meson
dominance [257] and in practice we use values for the magnetic moments from the Par-
ticle Data Group [256]. Finally and purely as an exercise aimed at exploring the model
dependence, we consider two different choices for the ratios of tensor to vector coupling
constants fαB/gαB; with α ∈ {ρ, ω}. Whereas, as we explained, in the standard QMC
calculation we take fρN/gρN = 3.70, we also explore the consequences of arbitrarily
setting fρN/gρN = 5.68 in the ‘Increased fρN/gρN ’ scenario. In this scenario we arbi-
trarily take the ratios of tensor to vector couplings of all baryons from the Nijmegen
potentials (Table VII of Ref. [258]).

The only other parameters in the QMC model are those entering the bag model. We
refer the reader to Ref. [188] where those parameters were obtained. None of them have
been adjusted to any property of nuclear matter, although all calculations involving
the QMC model at present rely on the MIT bag model with one gluon exchange and
could be in principle improved upon by using a more sophisticated model of quark
confinement. Nonetheless, with this simple quark-based model, remarkable agreement
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with a broad range of experimental data has been obtained [187].
Having established the QMC model parameters, in the following section we calcu-

late properties of symmetric nuclear matter (SNM) and pure neutron matter (PNM).
In chapter 5, we calculate matter in beta-equilibrium (BEM) which consists of nucleons
and leptons, and also matter in generalised beta-equilibrium (GBEM) containing the
full baryon octet and leptons. Using the derived EoS, we calculate the properties of
cold neutron stars and make a comparison with up-to-date experimental and observa-
tional data. We also examine the robustness of those results on the limited number of
parameters entering the model.

4.10 Nuclear Matter Properties

In Sec. 4.9, the QMC model parameters were discussed and it was explained that a
minimal set of saturation properties of symmetric nuclear matter is used to constrain
them. Specifically, the the saturation density, the binding energy per particle and
the symmetry energy at saturation, were used to fix the three quark-meson coupling
constants. None of those properties is actually an empirical quantity, since they are not
measured directly but extracted from experiments or observations in a model dependent
way. However, there is a general consensus that all meaningful theories of nuclear
matter should reproduce these quantities correctly. Moreover, other properties of both
symmetric and pure neutron matter, derived from derivatives of the energy per particle
with respect to particle number density or asymmetry parameter, together with their
density dependence, can be compared to empirical data to further test the theories.
These include the pressure, incompressibility (compression modulus), the slope of the
symmetry energy and other higher order derivatives. These are defined in Ch. 2,
Sec. 2.3. In Sec. 2.4, a brief review of the experimental knowledge concerning the EoS
was given. However, there is no rigorous constraint available for the skewness coefficient
except for the results of Farine et al. [259]. They obtained a model dependent value
K ′ = 700± 500 MeV from an analysis of the nuclear breathing mode, using a selection
of Skyrme forces.

Values of an extended set of nuclear matter properties have been obtained using the
QMC model developed in this chapter and presented in Table 4.13.1. The particular
values at saturation density, ρ0, are indicated with a subscript zero (e.g., K0, Q0 etc.).
In symmetric nuclear matter, ρn = ρp = 1/2 ρ, the values of these properties at
saturation density can be compared to experiment.

The long range one pion exchange does not contribute in the Hartree approximation
as it is coupled via a pseudo-vector current. The inclusion of the exchange terms allows
the observables of nuclear matter to be affected by the pion. Most notably we find
that in concordance with Ref [161] the pion reduces the incompressibility. Conversely,
increasing the strength of the Fock terms as a whole has the net effect of increasing
the value of incompressibility of nuclear matter.

In PNM, ρn = ρ and ρp = 0. Although PNM does not exist in nature, it is seen as
a first approximation to matter in the outer core of neutron stars at densities higher
than ρ0. The density dependence of the energy per particle of PNM is poorly known,
except for the fact that PNM does not bind—i.e. the energy per particle is positive at
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Figure 4.10.1: Pure neutron matter energy per particle as a function of density as
obtained in the present work, in comparison with complete CEFT at N3LO order – for
more details of the latter, see Ref. [260].

all densities.
Very recently, Tews et al. [260] presented the first complete N3LO calculation of

the PNM energy, and Hebeler and Furnstahl [261] investigated the energy per particle
in PNM at sub-saturation densities using two- and three-nucleon CEFT interactions
that were consistently evolved within the framework of the similarity renormalization
group. We compare their results with the QMC predictions in Fig. 4.10.1. Clearly the
QMC prediction for the density dependence of the energy per particle in PNM is very
similar to that of Tews et al. [260] at sub-saturation density, with a somewhat steeper
increase at densities above saturation.

An interesting connection has been made between the pressure in the PNM neutron
skin in heavy nuclei and the radius and crust thickness of a cold neutron star [114].
Thus a microscopic theoretical calculation of the PNM pressure became of interest,
in particular at sub-saturation densities. Tsang et al. (see Fig. 4 and related ref-
erences in Ref. [87]) collected several recent calculations of the PNM pressure as a
function of particle number density. We show in Fig. 4.10.2 a selection of the models;
Bruckner-Hartree-Fock (BHF) with Av18 two-body potential [262], Quantum Monte
Carlo (QuMoCa) with Av8’ two-body potential [263] and CEFT [264]. The main un-
certainty in these calculations is the strength of three-body forces, which clearly make
a significant contribution to the total pressure in these models (compare the left and
right panels of Fig. 4.10.2, with the QMC result shown in the right panel). The QMC
model, which naturally includes three-body forces without additional parameters (see
Sec. 2.6), indicates a somewhat faster growth of pressure with increasing density than
the other three-body interactions.
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Limits for the pressure-density relationship in SNM and PNM in the density region
2 – 5 ρ0 have been inferred from a comparison of experimental data on matter flow
in energetic heavy ion collisions and predictions of a dynamical transport theory by
Danielewicz et al. (see Ref. [265] and references therein). The matter created in
the collision, lasting ∼ 10−23s at an incident kinetic energy per nucleon varying from
about 0.15 to 10 GeV per nucleon, was modelled as consisting of stable and excited
nucleons (∆ and N*) as well as pions. The basic constraints on this matter are charge
symmetry and strangeness conservation (although in this case the strangeness is zero).
This is in contrast to matter in cold neutron stars, constrained by charge neutrality
and generalised beta-equilibrium, where strangeness will not be conserved.

The transport theory was extrapolated to cold symmetric and pure neutron matter,
with the latter augmented by empirical symmetry pressure [265]. We show in Fig. 4.10.3
the pressure versus density for SNM and PNM, as predicted in different scenarios for the
QMC model in this work. The standard QMC model is consistent with the suggested
constraints but at the upper end of the range determined in [265].
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We now give details of how the optical potentials of hyperons embedded in symmet-
ric nuclear matter are calculated. We refrain from discussing these results until Section
5.1 as these potentials are intimately connected to the particle content of matter in
generalised beta equilibrium and are therefore more naturally discussed there. In many
works optical potentials for the hyperons in symmetric nuclear matter are evaluated
and used to constrain hyperon coupling constants. In the QMC model these couplings
are derived within the model. We make the following approximation to evaluate the
optical potentials in symmetric nuclear matter at saturation density. For each hyperon
a small number density is chosen, so that we can evaluate the corresponding chemical
potential numerically via Eq. (5.1.17). A small density means that this chemical poten-
tial is approximately the energy of a zero momentum hyperon embedded in symmetric
nucleon only matter. We can then calculate the optical potentials by Ui(ρ0) = µi−Mi.
These values are tabulated in Table 4.13.1 for the Λ, Σ− and Ξ− hyperons.

4.11 Asymmetric Nuclear Matter

Our knowledge of asymmetric nuclear matter is incomplete, mainly because of our
rudimentary understanding of the symmetry energy, S, and particularly its density
dependence. It is related to the isospin dependence of the nuclear force and is an
important property of highly asymmetric systems, such as heavy nuclei and the nuclear
matter found in neutron stars. It is defined in Eq. (2.3.6) and is equal to the asymmetry
coefficient in the Bethe–Weisacker mass formula in the limit A →∞ [111].

The definition of S(ρ) in Eq. (2.3.6) is related but not identical to the commonly
used approximation as the difference between the binding energy per baryon in PNM
and SNM

S(ρ) = E(ρ, β = 1)− E(ρ, β = 0) , (4.11.1)

where the binding energy per baryon, E , is defined in Eq. (2.3.5). This difference
approximation is valid under two assumptions: (i) E(ρ, β = 0) is a minimum energy
of the matter at a given density ρ and thus in the expansion of E(ρ, β) about this
value with respect to β the leading non-zero term is the second derivative term and
(ii) all the other derivatives in the expansion are negligible [266]. In this work we
consider Eq. (4.11.1) only to examine the validity of this approximation and to observe
the impact of the Fock terms, specifically the tensor contribution, upon the symmetry
energy.

As shown in Sec. 2.3, the symmetry energy can be expanded in a power series about
its value at saturation, S0 . The first three coefficients in this expansion are S0, its slope
L0, and its curvature Ksym. These values are also presented in Table 4.13.1 for each of
the model variations.

The search for constraints on the symmetry energy and its slope, L0, has received
considerable attention during the last decade. Recently Tsang et al. [87] evaluated
constraints from a wide range of experiments. However, as again the symmetry energy
is not measured directly but extracted from experimental data in a model dependent
way, only limits on the symmetry energy can be established. One of the outcomes
of the evaluation was a confirmation of a previously observed correlation between the
value of S0 and its derivative L0 at saturation density. Taking this correlation into
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Figure 4.10.3: (a) Pressure in SNM as a function of density as predicted in QMC model.
The shaded area is taken from Ref. [265]. (b) Pressure in PNM as a function of density
as predicted in the QMC model. The upper and lower shaded areas correspond to two
different estimates of the contribution of the symmetry pressure to the total pressure.
For more detail see Ref. [265]
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Figure 4.11.1: (a) Symmetry energy, S, as a function of baryon number density, as
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.

account, the constraint centered on (S0, L0) ∼ (32.5, 70) MeV, with the uncertainty
in S0 allowing values 30 < S0 < 35 MeV and related values of L0 in the range of
35 < L0 < 115 MeV (see Fig. 2 in Ref. [87] for more details).

While theoretical predictions of S0 are also more or less confined to the range 30 to
35 MeV, the calculated values of L0, corresponding to the range of S0, vary widely. For
example, the QuMoCa and CEFT models predict very similar low values of L0, between
∼ 30 - 50 MeV [87]. The best performing Skyrme forces, selected in Ref. [267], produce
values of L0 clustered around 50 MeV. On the other hand, relativistic mean field
models show a much larger spread. The models which satisfied most of the constraints
on the properties of nuclear matter, studied by Dutra et al. [268], predicted L0 in
the range ∼ 50 – 70 MeV. However, frequently used relativistic mean field model
parametrisations, e.g. NL3, NL-SH, NLC, TM1 and TM2 predict L0 values of order
∼ 110 – 120 MeV [269]. Chen et al. [270] found a linear the correlation between Ksym
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Figure 4.11.2: The correlation between the slope and magnitude of the symmetry
energy S0. Constraints on the slope L0 and the symmetry energy S0 at saturation
density from different experiments are overlaid. The experimental methods are labelled
next to the boxes with the estimated uncertainties. See Ref. [87] for more details.

and L0 for a specific selection of equations of state. For a range of positive values of
L0 between about 30 - 120 MeV Ksym is between ∼ -200 and 100 MeV.

In the QMC model the isospin dependent part of the interaction is mostly controlled
by the exchange of the ρ meson. For this reason, here and in other works (e.g. [111])
the symmetry energy at saturation S0 = 32.5 MeV is used to fix the ρ meson coupling
constant. The QMC result for L0 is 84 MeV (see Table 4.13.1), which is within the
broader limits found by Tsang et al. [87], although outside their preferred range.

We show the density dependence of the symmetry energy S and its slope, L, in
Fig. 4.11.1 and the correlation between S0 and L0 in Fig. 4.11.2. It can be seen that
the linear relationship between S0 and L0, observed in QuMoCa calculations [263] and
CEFT models [87] is also predicted in this work, although at higher values of L0 and a
somewhat different incline. When the approximate expression is used to evaluate the
symmetry energy the linear relationship between S0 and L0 is shifted to values which
are at most only a few MeV lower.

As explained in Sec. 2.4, the incompressibility of a finite nucleus can be studied
by examining the breathing modes of heavy nuclei (i.e. the isoscalar giant monopole
resonances) [115, 127]. The energy of these modes are related to incompressibility of a
finite nucleus, which can be expanded in powers of the mass number, A, see Eq. (2.3.10).
The isospin dependent coefficient in this expansion offers another way to study the
symmetry energy. It can be broken up into a surface and volume component [116–
118], of which the latter can be calculated in nuclear matter. It can be shown to be
related to the slope and curvature of the symmetry energy and is given by Eq. (2.3.21).
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In Ref. [115], Stone et al. analysed all currently available GMR data in nuclei with 56
< A < 208 and found a limit -700 ≤ Kτ,v ≤ -372 MeV. The QMC result is Kτ,v = -431
MeV, which lies well within the experimental limits.

4.12 Sensitivity to Parameter Variation

Our calculations for the Hartree–Fock QMC model follow similar lines to Refs. [160,
161, 183] in that in each case an approximation is made for the Fock terms. More
specifically, in our calculation of the Fock terms we omit energy transfer in the meson
propagator (meson retardation effects). We also omit the modification of momenta
because of the vector component of the self energy, which has been shown to be small
in Refs. [183] and [245]. We include the tensor interaction in the Fock terms, with a
common form factor, which has a dipole form. The lowest mass, Λ, for that cut-off,
which should be larger than the masses of the mesons included, is 0.9 GeV. This is
taken as our standard or baseline scenario value for 2 reasons:

(i) The incompressibility K0 rises as Λ is increased. In the range Λ = 0.9 – 2.0
GeV, for the scenarios considered K0 remains within the range 250 ≤ K0 ≤ 315MeV,
which was the constraint derived in [115].

(ii) Increasing the form factor cut-off Λ, effectively increases the strength of the
Fock terms, for which the ω and ρ mesons contribute a significant attraction once con-
tact subtraction has been performed. To obtain the saturation properties of SNM, one
must compensate for this additional attraction, resulting in a larger vector coupling.
If the vector couplings of the hyperons are simply related to the vector couplings of
the nucleons by Eq. (4.9.1), the results for the hyperon optical potentials at saturation
density in SNM are not consistent with the values extracted from hypernuclear exper-
iments largely because of the change in the ratio of the scalar to vector couplings.

We demonstrate the effect of changing the value of Λ between 0.9 – 1.3 GeV in the
subsequent scenarios (lines 2 - 5) in Table 4.13.1 which differ from the standard one
only by the value of Λ. We observe a minor increase in K0 and L0 which both remain
within the empirically expected range.

However, once the full Fock terms are included, the results for the standard scenario,
even with variable Λ, are not consistent with values of the phenomenological hyperon
optical potentials extracted from experiments. This is because of a change in the ratio of
the scalar to vector coupling, leaving the Λ hyperon effectively unbound. The additional
attraction generated by the Fock terms, especially the ρ tensor contribution, has altered
the coupling constants such that the ω coupling is larger. In the extreme scenario
“Λ = 2.0, gσY ×1.9” discussed in Sec. 5.1, we meet the constraints of phenomenological
hyperon optical potentials.

In the scenarios “Eff. Proton Mass”, “Eff. Proton Mass, Λ = 1.1” and “Eff. Proton
Mass + δσ” (lines 11–13 of Table 4.13.1) the ratio of tensor to vector coupling is rescaled
using the effective proton mass in Eq. (4.8.6) as opposed to the free proton mass. This
is a simplified way to introduce a scalar dependence into the Pauli term coupling. This
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substitution effectively increases the strength of the Pauli term due to the reduction
of the proton mass. It causes a significant increase in K0 as Λ takes on larger values.
Indeed, as we see in Table 4.13.1, K0 rises above 311 MeV for Λ greater than 1.1 GeV.
Similar observations apply for the slope of the symmetry energy at saturation density,
L0.

The contribution to the mean scalar field arising from the Fock terms is incorporated
in the cases denoted “Fock δσ̄” and “Eff. Proton Mass + δσ”. It has practically no
effect on the properties of nuclear matter for our standard scenario, but when applied to
the “Eff. Proton Mass” scenario there is a noticeable effect. For example, it decreases
the incompressibility by 12 MeV and increases the slope of the symmetry energy by
8 MeV. This is obviously because of the extra scalar dependence naively introduced in
the tensor coupling.

The tensor couplings used in this work, arising from the underlying MIT bag model,
are consistent with Vector Meson Dominance (VDM) and hence our tensor couplings
are calculated from the experimental magnetic moments. Purely as a test of the effect of
a variation in those couplings we arbitrarily took the ratios of tensor to vector couplings
of all baryons from the Nijmegen potentials (Table VII of Ref. [258]), where there is a
larger value of fρN/gρN = 5.7. These were also used by Miyatsu et al. [245, 255]. This
variation, denoted “Increased fρN/gρN”, produces very similar values for the nuclear
matter properties.

In scenarios “Dirac only” and “Hartree only” we show results of the QMC calcula-
tion with the same parameters as the standard set but leaving out the Pauli part of the
Fock term and the full Fock term, respectively. These results are particularly useful
for understanding of the role of individual terms in the QMC Lagrangian.

The last four scenarios in Table 4.13.1 document the effect of changes in the value of
the free nucleon radius and the evaluation of the symmetry energy from the difference
formula Eq. (4.11.1) “App.” and from the second derivative the the energy per par-
ticle “S0 = 30.0”. All of which have very little effect on the properties of nuclear matter.

4.13 Summary

We started this chapter by introducing the QMC hadronic Lagrangian. We then pro-
ceeded to the derive the equations of motion, Hamilitonian density and finally the EoS
of nuclear matter in the Hartree-Fock approximation. These were derived by applying
the method used Refs. [160–162]. The properties of symmetric nuclear matter (SNM)
and pure neutron matter (PNM) were investigated and the phenomenological hyperon
optical potentials were calculated. Comparisons of our numerical results with empirical
data, CEFT and other models were also presented.

The results for a comprehensive set of nuclear matter properties, including K0,
L0, Ksym, Q0 and Kτ,v have been studied in detail. The model prediction for the
incompressibility lies within the range extracted from experimental data for most model
variations considered. While the incompressibility is increased by this addition in some
cases and tends to lie at the mid to top end of the acceptable range, it serves as a useful
constraint on the additional mass parameter, Λ, associated with the form factor that
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appears at the meson-baryon vertices (the latter only being needed when the Fock
terms are computed). The modest variation of the nuclear matter observables with
this parameter (which must lie above the masses of the exchanged mesons included
in the theory) is illustrated in Table 4.13.1. Increasing Λ beyond 0.9 GeV raises the
incompressibility and in the case denoted “Eff. Proton Mass, Λ = 1.1 GeV” it is close
to the limit K0 < 315 MeV.

The symmetry energy and its slope are noticeably influenced by the Fock terms,
specifically curvature is introduced into these quantities through the tensor interaction,
as can be seen in Fig. 4.11.1. At saturation density we find in all cases that the
isospin incompressibility is within accepted constraint limits and while the slope of the
symmetry energy is on the larger side, it does lie within the broad limits reported by
Tsang et al. [87].

It is interesting to note that there is a satisfying level of consistency between the-
oretical predictions of N3LO chiral effective field theory and the QMC model results
studied here for densities of PNM up to and around nuclear matter density. Above
saturation density a slightly higher energy per particle as a function of density is found
here. It is also found that the natural incorporation of many body forces in the QMC
model tends to produce a somewhat stiffer PNM EoS above saturation density than
other models including 3-body forces.

In Ch. 5, we apply the Hartree-Fock QMC model developed in this chapter to
matter in generalised beta equilibrium and investigate the static properties of cold
neutron stars.
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5
Hartree–Fock QMC Applied to Neutron

Stars

In this chapter we study cold, asymmetric nuclear matter (ANM) which is expected to
exist in the outer core of cold neutron stars. We supplement the QMC model developed
in Ch. 4 with non-interacting leptons to study matter in both beta-equilibrium and
generalised beta-equilibrium (allowing for hyperons as well as nucleons). Some portions
of the material presented in this chapter are adapted from Whittenbury et al [244].

5.1 Generalised Beta Equilibrium Matter and Neu-

tron Stars

As the density of hadronic matter increases beyond saturation density nuclei dissolve to
form an interacting system of nucleons and leptons. If this system survives longer than
the time scale of weak interactions, τ ≈ 10−10 s, it reaches equilibrium with respect
to beta decay n → p + e− + ν̃ and its inverse . As these particles are fermions they
obey the Fermi-Dirac distribution law and the Pauli exclusion principle. In the zero
temperature limit, this distribution becomes a step function. The Fermi sea of each
particle species has each level occupied by 2S + 1 = 2 particles, one spin up and the
other spin down. The single particle states with energy less than the corresponding
chemical potential will be filled and those above will be left unoccupied. The level which
separates the occupied and unoccupied regions is called the Fermi level and has energy
equal to the chemical potential, the energy needed to add one more particle of this
type to the system. Fourier transforming to momentum space these occupied states lie
inside a sphere of radius pF, where pF is the Fermi momentum. Increasing the density
of a particle increases its chemical potential. When the total baryonic density reaches
about 2 – 3 ρ0 and because baryons obey the Pauli exclusion principle, it becomes
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energetically more favourable to create a slow and more massive hyperon, rather than
another energetic nucleon. A generalised beta equilibrium (GBEM) develops with
respect to all reactions involving either weak or strong interactions, that leads to the
lowest energy state. Only two quantities are conserved in GBEM—the total charge
(zero in stars) and total baryon number. Strangeness is conserved only on the time
scale of strong interaction, τ ≈ 10−24s, and lepton number is conserved only on the
time-scale of tens of seconds, because of the diffusion of neutrinos out of the star [111].

In neutron stars the leptons, e− and µ− must be included in addition to the hadrons.
Non-interacting leptons are described by the following Lagrangian density

LLept =
∑
`

L` , (5.1.1)

where L` = Ψ̄`(iγµ∂
µ−m`)Ψ` and ` ∈

{
e−, µ−

}
. Tau leptons are not considered as they

are too massive to be found in neutron stars. As we are considering old neutron stars,
neutrinos are assumed to have radiated out of the star, so they can also be neglected.
For the lepton masses we use their experimental values [256]. The corresponding lepton
energy density and number density are given by the usual formulas for a degenerate
Fermi gas [111]

εl =
2

(2π)3

∫
|~k|≤k`F

d3k

√
~k 2 +m2

` , ρ` =
(k`F )3

3π2
. (5.1.2)

The total energy density of the GBEM is then given by the sum of the hadron and
lepton energy densities, εtotal = εhadronic + ε`. Similarly the total pressure is the sum of
the hadron and lepton pressures and can be calculated as

Ptotal = ρ2 ∂

∂ρ

(
εtotal

ρ

)
=
∑
i,`

µiρi − εtotal . (5.1.3)

To describe GBEM, we need determine the lowest energy state under the two con-
straints of baryon number conservation,∑

i

ρv
i = ρ (5.1.4)

and charge neutrality, ∑
i

Qiρ
v
i −

∑
`

ρ` = 0 , (5.1.5)

we use the standard method of Lagrange multipliers. The equilibrium configuration of
the system is then determined variationally by,

δ [εaux] ≡ δ

[
εtotal [{ρv

i } , {ρ`}] + λ

(∑
i

ρv
i − ρ

)
+ ν

(∑
i

Qiρ
v
i −

∑
`

ρ`

)]
= 0 ,

(5.1.6)
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where εaux is an auxiliary energy density function introduced to implement the two
constraints. From the equilibrium condition, Eq. (5.1.6), we obtain the following system
of equations:

∂εaux

∂ρv
i

=
∂εtotal

∂ρv
i

+ λ+ νQi = 0 , (5.1.7)

∂εaux

∂ρ`
=

∂εtotal

∂ρ`
− ν = 0 . (5.1.8)

In this system of equations, it is possible to eliminate the Lagrange multipliers and re-
express each equation in terms of the chemical potentials of the participating particles.
It can be shown that there are as many independent chemical potentials as the number
of conserved quantities. The two independent chemical potentials are typically taken
to be the neutron and electron chemical potentials. Chemical potentials of all the other
species in GBEM are then expressed via a relation

µi = Biµn −Qiµe , (5.1.9)

where the baryon number, Bi, is 0 or 1 and the charge number, Qi, is 0 or ±1. The
system of equations therefore reduces to essentially three equations, depending on the
charge of the particle. For negatively charged, neutral and positively charged baryons
present in the system, we have

µ− = µn + µe , (5.1.10)

µ0 = µn , (5.1.11)

µ+ = µn − µe , (5.1.12)

respectively.
In equilibrium, some of the particle densities may be zero and therefore the equa-

tion generated by their independent variation is no-longer included in the system of
equations to be solved. In particular, if the neutron star becomes deleptonised at some
density, i.e leptons disappear, we run into a problem in using Eqs. (5.1.10–5.1.12) as
it does not make sense to use the the electron chemical potential when they are not
present. To handle this possibility and consistently implement the two constraints we
need to solve the full system of equations including the Lagrange multipliers. We solve
the following system of equations

0 = µi +Biλ+ νQi , (5.1.13)

0 = µ` − ν , (5.1.14)

0 =
∑
i

Biρ
v
i − ρ , (5.1.15)

0 =
∑
i

Biρ
v
iQi +

∑
`

ρ`Q` , (5.1.16)

to obtain the number densities for each particle (i ∈ {n, p,Λ,Σ−,Σ0,Σ+,Ξ−,Ξ0} and
` ∈ {e−, µ−}), ρv

i , as well as the Lagrange multipliers (λ, ν). At Hartree–Fock level,
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the following formulas to numerically evaluate the chemical potentials, must be used
to ensure we encapsulate the Fock contribution to the energy densities correctly

µi =
∂εtotal

∂ρv
i

, µ` =
∂ε`
∂ρ`

=
√
k2 +m2

` . (5.1.17)

The number of equations that must actually be solved from Eqs. (5.1.13–5.1.14) at
any particular density varies, depending on how many of these particles are energeti-
cally possible. To determine which equations must be included and those that can be
dropped from the system, we need a test for each particular particle to find out if it
is energetically favourable. To do this we need to first evaluate the chemical potential
for each particle. We do this numerically using a simple finite difference formula for
the derivative. When the particle is not already present in the system, we use a small
number density, a threshold number density, to evaluate the chemical potential. This
is done to allow us to determine when the corresponding equation for the particle is
added to the system of equations. The equations that are included are those which have
a sign change in their corresponding equation (Eqs. (5.1.13–5.1.16)). This also allows
us to easily visualise why, or why not, a particle may appear, since this corresponds
to the energy needed to create the minimum threshold number density of that particle
species at that density. As the total baryonic density is incremented, this is checked
for each particle that is not already present in the system. If the species fraction of
a particle already present in the system drops below a small cut-off value then the
equation is removed from the system.

The EoS of GBEM is not valid in the outer regions (crust) of the star, where
nuclei and nuclear processes become dominant. Following the customary procedure, we
introduce a smooth transition between our EoS in GBEM and the standard low density
EoS of Baym, Pethick and Sutherland (BPS) [271] at low density (ρ ∼ 10−2 fm−3).

In order to calculate neutron star properties, such as the total gravitational mass,
M(R), and the baryon number, A(R), within the stellar radius R, we solve the TOV
equations [219, 220, 272] for hydrostatic equilibrium of spherically symmetric (non-
rotating) matter (see Ch. 3). Using the EoS calculated here, these differential equations
(Eqs. 3.1.6–3.1.8) are integrated using a Runge-Kutta-Cash-Karp algorithm.

5.2 Numerical Results and Discussions

In Fig. 5.1.1 we show the EoS of GBEM with various parameter variations. The
kinks in pressure appear at hyperon thresholds. A comparison between calculations
for either Hartree alone, Hartree – Fock with only the Dirac piece of the coupling to
vector mesons, or the full model highlights the importance of the Fock terms at high
density. As compared to the EoS of matter in which the hyperons are not included
above their natural thresholds and nucleons are assumed to be the only baryons up
to densities ∼ 5–6 ρ0, the pressure in GBEM increases with density more slowly. It
is challenging to produce reasonable scenarios where the empirical constraints are met
and the pressure still increases fast enough to support high mass, cold neutron stars,
as will be discussed below.
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Figure 5.1.1: GBEM equation of state. Kinks occur at significant hyperon threshold
densities. The divergences between the “Hartree Only” QMC parametrisation and the
Hartree–Fock scenarios highlights the importance of Fock terms at high density. The
“Nucleon only” BEM EoS is added for a comparison.

In Fig. 5.1.3 the particle content of GBEM matter and corresponding Fock energy
contributions is displayed for three scenarios, “Standard”, “Eff. Proton Mass” and
“Λ = 2.0, gσY × 1.9”. We observe that, in all scenarios, at low density we have pre-
dominantly neutrons, which are then isotopically enriched by the creation of protons.
To maintain charge conservation, electrons appear at the same density. As density in-
creases, the electron chemical potential rises and at ∼ 0.14 fm−3 it reaches the muon’s
mass, making it energetically favourable to create muons. At higher densities, non-
conservation of strangeness leads to the creation of hyperons from nucleons. In the
“Standard” scenario, the first hyperon to appear is Σ−, at 0.46fm−3, followed by Ξ− at
0.47fm−3. The Σ− is quickly replaced by the Ξ−, which is then followed by the appear-
ance of Λ at 0.74fm−3 and then Ξ0 at 0.97fm−3. Since the latter is above the maximum
density reached in any of our realistic model variations it is largely irrelevant. We show
in Fig. 5.1.2 that the Λ chemical potential approaches and meets the neutron chemical
potential, meaning that it is energetically favourable for it to appear. On the other
hand, for the Σ− we see that at low density it is more favourable than the Ξ−, while
beyond ∼ 0.4 fm−3 this is no longer so.

The static neutron star properties obtained from solving the TOV equations,
Eqs. (3.1.6–3.1.8), is presented in Table 5.3.1 for each variation of the QMC model
investigated in Ch. 4. Table 5.3.1 also includes the value of incompressibility, slope
of the symmetry energy and the hyperon optical potentials evaluated at ρ0 in SNM
for easy comparison. The relationship between stellar mass and radius is shown in
Fig. 5.2.1.
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Figure 5.1.2: (a) Neutral baryon chemical potentials as a function of baryon number
density for the standard scenario. (b) Negative charge baryon chemical potentials as a
function of baryon number density for the standard scenario.

Varying the value of the cut-off Λ between 0.9 –1.3 GeV, effectively increasing the
strength of the Fock terms, we observe an increase in the maximum mass of the neutron
star by ∼ 8%. Recall from Ch. 4, Sec. 4.12, this increase in the cut-off also corresponds
to small increases in both K0 and L0, but they still remain within empirical limits.

However, once the full Fock terms are included, the results of the standard scenario,
even with the variable Λ, are not consistent with the values of the phenomenological
hyperon optical potentials extracted from experiments. As the saturation of nuclear
matter is a delicate balance between attraction and repulsion generated by the mesons,
the ω coupling has increased in response to the additional attraction produced by the
Fock terms, especially the ρ-tensor contribution. This change in the ratio of the scalar
to vector coupling, leaves the Λ hyperon effectively unbound. This effect of an increase
in the vector coupling is illustrated by the larger maximum neutron star masses, which
also correspond to poor results for the hyperon optical potentials.

In the work of Miyatsu et al. the scalar couplings from the QMC model were
not used. Instead they rescaled the scalar coupling of each hyperon to obtain an
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Figure 5.1.3: (Top) Fock energy density contributions and (bottom) species fraction as
a function of baryon number density in GBEM, for the “Standard” (a,a’), “Eff. Proton
Mass” (b,b’) and the “Λ = 2.0, gσY × 1.9 (c,c’) scenarios. The corresponding EoSs are
shown in Fig. 5.1.1

acceptable optical potential. We consider the possibility of rescaling the scalar coupling
reasonable, as the bag model used is a very simple model of the baryons in which only
the light quarks participate in the interaction. An amplification of only the hyperon
scalar couplings of 30% is considered in “Λ = (1.1, 1.3), gσY × 1.3”. This improves the
predictions of the optical potentials, binds the Λ hyperon and maintains a repulsive
potential for the Σ− hyperon. In doing this the optical potentials are closer to the values
extracted from experimental studies of hypernuclei, but the EoS of β-equilibriated
matter is softer, Λ and Σ− both appear. The increased attraction for the hyperons
only has a minor effect on the maximum mass of the neutron star. In this scenario
we increase the form factor cut-off and hence the strength of the Fock terms forcing
the vector coupling to become larger and then rescale the hyperon scalar coupling. In
this very phenomenological scenario, we meet both the constraints of phenomenological
hyperon optical potentials and high mass neutron star observations.

In the scenario “Eff. Proton Mass” the ratio of tensor to vector coupling is rescaled
using the effective proton mass in Eq. (4.8.6) as opposed to the free proton mass. This
is a naive way to introduce a scalar dependence into the Pauli term coupling. This
substitution effectively increases the strength of the Pauli term due to the reduction
of the proton mass. The increased attraction produced leads to an increase in the ω
coupling. The change in strength of the tensor coupling has a significant impact on the
composition. Because of the increased ω coupling, the maximum mass of the neutron
star is significantly increased, but the hyperon optical potentials remain at variance
with expected values. This particle content is different from our standard scenario
and most other models, which generally find that either the Λ or Σ− appears first.
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Figure 5.2.1: Gravitational Mass versus radius relationship for various scenarios de-
scribed in the text. The black dots represent maximum mass stars and the coloured
bars represent observed pulsar constraints.

The increased strength of the tensor contribution, and hence attraction, has increased
the vector coupling and as a consequence the Λ is not bound at saturation density in
symmetric nuclear matter. This combined with the attraction from the Fock terms for
the Ξ’s makes them more energetically favourable than Λ or the Σ−.

Considering the extreme scenario “Λ = 2.0, gσY × 1.9”, even though the Λ feels a
significant attraction at saturation density, it appears that it cannot compete with the
attraction generated by the Fock terms at high density, specifically the tensor part for
the Ξ. The contributions of the Fock energies is more significant and the composition
is similar to “Eff. Proton Mass”.

The contribution to the mean scalar field arising from the Fock terms is incorporated
in the cases denoted “Fock δσ̄” and “Eff. Proton Mass + δσ”. When applied to neutron
star properties it negligibly increases the maximum mass in our baseline scenario and
increases it by a few percent when a scalar dependence is introduced into the Pauli
term, to just below 2M�.

Purely as a test of the effect of a variation in the tensor couplings we consider the
scenario “Increased fρN/gρN”, where we arbitrarily take the ratios of tensor to vector
couplings of all baryons from the Nijmegen potentials (Table VII of Ref. [258]). In
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this scenario a larger value of fρN/gρN = 5.7 is used. These couplings were also used
by Miyatsu et al. [245, 255]. This variation, denoted “Increased fρN/gρN”, produced
an EoS for GBEM which was practically indistinguishable from our standard result

In scenarios “Dirac only, Hartree only and Nucleon only’ we show results of the
QMC calculation with the same parameters as the standard set but leaving out the
Pauli part of the Fock term, the full Fock term and the hyperons, respectively. These
results are particularly useful for understanding of the role of individual terms in the
QMC Lagrangian.

At the Hartree level the “hyperfine” interaction from one gluon exchange makes the
Λ more energetically favourable than the Σ−, providing a source of attraction for the
former and repulsion for the latter. This has been shown at the Hartree level in the
QMC model to suppress the appearance of Σ− hyperons in GBEM matter [275]. This
can also be considered a qualitative explanation for the absence of medium to heavy
Σ hypernuclei [188].

The last four scenarios in Table 5.3.1 document the effect of changes in the value of
the free nucleon radius and the evaluation of the symmetry energy from the difference
formula Eq. (4.11.1) “App.’ and from the second derivative the the energy per particle
“S0 = 30.0’. Neither effect changes significantly the properties of GBEM matter and
neutron stars.

We find that the predicted maximum masses for several of the scenarios, lie very
close to the constraints set by Demorest et al. [202] of a (1.97 ± 0.04) M� pulsar, as well
as the new constraint set by PSR J0348+0432 with a mass of 2.03 ± 0.03 M� [203]. In
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each of the scenarios presented here, the radii of the maximum stellar mass solutions
are somewhat large, but because of the current difficulties in reliably measuring radii
we do not consider this a problem. They are somewhat larger than those extracted
from recent observations of Type I X-ray bursters (see e.g. Refs. [197, 276]). Extraction
of radii from observation is rather complicated and there are still many questions to
be addressed. For example, Steiner et al. [197] analyzed observations of six low mass
X-ray binaries (emitting X-rays regularly) and their statistical analysis yielded R in
the range 10–12 km for masses around 1.6M�. However, the uncertainty in the relation
between the extracted photospheric radius and the actual radius of the star remains
large. The results of Guillot et al., namely R = 9.1+1.3

−1.5 km (90%-confidence), are
based on observations of five quiescent low mass X-ray binaries (which emit X-rays
only occasionally) under the assumption that the radius is constant for a wide range
of masses.

Whilst the observations Refs. [202, 203] provide constraints on high mass neutron
stars, the observation of the double pulsar J0737-3039 and its interpretation [274] offers
a constraint on the neutron star EoS in a region of central densities ∼ 2 – 3 ρ0. The con-
straint concerns the ratio between the gravitational and baryonic mass of the star. The
gravitational mass of pulsar B is measured very precisely to be Mg = 1.249± 0.001M�
and the baryonic mass depends on the mode of its creation, which can be modelled. If
pulsar B was formed from a white dwarf with an O-Ne-Mg core in an electron capture
supernova, with negligible loss of baryonic mass during the collapse, the newly born
pulsar should have the same baryonic mass as the progenitor star. Podsiadlowski et
al. [274] estimated the baryonic mass of the pulsar B to be between 1.366 and 1.375
M�. Another simulation of the same process, by Kitaura et al. [273], gave a value for
the baryonic mass of 1.360 ± 0.002 M�. We show in Fig. 5.2.2 the QMC result, which
supports the model of Kitaura et al., accepting some small loss of baryonic mass during
the birth of pulsar B.

5.2.1 Comparison with Other Models

The Hartree – Fock calculation in Ref. [277] differs considerably from that presented
here, as well as from that in Refs. [245, 255, 278, 279]. The first and major difference
is that the tensor interaction of the baryons was ignored there, whereas in Refs. [245,
255, 278, 279] and in our work it is found to have a very significant effect. A second
difference between Ref. [277], our work, and Refs. [245, 255, 278, 279] is that in their
preferred QMC scenario (QMC-HF3) they artificially adjust a parameter, C, which is
related to the scalar polarisability, to obtain a lower value for the incompressibility.
This represents a dramatic change in the model.

The masses of the baryons in the QMC model are determined by the bag equations
and the scalar coupling is calculated directly from the density dependence of the baryon
mass in-medium. Thus, changing C, or equivalently the scalar polarisability, changes
the mass and the density dependent coupling in a manner which is inconsistent with the
traditional form of the QMC model [187]. In this manner the many body interaction
is also being changed through the density dependent scalar coupling. Their QMC-HF3
variation gives an incompressibility of K = 285 MeV and a very low prediction for the
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maximum mass of neutron stars, M = 1.66 M�. In our Dirac-only variation we find a
slightly larger value for the incompressibility, K = 294 MeV with a maximum stellar
mass of M = 1.79 M�. Other variations were considered in Ref. [277] where they
do not modify C: one where they calculate fully relativistic Fock terms, and another
where they make a non-relativistic approximation to the Fock terms. These variations
both produce maximum masses of neutron stars of M = 1.97 M�.

References [245, 255, 278, 279] carry out a relativistic calculation in which they
treat the Fock and Hartree terms on the same level. More precisely they calculate self-
energy contributions arising from both terms and these self energies modify the baryon
mass, momentum and energy. They include the tensor interaction, subtract contact
terms, and consider two variations of the bag model. In their first paper [245] they used
much larger values for the tensor couplings without form factors. In the later paper
[278] they include the effect of form factors, ignoring effects of meson retardation (as
we do) but with a lower cut-off mass, i.e. Λ = 0.84 GeV. The latter had the effect of
keeping the incompressibility from being too large. Their conclusions are very similar
to our own, in that they find that the tensor terms provide a source of attraction and
that overall the Fock terms enhance the maximum neutron star mass.

The maximum stellar masses in their first paper [245] are larger than those in their
second paper [278], almost certainly because the inclusion of the form factor decreases
the effect of the Fock term at high density. They consider two variations of the QMC
model: one with, and one without the pion contribution in the bag (CQMC) which
tends to give a slightly stiffer EoS, because of its effect on the baryon masses. For QMC
they obtain M = 1.86 M�, R = 11.2 km, and for CQMC M = 1.93 M�, R = 11.5 km
for the maximum stellar mass solutions. Despite the differences in how we handle
the Fock terms and their use of larger tensor couplings and more phenomenological
hyperon couplings, we are led to the same conclusion about the importance of the
tensor contribution. We also find a very similar particle content in scenarios where the
Fock terms are quite strong, such as the “Eff. Proton Mass” and “Λ = 2.0, gσY × 1.9”
scenarios, where the Ξ− is the first hyperon to appear.

5.3 Summary

In this chapter, we began by supplementing the QMC model developed in Ch. 4 with
non-interacting Fermi gases of electrons and muons. It was then explained how the
lowest energy state of matter relevant to neutron stars is determined using the method
of Lagrange multipliers. A system of equations relating the chemical potentials and
number densities of relevant particles was derived. These equations were solved nu-
merically for the EoS of GBEM, which was then used as input to integrate the TOV
equations.

Even at densities above three times nuclear matter density, the nucleon Fock terms
are found to contribute significantly to the EoS and the corresponding attraction is
what is responsible for the increased pressure and larger maximum stellar masses in
several scenarios. This can be seen in Fig. 5.2.1, where there is a clear transition
from a Hartree QMC calculation to a Hartree–Fock calculation with no tensor inter-
action (Dirac-only; no Pauli term), to our “Eff. Proton Mass” calculation (Dirac and
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Pauli (with scalar dependence) terms). In these three variations, as well as those with
increasing form factor mass, Λ, the maximum stellar mass increases because of the
increased vector coupling and pressure coming from the Fock terms. This increased
pressure arises mainly from the ρ meson contribution. As we can readily see in Ta-
ble 5.3.1 and Fig. 5.2.1, the value of Λ cannot be varied far in the “Eff. Proton Mass”
calculations. Indeed, in that case, the incompressibility is already as high as it can be.
The maximum neutron star mass, for our “Standard” scenario is approximately the
same as the “Dirac Only” scenario because of the change in composition, where in the
latter the appearance of Σ− is avoided and only the Λ and Ξ− appear followed by the
Ξ0. Even with the brief appearance of an additional hyperon in our baseline scenario,
the value of Mmax is still slightly larger because of the tensor interaction. We see that
the maximum neutron star mass, for the case of nuclear matter in beta-equilibrium
where hyperons must appear, lies in the range 1.80 to 2.07M�.

The EoS and the maximum masses of the corresponding neutron stars are insensitive
to the choice of the larger ρ tensor couplings used, for example, by Miyatsu et al. [245].
Similarly, modest variations in the radius of the free nucleon have only very minor
effects on these quantities. Finally, we note that the correction (δσ̄) to the scalar mean
field arising from the Fock terms has a negligible effect on the incompressibility in our
baseline scenario. On inclusion of a naive scalar dependence into the Pauli term the
incompressibility decreases by 12 MeV, yet other observables remain largely unaltered
by this addition.

This, plus the dependence of the incompressibility and maximum mass on Λ , leads
us to conclude that the Hartree-Fock model used here with σ, ω, ρ and π mesons
can only reproduce nuclear matter properties, phenomenological hypernuclear optical
potentials and massive neutron star observations if there is significant rescaling of
the hyperon coupling constants. Allowing for the rescaling of hyperon couplings we
conclude that the maximum mass allowed in the model lies in the range 1.8− 2.1M�.

It is the treatment of the lightest mesons that is the most important, and the
inclusion of heavier mesons would necessarily be more model dependent. For this
reason, in this work we have restricted ourselves to just σ, ω, ρ and π mesons. The
model could be extended to include mesons containing strange quarks, of which the
next lightest mesons are K(495) and K∗(895). These mesons will induce mixing in
the baryon octet, possibly changing the composition of matter in generalised beta-
equilibrium. Heavier mesons such as the hidden strangeness vector meson φ(1020)
have been considered in other works Ref. [241, 242], which have found that they can
produce extra vector repulsion delaying the onset of hyperons. This extra repulsion is
solely for baryons with non-zero strangeness and in this model, this exchange will allow
the strange quark to participate in the interaction rather than being just a spectator.
It should be noted that with every new meson that is included more parameters must
be introduced into the model.

Purely for comparison purposes, we also include a nucleon-only scenario, in which
hyperons are artificially excluded. In this case the EoS is increasingly stiffer at densities
above 0.4 fm−3, leading to a large maximum stellar mass of 2.10 M�, consistent with
many other nucleon-only models.
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We stress that the QMC model does not predict a significant abundance of Σ hyper-
ons at any density where the model can be considered realistic and they are completely
absent in model variations compatible with large neutron star mass observations. This
is in contrast to a number of other relativistic models which do predict the Σ threshold
to occur, even prior to that of the Λ [280, 281]. We note that Schaffner-Bielich [280]
considered a phenomenological modification of the Σ potential with additional repul-
sion, which significantly raised its threshold density. In the case of the QMC model
the physical explanation of the absence of Σ-hyperons is very natural, with the mean
scalar field enhancing the repulsive hyperfine force for the in-medium Σ (recall that
the hyperfine splitting, which arises from one-gluon-exchange, determines the free Σ–Λ
mass splitting in the MIT bag model).

It is worth remarking that upon inclusion of the tensor coupling, the proton fraction
increases more rapidly as a function of total baryon density. This is likely to increase
the probability of the direct URCA cooling process in proto-neutron stars. As a further
consequence, the maximum electron chemical potential is increased in this case, which
may well influence the production of π− and K̄ condensates. Changes to the Λ threshold
(it occurs at higher density with lower maximum species fraction) reduce the possibility
of H-dibaryon production as constrained by beta-equilibrium of the chemical potentials.

For the matter considered in this chapter we have taken the view that hadrons
remain the relevant degrees of freedom. Transitions to quark matter have been studied
by many authors, see Refs.[282–284] for recent accounts. Such a transition may indeed
be possible in the interior of neutron stars. We will investigate quark matter using the
NJL model in Ch. 6 and the possibility of such a transition in Ch. 7.

In summary, taking into account the full tensor structure of the vector-meson-
baryon couplings in a Hartree–Fock treatment of the QMC model results in increased
pressure at high density – largely because of the ρN tensor coupling – while maintain-
ing reasonable values of the incompressibility at saturation density. The conceptual
separation between the incompressibility at saturation density and the slope of the
symmetry energy or ‘stiffness’ at higher densities is critical. It is the latter that leads
to neutron stars with maximum masses ranging from 1.8 M� to 2.1 M�, even when
allowance is made for the appearance of hyperons. This suggests that hyperons are
very likely to play a vital role as constituents of neutron stars with central densities
above three times nuclear matter density.
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Model/
K0 L0 UΛ UΣ− UΞ− Mmax R ρmax

c

Scenario [MeV] [MeV] [MeV] [MeV] [MeV] [M�] [km] [ρ0]

Standard 273 84 3 26 5 1.80 11.80 5.88
Λ = 1.0 278 85 10 32 8 1.84 11.86 5.82
Λ = 1.1 283 86 16 39 11 1.88 11.94 5.70
Λ = 1.2 286 87 23 46 15 1.92 12.03 5.60
Λ = 1.3 289 88 29 53 18 1.95 12.10 5.52
Λ = 1.1, gσY × 1.3 283 86 -15 14 -4 1.84 11.91 5.78
Λ = 1.3, gσY × 1.3 289 88 -3 28 3 1.92 12.01 5.66
Λ = 2.0, gσY × 1.9 302 92 -29 20 -7 2.07 12.24 5.38
Increased fρN/gρN 267 81 6 27 6 1.77 11.61 6.14
Fock δσ 273 84 4 26 5 1.81 11.82 5.86
Eff. Proton Mass 297 101 11 41 10 1.94 12.20 5.48
Eff. Proton Mass, Λ = 1.1 311 111 34 67 22 2.07 12.57 5.08
Eff. Proton mass + δσ 285 109 17 49 13 1.99 12.22 5.46
Dirac Only 294 85 -23 4 -8 1.79 12.33 5.22
Hartree Only 283 88 -49 -23 -21 1.54 11.73 6.04
Nucleon Only 273 84 3 26 5 2.10 11.08 6.46
R = 0.8 277 85 6 25 5 1.83 11.88 5.80
App. S0 = 32.5 275 82 2 24 4 1.80 11.82 5.82
App. S0 = 30.0 280 74 -4 19 1 1.81 11.82 5.76
S0 = 30.0 278 76 -2 21 2 1.81 11.81 5.80

Table 5.3.1: Selected nuclear matter properties, hyperon optical potentials and neu-
tron star properties determined for our standard case (for which Λ = 0.9 GeV, and
Rfree
N = 1.0 fm) and the effect of subsequent variations in which differences from the

standard parameter set are indicated in column 1. The tabulated quantities at satura-
tion are the incompressibility K0, the slope of the symmetry energy, L0, and hyperon
optical potentials, respectively. Tabulated neutron star quantities are the stellar ra-
dius, maximum stellar mass and corresponding central density (units ρ0 = 0.16 fm−3).



6
Quark Matter in the Nambu–Jona-Lasinio

Model

In this chapter, we introduce the three flavour Nambu–Jona-Lasinio (NJL) model and
use it to study quark matter. The quark matter model presented here will then be
used to investigate hybrid stars in Ch. 7.

6.1 A Brief Introduction to the NJL Model

The NJL model is an effective model of the strong interaction named after Nambu and
Jona-Lasinio who introduced it in 1961 [285, 286]. The original model was formulated
in terms of nucleons as a local effective interaction inspired by the BCS theory of super-
conductivity [287, 288]. In analogy to the energy gap of a superconductor, the mass of
the nucleon is generated by the Cooper pairing of a nucleon and anti-nucleon, thereby
dynamically breaking chiral symmetry. This is its greatest selling point, its ability to
model the breaking of chiral symmetry dynamically by spontaneously generating the
nucleon mass. At this time quarks were yet to be discovered, so the model was formu-
lated at the hadronic level. Later it was redeveloped in terms of quarks to model low
and intermediate energy QCD. It has since been used for numerous applications from
parton distribution functions [289] to quark matter in compact stars (see for example
Refs. [282, 283, 290–305]). A number of reviews are available on the NJL model and
its applications [306–311].

As an effective model of QCD it introduces simplifications to make calculations
tractable. The NJL model assumes that gluons are only important over very small
length scales and can be safely integrated out forming the local (contact) four Fermi
interaction between quarks, see Fig.(6.1.1). There are many NJL–type models available
and their Lagrangians take the general form

LNJL = ψ̄(i/∂ − m̂)ψ + Lint (6.1.1)
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−→ (6.1.4)

Figure 6.1.1: Gluons are integrated out, leading to an effective four–point quark inter-
action in the NJL model.

where ψ is a multi-component quark spinor and ψ̄ is its adjoint, m̂ is a current quark
mass matrix and the interaction part of the Lagrangian can have the general form1

Lint =
∑
α

Gα(ψ̄Oαψ)2 . (6.1.2)

A general interaction vertex, Oα, can be decomposed into the three separate spaces of
Dirac (spin), colour and flavour, which can be expressed mathematically as the tensor
product of the vertex structure in each space

Oα = ODirac
α ⊗OColour

α ⊗OFlavour
α . (6.1.3)

Upon integrating out gluons the local colour symmetry of QCD is reduced to a
global symmetry and confinement is lost. Moreover, from simple dimensional analysis
of the interaction Lagrangian one can see that the dimension of the couplings is [Gα] =
(Mass)−2 and therefore NJL models are not renormalizable. Lack of confinement and
renormalizability are the two major drawbacks of the model.

Unrenormalizable theories are still useful and information can be obtained through
the process of regularization, whereby a cut-off is introduced setting the scale of the
model. There are many regularization schemes in common use, ranging from the
simple non-covariant three momentum cut-off to covariant schemes such as the four-
momentum cut-off, Pauli-Villars, dimensional and Schwinger’s proper time regular-
ization [307, 310]. In this thesis we will make use of the latter with comparisons to
the more common and simpler three momentum cut-off regularization. Of course, one
would hope that the final results will be scheme independent, but in an unrenormaliz-
able model this may not be true. In the absence of a physically preferred regularization
scheme one should make a comparison between schemes and choose the scheme which
best preserves the relevant symmetries and physics. Each of the schemes have their
advantages and disadvantages, see Ref. [307, 310] for details.

The NJL model possesses the ability to describe the spontaneous breaking of chiral
symmetry. It is well known that the spontaneous breaking of a symmetry is intimately
connected to the appearance of bosons through Goldstone’s theorem. In a purely
fermionic model, like the NJL model, these bosons must be bound states. The lack
of a confinement mechanism in the NJL model is a real drawback, although it has
been argued in the literature [314] that the introduction of an infra-red cut off in the

1Multiquark interactions have also been developed, see for example Ref. [312, 313].
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the proper time regularization scheme can simulate confinement. By imposing a low
energy cut-off, one crudely enforces one of the key features of confinement—no non-
physical decays to free quarks occur. This additional cut-off has been seen to have
important consequences for the saturation of nuclear matter and preventing what is
called the chiral collapse [315]. In the absence of a genuine confinement mechanism
all is not lost. Bosons can be interpreted as a quark and anti-quark propagating
together for some time producing a resonance and then decaying. The poles in the
quark–anti-quark scattering matrix can then be used to identify their masses. One
common procedure for modelling mesons in the NJL model solves the Bethe-Salpeter
equation for the scattering T-matrix in the random phase approximation (RPA). They
can also be introduced as auxiliary fields using the exact transformations developed by
Stratonovich [316] and Hubbard [317] in the path integral formalism.

Quarks are generally treated at the mean field level, while to consider mesons we
must work at a level which includes the mean field solution plus higher order quantum
corrections (generally RPA in the BSE approach). The mean field approximation is
essentially a semi-classical approximation and for particles not already present in the
classical action (i.e. hadrons) it is difficult to see their origin. In the models mentioned
earlier, the QMC and Walecka models, the mean field approach is sufficient since the
mesons and baryons both have fields present in the Lagrangian, but with the NJL
model only quarks are present. For this reason, it is more difficult. Hadrons can
be understood as poles in the four and six point Green’s functions of the quarks,
respectively for mesons and baryons. As indicated above, in this way they can be
studied using the BSE for mesons [306–311], or the Faddeev equation for baryons [318–
320], within some approximation scheme. Hadronic masses are then determined by the
position of the poles in the corresponding T-matrices and their hadron-quark couplings
by the expansion of these scattering matrices about the poles.

Despite these descriptions of hadrons in the NJL model, it is still non-confining
in the sense that hadronic bound states do not remain confined clusters of quarks
and anti-quarks. They transition to virtual resonant states which can dissociate into
free (unbounded not necessarily non-interacting) quarks when the hadronic masses are
greater than the threshold for the continuum of states of free quarks, which occurs as a
result of partial chiral restoration. This shortcoming of the NJL model will not be an
issue when modelling quark matter at high density, where the quarks will be considered
to be de-confined.

The formation of bound states is a purely non-perturbative phenomenon and cannot
be understood by the usual perturbative approach used in high energy particle physics,
where a series expansion is performed in powers of the coupling constant. We require
a different calculational approach that allows us to obtain this non-perturbative infor-
mation. Here is an example where the path integral formalism really shines. The basic
formalism and results of the path integral approach is summarised in the appendices. It
accentuates the connection between the quantum and classical worlds. Combing this
formalism with techniques developed in the analysis of integrals the transition from
quantum to classical can be studied and furthermore non-perturbative information can
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be obtained. We understand the composite nature of mesons from QCD and experi-
ment. Using this knowledge we can introduce auxiliary fields with the correct quan-
tum numbers through Hubbard-Stratononvich transformations, essentially furnishing
us with a way to understand mesons as collective and composite objects through these
new fields.

Typically, one starts with the NJL generating functional then does one or more
Hubbard-Stratonovich transformations by introducing new auxillary fields through a
slick decomposition of unity using a Gaussian integral. This replaces the quartic quark
interactions with a Gaussian fermion integral and a linear Yukawa coupling between
the fermion and auxiliary fields. After which a stationary phase analysis of the path
integral is performed, where the leading term, evaluated at the actions stationary
point, corresponds to the mean field result and the corrections about this stationary
point are related to meson fluctuations. This method provides us with the necessary
non-perturbative information.

In this way the NJL model is capable of reasonably describing the meson spec-
trum and low energy hadron phenomenology. In particular it satisfies several results
from current algebra, such as the Gell-Mann–Oaks–Renner and Goldberger–Treiman
relations [306, 307], preserving the key features of chiral symmetry.

6.2 A Simple and Less Intuitive Explanation of the

Mean Field Approximation

Even with models of QCD, calculations cannot in general be performed exactly—one
must resort to approximations. In this section we introduce the mean field approxi-
mation in a very simple, but somewhat less intuitive way, which glosses over certain
subtleties. Here we use the operator formalism, but in Sec. 6.4 we will explain how it
can be better understood and formalised more generally in the path integral formula-
tion of QFT. In this formalism it arises as a saddle point approximation to a generating
functional and one is also afforded a way to go beyond the mean field approximation
in a well defined way. Earlier in the introduction we introduced the mean field approx-
imation to the Walecka and QMC models. A similar procedure follows for the NJL
model with the exception that the model does not yet contain bosons in its Lagrangian,
so the fundamental fermions must be paired, bosonizing the model.

The mean field approximation can be introduced simply by writing the fermionic
bilinears as a bosonic mean field plus a small fluctuation term

ψ̄Oiψ = 〈ψ̄Oiψ〉+ δ(ψ̄Oiψ) , (6.2.1)

where our notation is
〈. . .〉 ≡ 〈Ψg.s.| : . . . : |Ψg.s.〉 (6.2.2)

and |Ψg.s.〉 is the ground state. Using Eq. (6.2.1) the quartic interaction terms in Lint

can be written as

(ψ̄Oiψ)2 = 〈ψ̄Oiψ〉2 + 2〈ψ̄Oiψ〉δ(ψ̄Oiψ) + (δ(ψ̄Oiψ))2 . (6.2.3)
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Neglecting squared fluctuation terms and using Eq. (6.2.1) for δ(ψ̄Oiψ) this simplifies
to

(ψ̄Oiψ)2 = 〈ψ̄Oiψ〉2 + 2〈ψ̄Oiψ〉(ψ̄Oiψ − 〈ψ̄Oiψ〉) (6.2.4)

= 2ψ̄Oiψ〈ψ̄Oiψ〉 − 〈ψ̄Oiψ〉2 . (6.2.5)

The pairing in Eq. (6.2.1) is said to be in the the direct channel.
In a local quartic interaction there are 3 possible ways to pair the fields. They can

be paired in the so called direct, exchange and Cooper channels. These three channels
are related to each other by Fierz transformations, see App. B.3. Thus if one was to
perform the mean field approximation by pairing in the direct channel starting from
one NJL Lagrangian which will give rise to one set of bosons, one could Fierz transform
to an equivalent Lagrangian obtaining a different set of bosons leading to a completely
different low energy approximation to QCD. In the next section we will develop an
NJL Lagrangian which is inspired by perturbative QCD leading to a Fierz invariant
Lagrangian from which we can perform the mean field approximation by pairing only
in the direct channel, side-stepping the need to calculate exchange terms explicitly.

6.3 A Fierz Invariant NJL Lagrangian Derived from

the Colour Current Interaction

In perturbative QCD one gluon exchange is important and it should therefore be a good
starting point for developing our NJL interaction Lagrangian. It is also important for
the “hyperfine” spitting of the Λ and Σ hyperons in the bag model. Approximately,
one gluon exchange can be described by the conserved current

Jaµ = ψ̄γµt
aψ , (6.3.1)

referred to as the colour current. In Eq. (6.3.1) we use ta to label the Gell-Mann
matrices of colour space, whereas later we use λb to label them in flavour space. Note
that the colour current interaction vertex actually has the structure of

OCol.Cur. = γµ ⊗ ta ⊗ 1F . (6.3.2)

This interaction vertex leads to the following current–current interaction

LCol.Cur.
int = −Gc

N2
c−1∑
a=1

Jaµ J
µ
a (6.3.3)

= −Gc

N2
c−1∑
a=1

ψ̄α,i,pψβ,j,qψ̄γ,k,rψδ,l,s

× [(γµ)αβ(γµ)γδ ⊗ (ta)ij(t
a)kl ⊗ (I)pq(I)rs] . (6.3.4)

The order of labels on spinors in Eq. (6.3.4) is the same as in vertex structure i.e Dirac,
colour, and then flavour. Greek letters for Dirac indices (µ, α, β, γ, δ) and Latin
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indices for symmetry group indices (a, i, j, k and l for colour and b, p, q, r, and s for
flavour). For example the matrix γµ, written explicitly with matrix indices is (γµ)αβ.
Using Eq. (B.3.1) and Eq. (B.3.2) to Fierz transform the colour current interaction
Lagrangian to the exchanged qq̄–channel and adding it to the original Lagrangian we
obtain

LCol.Cur.
int + FEx.(LCol.Cur.

int ) = LCol. Singlet
int + LCol.Octet

int , (6.3.5)

where

LCol.Singlet
int =

8

9
Gc

N2
F−1∑
b=0

[
(ψ̄λbψ)2 + (ψ̄iγ5λbψ)2 − 1

2
(ψ̄γµλbψ)2 − 1

2
(ψ̄γµγ5λbψ)2

]
(6.3.6)

is the portion of the Lagrangian containing the colour–singlet terms and

LCol.Octet
int = −1

6

N2
C−1∑
a=1

N2
F−1∑
b=0

[
(ψ̄taλbψ)2 + (ψ̄iγ5taλbψ)2 − 1

2
(ψ̄γµtaλbψ)2 − 1

2
(ψ̄γµγ5taλbψ)2

]
(6.3.7)

is the remainder containing the colour–octet terms. We assume that the quark matter
in a neutron star is locally in a colour neutral state, so that all matrix elements of
colour octet operators will be zero. Moreover, we will only have the so called chiral
and vector condensates, because of the assumption of charge conjugation and parity
invariance of the charge neutral ground state, which means that the matrix elements of
the pseudo–scalar and axial–vector operators are also zero. Even though the pseudo-
scalar terms do not contribute they are still necessary for the chiral symmetry of
the Lagrangian. In the mean field approximation the contribution of a pair of chiral
partners is rotationally invariant under chiral transformations, allowing us to essentially
ignore the pseudo-scalar contributions. Without loss of generality we can assume that
they do not contribute.

To be clear the Lagrangian density we will be investigating is

LNJL = ψ̄(i/∂ − m̂0)ψ +GS

N2
F−1∑
b=0

[(
ψ̄λbψ

)2
+
(
ψ̄iγ5λbψ

)2
]

−GV

N2
F−1∑
b=0

[(
ψ̄γµλbψ

)2
+
(
ψ̄γµγ5λbψ

)2
]

,

(6.3.8)

where m̂0 =diag(mu,md,ms). It is the same as the colour-singlet Lagrangian in
Eq. (6.3.6) with redefined couplings

GS =
8

9
Gc and GV =

GS

2
. (6.3.9)

Applying the simple mean field approximation to the Lagrangian density (Eq. (6.3.8))
in all channels, we can obtain the mean field Lagrangian. With the mean field La-
grangian, the effective (thermodynamic) potential can then be obtained by using it in
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the NJL generating functional and following the usual procedure. This procedure is
discussed in Sec. 6.4, where we will develop a better understanding of the mean field
approximation.

6.4 A Better Explanation of the Mean Field Ap-

proximation Using the Path Integral Formal-

ism

The simple mean field procedure, as described in Sec. 6.2, can be formalised using path
integral quantisation. This is done by introducing bosonic auxiliary fields, applying
Hubbard–Stratonovich transformations and performing a stationary phase analysis of
the generating functional.

In this and the following sections we will first use Hubbard–Stratonovich trans-
formations to bosonise the NJL model given by the Lagrangian in Eq. (6.3.8). After
this, a stationary phase analysis will be performed in the ~ → 0 limit, where we will
approximate the effective action to leading order and consider constant bosonic field
configurations resulting in the mean field effective potential. The obtained expressions
will be divergent requiring regularization, which will be implemented using Schwinger’s
proper time method [321]. Similar procedures for other regularization schemes can be
found in the literature [307, 310]. Including next-to-leading-order corrections will lead
to meson corrections to the effective potential, which will not be considered. Meson
phenomenology, i.e their propagators, decay constants and so on will follow simply
using this approach and is equivalent to solving the BSE in the RPA.

The ambiguity discussed in the simple form of the mean field approximation still
exists and is connected to the way in which these fields are introduced. The quartic
contact interaction of the fermion fields allows for 3 different possibilities to pair them,
which are generally referred to as the direct, exchange and Cooper channels. The
exchange channel is related to Fock contributions and the Cooper channel is related to
diquarks and superconducting phases of quark matter.

Performing Fierz transformations on the interaction terms in the quark–anti-quark
and quark–quark channels and adding these to the original Lagrangian allows one to
obtain a new Lagrangian from which one can perform the pairing in the mean field
approximation only in the direct channel, obtaining these extra contributions with no
extra work. For this purpose, in Sec. 6.3 we developed an NJL Lagrangian based on the
colour current interaction which is Fierz invariant in the quark–anti-quark channel. As
we are not interested in superconducting quark matter in this thesis we did not make the
Lagrangian Fierz invariant in the quark–quark channel, the so called Cooper channel.
Thus, the Lagrangian, Eq. (6.3.8), is only suitable for modelling non-superconducting
quark matter. We have chosen to refrain from studying the superconducting phases of
quark matter. These phases have been studied extensively using the NJL model (see
for example Refs. [290–292, 294] ) and are likely to be important for very high density
quark matter. Inner regions of neutron stars may exhibit some or all of these phases,
but as a first step we want to develop a non-superconducting NJL model to be used to
investigate phase transitions from Hartree–Fock QMC to NJL quark matter in neutron
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stars.
The generating functional for the NJL model is

ZNJL[η, η̄] =

∫
DψDψ̄ exp

(
i

∫
d4x

[
LNJL + η̄(x)ψ(x) + ψ̄(x)η(x)

])
, (6.4.1)

where η, η̄ are fermionic sources and LNJL is given by Eq. (6.3.8).
The auxiliary fields are used to remove the quartic fermion interactions. They are

introduced into the path integral by writing unity in a crafty way. This decomposition
of unity is an exact transformation named after Hubbard and Stratonovich, it is also
referred to as bosonization. Specifically for the scalar and pseudo-scalar channels, we
introduce the auxiliary fields Sa and Pa using

1 = N ′ exp

{
−i
∫
d4x GS

[
(ψ̄λaψ)2 + (ψ̄iγ5λaψ)2

]}
×
∫
DSaDPa exp

{
i

∫
d4x

[
−
(
S2
a + P 2

a

4GS

)
+ Sa(ψ̄λaψ) + Pa(ψ̄iγ5λaψ)

]}
.

(6.4.2)

There are differences in the signs in the Lagrangian for the vector and axial vector
interactions as compared to the scalar and pseudo-scalar interactions. Although, with
care a similar decomposition of unity can still be performed [310]. For the vector and
axial-vector channels we introduce V µ

a and Aµa by

1 = N ′′ exp

{
+i

∫
d4x GV

[
(ψ̄γµλaψ)2 + (ψ̄γ5γ

µλaψ)2
]}

×
∫
DV µ

a DAµa exp

{
i

∫
d4x

[
+

(
V 2
a +A2

a

4GV

)
− V µ

a (ψ̄γµλaψ)−Aµa(ψ̄γµγ5λaψ)

]}
,

(6.4.3)

These transformations are exact and an arbitrary number of them can be per-
formed. They allow quartic fermion interactions to be replaced by a quadratic bosonic
interaction and a Yukawa coupling between the auxiliary field and the fermions. These
transformations are purely a mathematical trick and must be motivated by physical
arguments as the resulting mean field model results will differ even though the transfor-
mations are exact. The way in which these transformations should be introduced is by
requiring that they represent the effective low energy collective modes of the physical
theory, which in our case are the mesons of QCD. Using a Fierz invariant Lagrangian
we can unambiguously introduce these auxiliary fields in the path integral of the gen-
erating functional using Eq. (6.4.2) and (6.4.3). As the Lagrangian is Fierz invariant
we do not have to worry about mesons disappearing if we re-express the Lagrangian in
an equivalent Fierz transformed Lagrangian.

Making use of Eq. (6.4.2) and (6.4.3), the NJL generating functional takes the form

ZNJL[η, η̄] = N ′′′
∫
Dψ̄DψDSaDPaDV µ

a DAµa
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× exp

(
i

∫
d4x

[
LHS + η̄(x)ψ(x) + ψ̄(x)η(x)

])
.

(6.4.4)

where N ′′′ = N ′N ′′ and the semi-bosonised Lagrangian is

LHS = ψ̄S−1ψ − S2
a + P 2

a

4GS

+
V 2
a + A2

a

4GV

. (6.4.5)

The full inverse fermion propagator given in terms of the bare inverse propagator
as

S−1 = S−1
0 + Saλa + Paiγ5λa − V µ

a γµλa − Aµaγµγ5λa (6.4.6)

= i/∂ − m̂+ Saλa + Paiγ5λa − V µ
a γµλa − Aµaγµγ5λa . (6.4.7)

This defines a semi-bosonised NJL action

IHS[ψ, ψ̄, Sa, Pa, V
µ
a , A

µ
a ] =

∫
d4x LHS . (6.4.8)

Using this action we can infer from the Euler-Lagrange equations that each of these
auxiliary fields depend upon the quark fields, such that

Sa = 2GSψ̄λaψ , (6.4.9)

Pa = 2GSψ̄iγ5λaψ , (6.4.10)

V µ
a = 2GVψ̄γ

µλaψ , (6.4.11)

Aµa = 2GVψ̄γ
µγ5λaψ . (6.4.12)

On substitution of Eqs. (6.4.9–6.4.12) into Eq. (6.4.5) we retrieve the original La-
grangian, because the bosonic auxiliary fields depend on the quark fields and are not
completely independent. After performing the Hubbard–Stratonovich transformations,
the fermionic path integral takes a Gaussian form and can therefore be done in the
usual way. This results in a determinant of the inverse fermion propagator and the
resulting generating functional is

ZNJL[η, η̄] = N
∫
DSaDPaDV µ

a DAµa Det
(
S−1

)
exp−

∫
d4x η̄(x)iS(x,x)η(x)

× exp

(
i

∫
d4x

[
−S

2
a + P 2

a

4GS

+
V 2
a + A2

a

4GV

])
.

(6.4.13)

In the absence of sources this takes the form

ZNJL[η = 0, η̄ = 0] = N
∫
DSaDPaDV µ

a DAµa

× exp

(
Tr
[
Log

(
S−1

)]
+ i

∫
d4x

[
−S

2
a + P 2

a

4GS

+
V 2
a + A2

a

4GV

])
,

(6.4.14)
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where the trace Tr is a trace over space-time, as well as internal spaces. From Eq. (6.4.14)
we infer that the (classical) action is now

IHS[Sa, Pa, V
µ
a , A

µ
a ] = −iTr

[
Log

(
S−1

)]
+

∫
d4x

[
−S

2
a + P 2

a

4GS

+
V 2
a + A2

a

4GV

]
. (6.4.15)

The remaining path integrals over bosonic fields still cannot be evaluated exactly
and must be simplified further. We use a variation of Laplace’s method called a sta-
tionary phase approximation [322]. When analytically continuing the above generating
functional to Euclidean space the stationary phase approximation amounts to a saddle
point approximation. We perform this approximation as a semi-classical approxima-
tion, that is we take ~→ 0 which appears in the denominator of the exponential2. To
be precise, we are interested in finding the dominant asymptotic behaviour of the gen-
erating functional as ~ → 0. This is in contrast to other authors who prefer the large
number of colours Nc expansion [307]. At the Hartree–Fock level they are essentially
equivalent.

When using the stationary phase approximation we consider a set of stationary fields{
φ(c)
α

}
. This set represents the extremum of the action and as such these constant fields

must satisfy the stationary conditions

δIHS[{φα}]
δφα(x)

∣∣∣∣
φα=φ

(c)
α

= 0 , (6.4.16)

where for convenience we denote by φα one of the auxiliary fields Sa, Pa, V
µ
a or Aµa .

Equation (6.4.16) leads to the classical equations of motion given by the Euler-Lagrange
equations, where the φ(c)

α have the physical meaning of φ(c)
α = 〈φα〉. This physical

meaning can be easily understood as a generalisation of Ehrenfest’s theorem in quantum
mechanics to quantum field theory, which follows from considering the the effect of a
variation of an auxiliary field φα on the generating functional defined using the action
IHS[{φα}] given by Eq. (6.4.15). This generating functional is explicitly given by

ZNJL[{Jα}] = N
∫ (∏

α

Dφα

)
e
i
~ (IHS[{φα}]+Jα·φα) , (6.4.17)

where we have reinstated ~ and introduced the classical source functions, Jα, one for
each auxiliary field φα. In Eq. (6.4.17), we have used the notation

Jα · φα ≡
∑
α

∫
d4x Jα(x)φα(x) . (6.4.18)

As all auxiliary fields are integrated over, the variation of the generating functional
is zero leading to

0 = δZNJL[{Jα}] (6.4.19)

= N
∫ (∏

α

Dφα

)(
i

~
δ (IHS[{φα}] + Jα · φα)

)
e
i
~ (IHS[{φα}]+Jα·φα) (6.4.20)

2Previously we set ~ = 1 in all equations.



CHAPTER 6. QUARK MATTER IN THE NAMBU–JONA-LASINIO MODEL 117

=
iN
~

∫ (∏
α

Dφα

)(∑
α

∫
d4x δφα(x)

(
δIHS[{φα}]

δφα
+ Jα(x)

))
e
i
~ (IHS[{φα}]+Jα·φα) .

(6.4.21)

This must be valid for an arbitrary variation of an auxiliary field φα, which means in
the absence of sources we have 3

0 = N
∫ (∏

α

Dφα

)
δIHS[{φα}]

δφα
e
i
~ IHS[{φα}] =

〈
δIHS[{φα}]

δφα

〉
. (6.4.22)

From Eqs. (6.4.9–6.4.12) and Eq. (6.4.22), we have explicitly

〈Sa〉 = S(c)
a = 2GS〈ψ̄λaψ〉 , (6.4.23)

〈Pa〉 = P (c)
a = 2GS〈ψ̄iγ5λaψ〉 , (6.4.24)

〈V µ
a 〉 = V µ (c)

a = 2GV〈ψ̄γµλaψ〉 , (6.4.25)

〈Aµa〉 = Aµ (c)
a = 2GV〈ψ̄γµγ5λaψ〉 . (6.4.26)

It should be noted that we have more information in this semi-classical approxima-
tion than can be obtained from classical field theory, as the expansion results in a phase
factor for each stationary point and there could potentially be more than one station-
ary point and therefore they would interfere. For simplicity we will assume that the
stationary point is unique, expanding each field about this point φα = φ(c)

α + φ(q)
α

√
~,

where φ(q)
α

√
~ is a small quantum fluctuation. This does not necessarily mean that

quantum effects are small.
The action obtained above (Eq.(6.4.15)) can be expanded in a power series

IHS [{φα}] = IHS(
{
φ(c)
α

}
) + ~1/2

∑
α

∫
d4x φ(q)

α (x)
δIHS

δφα(x)

∣∣∣∣
φα=φ

(c)
α

(6.4.27)

+
~
2

∑
α

∫
d4x

∫
d4y φ(q)

α (x)
δIHS

δφα(x)δφα(y)

∣∣∣∣
φα=φ

(c)
α

φ(q)
α (y) + . . . .

Note that the second term on the right hand side, which is linear in the fluctuation is
zero by the classical equations of motion (Eq. (6.4.16)). The measure in Eq.(6.4.17)
simply becomes

Dφα = D(φ(c)
α +

√
~φ(q)

α ) = D(
√
~φ(q)

α ) (6.4.28)

as φ(c)
α is just a constant point in the space in all field configurations. Truncating at

quadratic order in the fluctuation results in Gaussian integral and can be calculated in
the usual manner yielding

ZNJL[{Jα}] = N
∫ (∏

α

Dφα

)
e
i
~ (IHS[{φα}]+Jα·φα) (6.4.29)

3Assuming that the measure is invariant under the variation, otherwise an additional term can
appear. These terms can be important in the study of anomalies.
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= N e
i
~

(
IHS

({
φ

(c)
α

})
+Jα·φ(c)

α

) ∫ (∏
α

D(~1/2φ(q)
α )

)
e
i
~

(
~
2
φ

(q)
α ·

δ2IHS({φ(c)
α })

δφαδφα
·φ(q)
α + ...

)

(6.4.30)

' Ñ e
i
~

(
IHS

({
φ

(c)
α

})
+Jα·φ(c)

α

) ∏
α

Det

δ2IHS

({
φ

(c)
α

})
δφαδφα

−1/2

, (6.4.31)

where in the second equality a summation over α is implied in the dot notation as in
Eq. (6.4.18). From which we can obtain the connected generating functional up to one
loop (as expansion in ~ is equivalent to an expansion in the loop number). For the
bosonised NJL model omitting an irrelevant infinite constant we obtain

WNJL[{Jα}] = −i~Log (ZNJL[{Jα}]) (6.4.32)

=
(
IHS(

{
φ(c)
α

}
) + Jα · φ(c)

α

)
+
i~
2

∑
α

Log

Det

δ2IHS

({
φ

(c)
α

})
δφαδφα


(6.4.33)

=
(
IHS

({
φ(c)
α

})
+ Jα · φ(c)

α

)
+
i~
2

∑
α

Tr

Log

δ2IHS

({
φ

(c)
α

})
δφαδφα

 .

(6.4.34)

It should be noted that the second term is only meaningful if the argument of the
logarithm is positive definite [323]. To obtain the (quantum) effective action which is
the generating functional for proper vertices (or equivalently 1PI graphs) we introduce
the classical background fields

ϕα =
δWNJL [{Jα}]

δφα
, (6.4.35)

which can be shown to be ϕα = φ(c)
α +O(~). These background fields are a functional

of the Jα and vice versa. Based on this we can perform a Legendre transformation on
the generating functional WNJL[Jα] obtaining the effective action

ΓNJL [{ϕα}] = WNJL [{Jα}]− Jα · ϕα , (6.4.36)

where the Legendre transform has removed any dependence on the source functions.
This generating functional is a functional of the background fields only. The dominant
asymptotic or leading order term is just the classical action in the mean field approx-
imation (constant bosonic background fields i.e the background field to first order)
given by

ΓNJL
MF

({
φ(c)
α

})
= IHS

({
φ(c)
α

})
. (6.4.37)

To next-to-leading order or 1-loop we have

ΓNJL
1−loop

({
φ(c)
α ]
})

= ΓNJL
MF

({
φ(c)
α

})
+
i~
2

Tr

Log

δ2IHS

({
φ

(c)
α

})
δφαδφα

 . (6.4.38)
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In deriving equations of state for quark matter we will only consider the leading
or mean-field contribution to the effective potential. At this order, the (mean field)
effective potential is simply

V NJL
MF

({
φ(c)
α

})
= − 1

VR1,3

ΓNJL
MF

({
φ(c)
α

})
. (6.4.39)

Although this is the dominant contribution to the thermodynamic variables, it may be
necessary to consider the 1-loop or higher contributions to the effective action [323].

To make connection to low energy hadron phenomenology, we need to calculate the
meson propagators through performing second order functional derivatives of the mean
field effective action (Eq. (6.4.37) which will in turn allow us to fit the parameters of the
NJL model, namely the coupling constant and the UV cut off necessary to regularise
the theory. This is not the only way to make the connection to the low energy hadron
phenomenology, other authors use the Bethe-Salpeter equation, usually solved using
the RPA, which is completely equivalent to the expressions obtained from the effective
action approach at this leading order. These parameters will be fit in vacuum to the
phenomenology of the pion, namely its mass and decay constant.

The mass of each of the background fields is obtained as the pole in the corre-
sponding propagator. The inverse of these propagators is equal to the second order
functional derivative of the effective action (restricted to MFA). In configuration space
this is defined as

(∆ab
ϕ )−1(x, y) =

δ2ΓNJL
MF

δϕa(x)δϕb(y)

∣∣∣∣
ϕa,b=ϕ

(c)
a,b

(6.4.40)

evaluated at the stationary point. As each of the quark propagators is linear in the
background fields we obtain in momentum space

(∆ab
ϕ )−1(p) = − δab

2Gα

+ i

∫
d4k

(2π)2
Tr

[
δS−1

δϕa
S(k + p)

δS−1

δϕb
S(k)

]
, (6.4.41)

where we have used Eq. (B.4.2) and Eq. (B.4.3) given in App. B.4 and Gα = GS or
−GV depending on the channel. The second term in Eq. (6.4.41) is usually denoted
Πϕa(p) and referred to as the polarisation function (bubble graph) of ϕa in analogy to
QED. Note that we have omitted any additional indices, such as Lorentz indices, on
the background fields and the subsequent expressions involving these fields. Of course
to make the connection to the physical hadron spectrum we must change to a different
flavour basis. Moreover, the mesons (η and η′, ω and φ, K1A and K1B) are mixed and
there are additional issues for scalar mesons. To aid the transition to the physically
relevant quark flavour basis we note that

(ϕ)cd ≡ (λaϕa)cd (6.4.42)

≡

(
8∑

a=0

λaϕa

)
cd

(6.4.43)
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=



√
2

3
ϕ0 + ϕ3 +

ϕ8√
3

ϕ1 − iϕ2 ϕ4 − iϕ5

ϕ1 + iϕ2

√
2

3
ϕ0 − ϕ3 +

ϕ8√
3

ϕ6 − iϕ7

ϕ4 + iϕ5 ϕ6 + iϕ7

√
2

3
ϕ0 − 2

ϕ8√
3


cd

,(6.4.44)

where we have used our standard basis in flavour space {λ0, λ1, . . . , λ8}. To make con-
tact with the physical hadron spectrum we change to the basis

{
λ0, λ

±
1 , λ3, λ

±
4 , λ

±
6 , λ8

}
with

λ±1 =
λ1 ± iλ2√

2
, λ±4 =

λ4 ± iλ5√
2

and λ±6 =
λ6 ± iλ7√

2
. (6.4.45)

The Gell-Mann matrices λ3 and λ8 form the Cartan subalgebra of su(3) i.e its largest
commutative subalgebra. The λ0 matrix combined with λ3 and λ8 form the Cartan
subalgebra of u(3).

Note that there may still not be a direct correspondence between the physical
mesons and the auxiliary fields in this basis. This is especially true for the scalar
channel. There the experimental situation is more tenuous than for the other mesons.
Most notably the K∗0(800) or κ mesons, which are commonly thought to form the
lightest scalar nonet with σ(600) and the a0(980) mesons, are still not even listed in
the PDG meson listings [256]. In general, scalar mesons have quite large widths and
their experimental verification is an ongoing struggle for theory and experiment [256].
Extraction of their properties are complicated by a number of effects which make it
difficult to separate their signal from background noise and alternative origins such
as multi-quark interactions and glueballs. The physical mesons may in fact be more
complicated than simply a quark and anti-quark pairing. For example, in the case of the
f0(600) or σ meson, it is usually considered to be a resonance resulting from correlated
two pion exchange, although alternative descriptions exist such as a glueball [324] or
even a dilaton [325–328]. These difficulties in the scalar channel are in stark contrast
to the other channels where the mesons are well established.

Here we will only make the specific identification of the auxiliary fields in the
pseudo-scalar channel with the corresponding physical mesons. In this sector we have

(P )cd =



√
2

3
P0 + ϕ3 +

P8√
3

P1 − iP2 P4 − iP5

P1 + iϕ2

√
2

3
P0 − P3 +

P8√
3

P6 − iP7

P4 + iP5 P6 + iP7

√
2

3
P0 − 2

P8√
3


cd

(6.4.46)

=



√
2

3
η0 + π0 +

η8√
3

√
2π+

√
2K+

√
2π−

√
2

3
η0 − π0 +

η8√
3

√
2K0

√
2K−

√
2K̄0

√
2

3
η0 − 2

η8√
3


cd

.(6.4.47)
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The low energy phenomenology of the pion is then used to constrain the parameters of
our model, which will be described in Sec. 6.5. For the remaining channels we express
the auxiliary fields in terms of their quark flavour content and after applying the MFA
the so-called chiral (ρs

i = 〈ψ̄iψi〉) and vector (ρv
i = 〈ψ†iψi〉) condensates. This is the

common procedure, which is quite useful and allows us to reuse some notation used
earlier in our hadronic equations.

It is well known that the NJL model can describe the hadron spectrum very well
but we will not need to make specific use of other mesons in the calculation of the
quark matter equation of state. One caveat not yet mentioned in this regard is that
their exists an unwanted UA(1) symmetry in our Lagrangian, Eq. (6.3.8). In reality
it is broken. Some authors break this symmetry explicitly on the Lagrangian level by
introducing the so-called t’Hooft determinantal term, which amounts to a six quark
interaction mixing flavour. This additional term alters the behaviour of the in-medium
condensates and it has been demonstrated that its inclusion produces the correct mass
splitting between the isoscalar-pseudo-scalar η and η′ mesons. The physical η and
η′ mesons are mixtures of the pure η0 and η8 fields and are given as a superposition
according to a unitary transformation such that

η = η8 cos θ − η0 sin θ , (6.4.48)

η′ = η8 sin θ + η0 cos θ , (6.4.49)

where the mixing angle θ ' −11.4◦ is obtained from experiment [256]. We note that
there are reservations in the literature as to whether this is the correct explanation
of the UA(1) anomaly, where this symmetry is broken explicitly [329–331]. For this
reason we do not include this additional term in our chosen quark matter model.
Nevertheless, incorporation of this t’ Hooft term provides a way to incorporate the η–η′

mass splitting in the NJL model, more accurately reproducing the hadron spectrum,
which is why NJL models incorporating this term have been studied extensively in the
literature [306, 332]. In Sec. 6.8, we will make comparisons to NJL models used in
Ref. [282] which include this additional term. The corresponding expressions for the
effective potential and gap equations for these models are included in App. B.12 for
easy reference.

Moreover, upon inclusion of this determinant term the vacuum is destabilised,
meaning that the effective potential is no longer bounded from below [312, 313]. This
is an unacceptable feature and it has been argued that higher multi-quark interactions
(8-quark) can be used to stabilise the vacuum provided certain relations between the
couplings hold [312, 313].

In the scalar channel the only non-zero stationary solutions or condensates are the
so-called chiral condensates, which in the quark flavour basis are given by

S(c)
u ≡

√
2

3
S

(c)
0 + S

(c)
3 +

1√
3
S

(c)
8 , (6.4.50)

S
(c)
d ≡

√
2

3
S

(c)
0 − S

(c)
3 +

1√
3
S

(c)
8 , (6.4.51)

S(c)
s ≡

√
2

3
S

(c)
0 −

2√
3
S

(c)
8 . (6.4.52)
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Mixed flavour scalar condensates vanish because they break charge conjugation sym-
metry. For this reason one usually considers the restriction of flavour sums to the u(3)
Cartan subalgebra such that

∑
a∈{0,3,8}

S(c)
a λa = 2GS

∑
a∈{0,3,8}

〈ψ̄λaψ〉λa = 4GS

 〈ūu〉 0 0
0 〈d̄d〉 0
0 0 〈s̄s〉

 ≡ 4GSdiag(ρs
u, ρ

s
d, ρ

s
s) ,

(6.4.53)

where we have reused the same notation for quark scalar densities as used earlier in
the hadronic equations. In the pseudo-scalar channel all condensates are zero as they
break both charge conjugation and parity symmetries. Note that this can always be
chosen to be the case as the scalar and pseudo-scalar auxiliary fields are chiral partners
of each other allowing one to perform a chiral rotation, so that the ground state has the
correct quantum numbers (i.e., preserves parity). As a result, for calculations beyond
MFA the pseudo-scalar fields are such that Pa = P (q)

a . For the vector channel only
same flavour timelike components survive due to the spatial isotropy4. Specifically,

V 0 (c)
u ≡

√
2

3
V

0 (c)
0 + V

0 (c)
3 +

1√
3
V

0 (c)
8 (6.4.54)

V
0 (c)
d ≡

√
2

3
V

0 (c)
0 − V 0 (c)

3 +
1√
3
V

0 (c)
8 (6.4.55)

V 0 (c)
s ≡

√
2

3
V

0 (c)
0 − 2√

3
V

0 (c)
8 (6.4.56)

and similarly the flavour sum found in the quark propagator for the vector channel is∑
a∈{0,3,8}

V 0 (c)
a λa = 2GV

∑
a∈{0,3,8}

〈ψ̄γ0λaψ〉λa ≡ 4GVdiag(ρv
u, ρ

v
d, ρ

v
s) . (6.4.57)

Clearly at zero density the vector contributions vanish. In this thesis the axial-vector
contributions are also neglected due to parity considerations.

The explicit expression for the effective potential VMF is most easily obtained in
momentum space from Eq. (6.4.39) using the identity (property # 4 in App. B.5)

Log
[
Det

(
Ô
)]

= Tr
[
Log

(
Ô
)]

. (6.4.58)

The final expression at zero density, which is derived in App. B.7, is given by

V NJL
MF (Mu,Md,Ms) = 2iNC

∑
i∈{u,d,s}

∫
d4p

(2π)4
Log(p2 −M2

i ) + 2GS

∑
i∈{u,d,s}

(ρs
i)

2

(6.4.59)

= 2iNC

∑
i∈{u,d,s}

∫
d4p

(2π)4
Log(p2 −M2

i ) +
∑

i∈{u,d,s}

(Mi −mi)
2

8GS

.

(6.4.60)

4homogeneous quark matter
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In the process of evaluating the expression in Eq. (6.4.60) we make use of a Wick
rotation to Euclidean space. The first term is the divergent vacuum contribution
(quark loop term) and must be regularised. In our chosen scheme it evaluates to

2iNC

∑
i∈{u,d,s}

∫
d4p

(2π)4
Log(p2 −M2

i ) =
3

8π2

∑
i∈{u,d,s}

M4
i Γ(−2,

M2
i

Λ2
UV

) , (6.4.61)

where Γ(a, z) is the incomplete gamma function and ΛUV is a UV cutoff. The remaining
symbols we have introduced, Mi, are the effective, dynamical or constituent quark
masses

Mi = mi − 4GS〈ψ̄iψi〉 (6.4.62)

where mi is the current quark mass of flavour i ∈ {u, d, s}. The explicit proper time
regularised expression is

Mi = mi +
3GSMi

π2

∫ ∞
1

Λ2
UV

dτ
1

τ 2
e−τM

2
i (6.4.63)

and its derivation is provided in App. B.8. The chiral condensates can also be calculated
from the quark propagator ρsi = −iTr [Si], where the inverse quark propagator in
momentum space at zero density can be shown in matrix form to be simply

S−1 =

 S−1
u 0 0
0 S−1

d 0
0 0 S−1

s

 with S−1
i (p) = (/p−mi + 4GSρ

s
i ) . (6.4.64)

The effective quark masses, or equivalently the chiral condensates, behave as order
parameters for chiral symmetry. After the analytic continuation to Euclidean space
the stationary condition of Eq. (6.4.16) translates to the condition that the mean
field effective (thermodynamic) potential is determined at a global minimum and must
therefore satisfy

∂V NJL
MF

∂Mi

= 0 and
∂2V NJL

MF

∂M2
i

≥ 0 . (6.4.65)

The relevant vacuum equations are now present and we are now in a position to fit the
parameters of the model.

6.5 Pion Phenomenology and the Fitting of the NJL

Model Parameters

Here we will discuss how pions are treated in the NJL model. To fit our parameters
we require that the model reproduce the low energy phenomenology of the pion. The
mass of the pion is defined by the pole in its propagator, Eq. (6.4.41). Transforming
to the physical basis this condition becomes

∆−1
η (p) = − 1

2GS

+ i

∫
d4p

(2π)4
Tr
[
Γ̄ηS(k + p)ΓηS(k)

]
= 0 , (6.5.1)
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= + + + . . .

Figure 6.5.1: Bethe–Salpeter in the random phase approximation.

= +

Figure 6.5.2: Bethe–Salpeter in the random phase approximation summed.

where the second term, denoted Πη(p), is the polarisation function for particle η. For
pions we have the following vertex structures in flavour, Dirac and colour space

Γ̄π0 = λ3 ⊗ iγ5 ⊗ 1C , Γπ0 = λ3 ⊗ iγ5 ⊗ 1C ,

Γ̄π− =
1√
2

(λ1 + iλ2)⊗ iγ5 ⊗ 1C , Γπ− =
1√
2

(λ1 − iλ2)⊗ iγ5 ⊗ 1C ,

Γ̄π+ =
1√
2

(λ1 − iλ2)⊗ iγ5 ⊗ 1C , Γπ+ =
1√
2

(λ1 + iλ2)⊗ iγ5 ⊗ 1C .

Vertex structures for other mesons can be found in Ref. [307].
In the isospin symmetric limit (mu = md) combined with the fact that the flavour

traces for the 3 pions all give a factor of 2 and the colour trace a factor of Nc = 3, the
polarisation function for all the pions reduces to

Ππ(k) = 6i

∫
d4p

(2π)4
TrD

[
iγ5S`(p+

k

2
)iγ5S`(p−

k

2
)

]
, (6.5.2)

where the trace TrD is over Dirac space and S` = Su = Sd is the light quark propagator.
Calculation of the pion polarisation graph in the proper time regularisation scheme can
be found in App. B.9 and is explicitly given by

1

i
Ππ(k2) = − 3i

π2
I1(M2)− 3k2i

4π2
I2(k2,M2) , (6.5.3)

where

I1(M2) =

∫ ∞
1/Λ2

UV

dτ
e−τM

2

2τ 2
, (6.5.4)

I2(k2,M2) =

∫ 1

0

dx

∫ ∞
1/Λ2

UV

dτ
e−τ[k

2(x2−x)+M2]

τ
. (6.5.5)

In regularising the divergent integrals (Eqs. (6.5.4-6.5.5)) the ultra-violet cut-off ΛUV

was introduced (see App. B.6). Equation 6.5.3 can be evaluated numerically. A similar
procedure can be followed for other mesons.
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An alternative and often used approach to obtaining meson masses is to solve the
Bethe-Salpeter equation (BSE) [333], which is the relativistic two-body bound state
equation. This approach is equivalent to the above method when restricted to the
random phase approximation (RPA), which is graphically depicted in Fig. 6.5.1 and
summed in Fig. 6.5.2 for mesons in the NJL model. Note that in these figures the
quark–quark interaction is drawn as non-local for aesthetic reasons, but in this model
it should be understood that this interaction is indeed local.

The inverse pion propagator defined in Eq. (6.5.1) is not just the free pion prop-
agator, but it also contains a momentum dependence, which can be understood as
momentum dependent coupling such that,

∆π(q2) =
g2
πqq(q

2)

q2 −m2
π

, (6.5.6)

where mπ is the free pion mass. To obtain the on-shell pion–quark coupling constant
we evaluate the coupling at the pole

gπqq ≡ gπqq(q
2 = m2

π) . (6.5.7)

This is done by expanding the pion polarisation function about the pole

Ππ(q2) = Ππ(m2
π) + (q2 −m2

π)
∂Ππ(q2)

∂q2

∣∣∣∣
q2=m2

π

+ . . . (6.5.8)

and substituting back into Eq. (6.5.1) yielding

∆π(q2) =
−2GS

1− 2GSΠπ(q2)
(6.5.9)

=
−2GS

1− 2GS

(
Ππ(m2

π) + (q2 −m2
π)∂Ππ(q2)

∂q2

∣∣∣∣
q2=m2

π

+ . . .

) . (6.5.10)

Using the pole condition 1− 2GSΠπ(m2
π) = 0, we obtain

∆π(q2) =
g2
πqq

q2 −m2
π

, (6.5.11)

where we have defined the on-shell pion–quark coupling constant as

g2
πqq ≡

(
∂Ππ(q2)

∂q2

∣∣∣∣
q2=m2

π

)−1

. (6.5.12)

To calculate the pion decay constant we take as our starting point the matrix
element, Eq. (2.2.11),

〈0|ψ̄(0)γµγ5
λa
2
ψ(0)|πb〉 = ifπq

µδab . (6.5.13)
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(6.5.14)

Figure 6.5.3: Graphical depiction of the matrix element associated to pion decay.

This matrix element is graphically depicted in Fig. (6.5.3). This matrix in expanded
form reads

iqµfπδab = −gπqq
∫

d4p

(2π)4
Tr

[
γµγ5

λa
2
S(p+

1

2
q)γ5λbS(p− 1

2
q)

]
(6.5.15)

= −gπqqNCδab

∫
d4p

(2π)4
Tr

[
γµγ5S`(p+

1

2
q)γ5S`(p−

1

2
q)

]
, (6.5.16)

where in the second line we evaluated the flavour and colour traces, Tr
λa
2
λb = δab,

Tr[1C] = NC and the remaining trace is over Dirac space. The explicit expressions
for the pion–quark coupling and the pion decay constant in the Schwinger proper time
regularisation scheme are given in App. B.10 and B.11, respectively.

We constrain our model parameters in two ways. In parameter set PS1, we take
as input the constituent quark masses M` = 400 MeV and Ms = 563 MeV, the pion’s
mass mπ = 140 MeV and its decay constant fπ = 93 MeV. By requiring these values
for M` and fπ, the UV cut-off, ΛUV, is constrained to be 636.67 MeV. Then using the
pole condition for the pion with mπ, M`, and ΛUV the scalar coupling GS is found to
be 19.76 GeV−2. Finally, using Mα, ΛUV and GS the current quark masses can be
calculated from

mα = Mα −
3GSMα

π2

∫ ∞
1

Λ2
UV

dτ
e−τM

2
α

τ 2
, (6.5.17)

where α = `, s.
An additional cut-off, ΛIR can be introduced in our regularisation procedure by

including an additional regulating function rIR(τ) ≡ Θ(
1

Λ2
IR

− τ). This new cut-off is

generally considered to be related to confinement as it can crudely simulate one of its
key features that free quarks do not propagate [314],

1

k2
E +M2

i

=

∫ 1

Λ2
IR

1

Λ2
UV

dτ e−τ(k2
E+M2

i ) =
e−(k2

E+M2
i )/Λ2

UV − e−(k2
E+M2

i )/Λ2
IR

k2
E +M2

i

. (6.5.18)

Choosing a value ΛIR ∼ 200 MeV results only in small variation in parameters, see
Table 6.5.1 for a comparison. In quark matter, the infra-red cut-off is not relevant and
is taken to be zero in all quark matter calculations.
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In our first parameter set, PS1, the calculated current quark mass is ∼ 10 MeV,
larger than the values typically used in the three momentum regularised versions of the
model. As an additional test of sensitivity of the parameters to our fitting procedure we
take instead the current quark masses as input, m` = 5.5 MeV and ms = 135.7 MeV,
the pion’s mass mπ = 140 MeV and its decay constant fπ = 93 MeV. By following
a similar procedure as above we determine the other parameters and calculate the
constituent quark mass. This leads to a new and substantially different parameter
set, PS2, with the constituent quark mass considerably lower. When fitting our model
parameters, we are enforcing a scale in our model. With this in mind we should compare
and choose the parameter set which is both consistent with hadron phenomenology
(enforced through the above mentioned fitting procedures) and also favourable for
modelling high density quark matter. We will compare the proper time regularised
model with both parameter sets to the three momentum regularised model [282] in
Sec. 6.8.

6.6 At Finite Density

At finite density we have conservation of baryon number and associated chemical po-
tentials. To handle this in the grand canonical formalism an extra term is added to
our NJL Lagrangian Eq. (6.3.8),

LNJL → LNJL + ψ̄µ̂γ0ψ (6.6.1)

where µ̂ is the chemical potential matrix given by µ̂ =diag(µu,µd,µs). The derivation
of the effective potential follows through as in the previous section in vacuum, except
with extra terms in the effective potential and gap equations for the quarks. Because
of the Fermi sea of quarks and at finite density the vector interaction will contribute,
the effective potential will have extra terms. This extension is straightforward and is
performed in App. B.7.

The inverse quark propagator in momentum space is now of the form

S−1
i (p) = (p0 + µi − 4GVρ

v
i )γ

0 − ~p · ~γ −mi + 4GSρ
s
i (6.6.2)

for each flavour i. Using Eq. (6.6.2) in Eq. (6.4.39) the final expression at finite density
for the effective potential which is derived in the appendices is given by

VMF({Mi} , {µi}) = Vdiv({Mi} , {µi}) + Vfin({Mi} , {µi}) , (6.6.3)

where the first part is the divergent contribution and must be regularised. We choose
to regularise using Schwinger’s covariant proper time method. The divergent part is
derived in App. B.7 to be

Vdiv({Mi} , {µi}) = V vac
div ({Mi} , {µi}) + 2GS

∑
i∈{u,d,s}

(ρs
i)

2 − 2GS

∑
i∈{u,d,s}

(ρs
i0)2 (6.6.4)

= V vac
div ({Mi} , {µi}) +

∑
i∈{u,d,s}

(Mi −mi)
2

8GS

−
∑

i∈{u,d,s}

(Mi0 −mi)
2

8GS

.
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(6.6.5)

The first is the divergent vacuum contribution (quark loop term) and is

V vac
div ({Mi} , {µi}) = 2iNc

∑
i∈{u,d,s}

∫
d4k

(2π)4
Log

[
k2 −M2

i + iε

k2 −M2
i0 + iε

]
. (6.6.6)

In App. (B.7) Eq. (6.6.6) is evaluated in our chosen scheme giving

V vac
div (Mu,Md,Ms) =

3

8π2

∑
i∈{u,d,s}

[
M4

i Γ(−2,
M2

i

Λ2
UV

)−M4
i0Γ(−2,

M2
i0

Λ2
UV

)

]
,(6.6.7)

where Γ(a, z) is the incomplete gamma function. In Eqs. (6.6.3-6.6.7) we have sub-
tracted the constant vacuum contribution, these terms are labelled by subscript 0.
The subtraction is performed so that the pressure (PMF = −VMF) at zero density is
zero. From the Gibbs-Duhem relation, this also implies the energy density is also zero
in vacuum. The finite contribution to the effective potential is

Vfin({Mi} , {µi}) = VFermi({Mi} , {µi})− 2GV

∑
i∈{u,d,s}

(ρv
i )

2 (6.6.8)

= VFermi({Mi} , {µi})−
∑

i∈{u,d,s}

(µ̃i − µi)2

8GV

. (6.6.9)

The contribution associated to the Fermi sea of quarks is

VFermi({Mi} , {µi}) = −2NC

∑
i∈{u,d,s}

∫
d3p

(2π)3
Θ(µ̃i − Ep,i)(µ̃i − Ep,i) ,

(6.6.10)

where we have introduced the “reduced” chemical potential

µ̃i = µi − 4GV〈ψ†iψi〉 . (6.6.11)

6.7 Flavour Independent Vector Interaction

Before discussing the numerical results for the thermodynamic properties of interest,
we anticipate that the vector interaction is important (as is well known, see Ref. [295])
and that the strength and type of this interaction is crucial for a realistic description
of quark matter. For this reason we introduce a “simplified” vector interaction which
is flavour independent, such that

Lv = −gV(ψ̄γµψ)2 . (6.7.1)

This form of vector interaction has been used in many NJL studies, particularly inter-
esting are those that use it to produce high mass neutron stars if the coupling is large
enough, see for example Refs. [282, 334].
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With the vector interaction given by Eq. (6.7.1), rather than the flavour dependent
interaction derived earlier (see Sec. 6.3), the reduction in the chemical potentials is
different between these two interactions.

µ̃i =

{
µi − 4GVρ

v
i for flavour dependent vector interaction

µi − 2gVρtot for flavour independent vector interaction
. (6.7.2)

The factor of two difference, in the reduction, between them is due to the flavour
sum in the flavour dependent vector interaction. This summation is also why each
of the reduced chemical potentials is only dependent on its own density. The other
factor of two comes from performing the mean field approximation and our choice of
normalization for the interaction Lagrangians, which is why it is present for both types
of interactions.

By the same token, the effective potential will differ depending on the type of vector
interaction. The vector contributions to the effective potential are

Vvec =

 −2GV

∑
i∈{u,d,s}

(ρv
i )2 for flavour dependent vector interaction

−gVρ
2
tot for flavour independent vector interaction

.

(6.7.3)
The latter has additional cross terms contributing to the effective potential and hence
likely to increase the pressure.

Clearly, in symmetric two flavour quark matter (ρu = ρd and ρs = 0) these two
interactions are equivalent, but differ otherwise. In asymmetric two flavour quark
matter they will differ and there should be a substantial difference when strange quarks
are present. In flavour symmetric three flavour quark matter (ρq ≡ ρu = ρd = ρs) the
additional cross terms for the flavour independent interaction could give a substantial
increase in pressure coming from the vector contribution as

Vvec =

{
−6GVρ

2
q for flavour dependent vector interaction

−9gVρ
2
q for flavour independent vector interaction

. (6.7.4)

Of course, each of the quark chemical potentials will be reduced by the same amount,
determined by the total quark density, as opposed to the flavour dependent interac-
tion, where each quark’s chemical potential is only reduced by its own density. This
difference will also affect the pressure coming from both models. Consequently, the
type of vector interaction could be important in the description of hybrid and quark
stars, particularly when strange quarks are involved.

6.8 Numerical Results and Discussion

In this section we will present and discuss the numerical results of the NJL model
parameter sets PS1, PS2 and HK. We begin with the behaviour of various quantities
of interest, in particular the constituent quark mass, as a function of quark chemical
potential. This is followed by the density dependence of quark masses in flavour sym-
metric quark matter (ρu = ρd = ρs). We will then conclude with the main results of
this section—the properties of quark matter in beta equilibrium with leptons. These
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quark matter equations of state will then be used in Ch. 7 to study hybrid stars, where
the HF-QMC equation of state developed in Ch. 5 will be used for the description of
the hadronic matter.

Chiral symmetry is broken explicitly in all parameter sets considered (see Ta-
ble 6.5.1) by the presence of a non-zero current quark mass but it is also broken
dynamically in vacuum for sufficiently large coupling strength [306]. All parameter
sets produce a constituent quark mass which is significantly larger than the current
quark mass in vacuum for all flavours. The constituent quark masses, or equivalently
their condensates, are the order parameters of chiral symmetry. The chirally broken
phase is marked by a large constituent quark mass and its approximate restoration is
expected to occur at large chemical potential for all three parameter sets.

The numerical results presented in Figure 6.8.1, show the behaviour of the con-
stituent quark masses (a–c), reduced quark chemical potentials (d–f) and normalised
densities (g–i) as a function of the quark chemical potential (µ = µ` = µs) for the pa-
rameter set PS1. The plots from left to right have varying vector coupling strength. In
the first column the vector coupling is set to zero, and in the second and third columns
they are GV = GS/2 and GV = GS, respectively. Figures 6.8.2 and 6.8.3 are the same
as Fig. 6.8.1, but for the parameter sets PS2 and HK respectively.

The constituent quark masses are determined through the solution of the so-called
gap equation, obtained from the minimisation of the effective potential. It must be
solved carefully, as it is well known that the NJL effective potential can have multiple
minima, although only the global minimum is the physically relevant solution to the
gap equation. The gap equation can be solved by either using a non-linear solver to
find the solution to Eq. (B.8.24) or a minimisation routine can be applied directly to
the effective potential, Eq. (6.6.3). We opt for the former utilising the GNU Scientific
Library (GSL) [335].



6.8. NUMERICAL RESULTS AND DISCUSSION 132

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

        

Q
ua

rk
 M

as
s 

[G
eV

]

(a)

 

 

 

 

 

 

 

        
  

(b)

 

 

 

 

 

 

 

        

  

(c)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

        

R
ed

. Q
ua

rk
 C

he
m

. P
ot

. [
G

eV
] (d)

 

 

 

 

 

 

 

 

        

  
(e)

 

 

 

 

 

 

 

 

        

  

(f)

0.0

5.0

10.0

15.0

20.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
or

m
al

is
ed

 D
en

si
tie

s 
[l

i/l
0]

Quark Chemical Potential [GeV]

  

(g)

 

 

 

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

  

Quark Chemical Potential [GeV]

  

(h)

 

 

 

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

  

Quark Chemical Potential [GeV]

  

(i)

Figure 6.8.1: The behaviour of the constituent quark masses (a–c), reduced quark
chemical potentials (d–f) and normalised densities (g–i) as a function of the quark
chemical potential (µ = µ` = µs) for the parameter set PS1. The plots from left to
right have varying vector coupling strength. In the first column the vector coupling is
set to zero, and in the second and third columns they are GV = GS/2 and GV = GS,
respectively. Specific line types are: (a–c) M` (blue solid), m` (blue dashed), Ms (pink
solid), and ms (pink dashed); (d–f) µ̃` (blue solid) and µ̃s (pink dashed); (g–i) ρ`/ρ0

(blue dashed), ρs/ρ0 (green dashed) and the total baryonic density ρ/ρ0 (red solid),
where ρ0 = 0.17 fm−3 is the nuclear saturation density; (a,d–f,g) critical (reduced)
chemical potential µcrit (µ̃crit) are red dashed.

To ensure that we obtain the correct solution we solve the Eq. (B.8.24) with multiple
starting points. For each solution found we evaluate the effective potential, the solution
which gives the smallest value of the effective potential is chosen as the correct solution.
This was implemented by two different methods. First, a few well chosen starting points
were picked for the iterative procedure which should cover the entire range of solutions.
In the second slightly more sophisticated approach, a random number generator was
used to obtain starting values for a user defined number of starting points. The larger
this number, the more confident one can be that the correct solution is found. It was
found that both procedures produced equivalent and reproducible results, although to
be definite all figures presented here used the latter method.

In the NJL model, which models the dynamical generation of mass breaking chiral
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symmetry, it is unnatural for the constituent quark mass to be smaller than current
quark mass. Obviously, this can occur when the finite density terms overwhelm the
vacuum terms in the gap equation (see Eq. (B.8.24)). One would naively expect that
this would not occur before the UV cut-off, which was introduced to regulate the
model, effectively setting the scale of the model using relevant hadron phenomenology.
This is quite plainly not the case for parameter PS1, see Fig. 6.8.1 plot (a). The
constituent quark mass for light quarks very abruptly drops at µ ' 388 MeV. Shortly
after this first order transition occurs, the constituent quark mass becomes smaller
than the current quark mass at µ ' 451 MeV—which is moderately lower than the
cut-off ΛUV ' 637 MeV. More seriously, however, is the behaviour of the constituent
strange quark mass, which drops sharply below its current quark mass as soon as it
is energetically favourable to appear at µ ' 524 MeV—compare with the calculated
strange quark density in Fig. 6.8.1 plot (g).

The behaviour of the constituent quark masses as a function of quark chemical
potential for parameter set PS2 are markedly different from the behaviour for PS1,
compare plot (a) in Figs. 6.8.1 and 6.8.2. The only difference in the fitting procedure
between the two parameter sets is that we chose small values for the current quark
masses and calculated the constituent quark masses, as opposed to choosing quite
large values for the constituent quark masses and calculating the current quark masses
for PS1 (see Table 6.5.1). To begin with, there is no-longer a first order transition for all
flavours in the absence of vector coupling. The transition between the chirally broken
phase and the symmetric phase is smooth with the constituent quark masses still going
below the current quark masses at µ ' 763 MeV for light quarks and µ ' 771 MeV for
strange quarks—once again at a chemical potential moderately lower than the cut-off
ΛUV = 1.0789 GeV. The calculated densities in PS2 increase with increasing chemical
potential as expected, however in a considerably smoother fashion than in PS1. This
is clearly because of the smoother behaviour of the constituent quark masses.

Figure 6.8.3 shows the same quantities as Figs. 6.8.1 and 6.8.2 but for the three
momentum regularised NJL model with t’ Hooft determinantal term. This model has
been used extensively in the literature [306–308, 311], and in particular, it was recently
used to study hybrid stars in Ref. [282]. This variation of the NJL model is included
for comparative purposes using the HK parameter set [308]. Table 6.5.1 contains the
HK parameter set for convenience, but the interested reader is referred to Ref. [308] for
how it was obtained. The values of the current quark masses in this parameter set were
used as input for our proper time regularised parameter set PS2, so a close comparison
could be performed. Current quark masses of the HK parameter set are the same as
in PS2, but the constituent quark masses are considerably larger and comparable to
the ones used in PS1. Moreover, the scalar coupling and UV cut-off are comparable
to their counter parts in PS2 and PS1, respectively. The densities are similar to those
found for the PS2 parameter set but not quite as smooth.
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Figure 6.8.2: Same as Fig. 6.8.1 for the parameter set PS2.

The t’ Hooft determinantal term has a pronounced effect on the constituent quark
masses—see Fig. 6.8.3 plots (a–c). The mixing of different flavours produced by the
flavour determinant means that the constituent quark masses of different flavours are
inter-related. In plots (a—c) the strange quark mass drops abruptly when the light
quark mass drops, before it is actually favourable to appear (see plots (g–i)), illustrating
the dependence of the strange quark mass on the light quark condensates.

Of considerable interest is that, unlike in the proper time regularised models de-
scribed above, the constituent quark masses of both the light and strange quarks do
not go below the current quark mass until the quark chemical potential approximately
reaches the UV cut-off. This is somewhat disconcerting as we could interpret this as a
signal that the NJL model with our chosen regularisation scheme is breaking down and,
in the case of PS1, it is occurring at only a moderate chemical potential. Albeit, in the
case of PS2 it breaks down at a chemical potential greater than in the HK parameter
set, but still lower than the UV cut-off. The regularisation scheme is a defining feature
of the model, therefore this difference should be clearly understood. Furthermore, we
will be applying the NJL model to describe hybrid stars in Ch. 7, where the inner core
densities are expected to be immense. The large quark chemical potentials that are
anticipated to be achieved could surpass the breaking point of the model.

To address this concern we now examine why in the proper time regularisation
scheme, the constituent quark mass, Mi, goes below the current quark mass, mi, at
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moderate quark chemical potential for parameter set PS1. Also, why this does not
occur until a larger chemical potential is reached for PS2 but still below the UV cut-
off. Likewise, we would also like to understand why for the three momentum regularised
model, using the HK parameter set, this does not occur until the chemical potential
approximately reaches the cut-off. As was pointed out in appendix B of Ref. [336], this
can be understood by studying the in-medium gap equation in detail. The in-medium
gap equation takes the form (see App. B.8)

Mi = mi +
3GSMi

π2

∫ ∞
1

Λ2
UV

dτ
e−τM

2
i

τ 2
− 4

∫ √−M2
i +µ2

i

0

p2dp√
p2 +M2

i

 (6.8.1)

≡ mi +
3GSMi

π2
(Iv(Mi)− IFermi(Mi, µi)) . (6.8.2)

When the finite density contribution is greater than the vacuum contribution, the
constituent quark mass is smaller than the current quark mass. This occurs at some
critical chemical potential denoted µcrit. The value of the critical chemical potential is
dependent on the regularization scheme through the vacuum contribution to the gap
equation only, as the Fermi term is finite. It can be estimated by performing an expan-
sion of vacuum and finite density terms about Mi/ΛUV = 0. In the proper time scheme,
the pertinent integral that must be expanded needs be treated with care, because of
the singular nature of this integral in the limit Mi/ΛUV → 0+. Specifically, it contains
a logarithmic singularity. Because of this singularity the Taylor series expansion has a
zero radius of convergence and it therefore must be treated as an asymptotic expan-
sion rather than a Taylor expansion. We will give the details of this expansion here,
deriving the result of Ref. [336].

To do the expansion for the vacuum term we first perform a change of variables
such that t = τM2

i , dτ = dt/M2
i , leading to

Iv(Mi) =

∫ ∞
1

Λ2
UV

dτ
e−τM

2
i

τ 2
=

∫ ∞
M2
i

Λ2
UV

dt

M2
i

e−t

(t/M2
i )2

= M2
i

∫ ∞
M2
i

Λ2
UV

dt
e−t

t2
. (6.8.3)

We now introduce the rescaled mass x = (Mi/ΛUV)2 and write the integral as

Iv(Mi) = Λ2
UVxI(x) = Λ2

UVx

∫ ∞
x

dt
e−t

t2
. (6.8.4)

This integral can be put in the form

Λ2
UVxI(x) = Λ2

UVx

[∫ ∞
x

e−t

t2
dt

]
= Λ2

UVx

[
e−x

x
+ Ei(−x)

]
= Λ2

UVx

[
e−x

x
− E1(x)

]
.

(6.8.5)
The asymptotic expansion of Eq. (6.8.5) is then

Λ2
UVxI(x) = Λ2

UV

[
e−x − xE1(x)

]
∼ Λ2

UV

[
1− x+ . . . − x

(
−γ + Log|x|+

∞∑
n=1

(−1)n+1xn

n.n!

)]
as x→ 0+



6.8. NUMERICAL RESULTS AND DISCUSSION 136

∼ Λ2
UV [1 + x(γ − 1) + . . .] as x→ 0+ . (6.8.6)

To obtain the second line we Taylor expanded the exponential and used the methods
of Ref. [322] to perform the asymptotic expansion of E1(x). The symbol γ is the Euler
constant and in the third line we neglected terms of order x2.
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Figure 6.8.3: Same as Fig. 6.8.1 for the parameter set HK.

The expansion of the finite density contribution is straightforward and can be shown
to be

IFermi(Mi, µi) = 4

∫ √−M2
i +µ2

i

0

p2dp√
p2 +M2

i

(6.8.7)

= 4.
1

2

(
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√
µ2
i −M2

i −M2
i Log

[
µi +

√
µ2
i −M2

i

Mi

])

= 2Λ2
UV

( µi
ΛUV

)√(
µi

ΛUV

)2

−
(
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ΛUV

)2

−
(
Mi

ΛUV

)2

Log
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(
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ΛUV
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−
(
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ΛUV

)2

(
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ΛUV
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

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' 2Λ2
UV

[(
µi

ΛUV

)2

− 1

2

(
Mi

ΛUV

)2

+ . . .

]
. (6.8.8)

The critical chemical potential to lowest order is then

µcrit '
ΛUV√

2
'
{

450 MeV for PS1
763 MeV for PS2

. (6.8.9)

Similarly, one can show in the three momentum cut-off regularisation that µcrit '
ΛUV [336]. These critical chemical potentials are depicted in Figs. 6.8.1–6.8.3 as red
dashed lines to clearly illustrate this point, where the model should be considered
unreliable.

We now turn to the influence that the vector interaction has on the quark chem-
ical potential, constituent masses and densities. The vector interaction renormalises
the chemical potential, effectively increasing it. However, it is the reduced chemical
potential (see Eq. (6.6.11) and Figs. 6.8.1–6.8.3 plots (d–f)) that appears, for example,
in the in-medium gap equation. The critical value of the chemical potential derived
above will now apply to the reduced chemical potential. It will then provide a limiting
value to the reduced chemical potential, up to which we can consider the model to be
reliable in the presence of the vector interaction.

The vector coupling by definition of our model is half the scalar coupling, although
in practice, it can be constrained by some physical quantity such as a vector meson
mass. However, we allow the coupling to vary from zero to up to being equal to the
scalar coupling, in order to understand its affect on the model. On increasing the vector
coupling in each of the models the transition from the chirally broken phase to the
symmetric phase occurs more smoothly. In particular, in the case of parameter set PS1
it changes the transition from a first order transition to a second order transition. This
is not surprising as this effect has been seen in studies of two-flavour quark matter [311]
using a flavour independent vector interaction. It has also in been seen in NJL model
studies of the QCD phase diagram in the T–µ plane, whereby the vector interaction
shifts the critical point closer to the µ axis [337–339]. For each of the models the vector
coupling defers chiral restoration to larger chemical potential. The reduction of the
chemical potential from the vector interaction curtails the effect of the finite density
contribution to the gap equation meaning that the constituent quark masses approach
their current quark masses at greater chemical potential productively delaying the
break-down of the model.

The change in the behaviour of the order parameters is intimately tied to the steady
increase of the densities with chemical potential, which can be seen in Figs. 6.8.1–6.8.3
plots (g–i). The vector interaction can be seen to drastically decrease each of the
densities in the parameter set PS1, while in PS2 and HK the effect is less severe. This
is certainly because of the larger scalar coupling in PS1.
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Figure 6.8.4: Quark mass versus total baryonic density for parameter sets (a) PS1, (b)
PS2 and (c) HK.

For the three flavour symmetric case (ρu = ρd = ρs) shown in Fig. 6.8.4, the vector
interaction does not alter the density dependence of the quark masses. In plot (a)
for PS1, both the light and strange constituent quark masses go below their current
mass values at approximately ρ ' 6ρ0, precisely the density region where strange
quark matter would be expected to be substantially present in neutron stars. This
is, of course, a naive assumption as old neutron stars are usually considered to have
reached thermal equilibrium with respect to weak and strong interactions, although at
high densities they tend to approach flavour symmetric matter. Based on the above
discussions, the PS1 parameter set will not likely make a reliable description of hybrid
stars. In the modelling of quark matter in beta-equilibrium with leptons, we will
restrict ourselves to the parameter sets PS2 and HK.

Thermal equilibrium of quarks and leptons with respect to the weak and strong
interactions, under the constraints of charge and baryon number conservation, is de-
scribed by the following system of equations:

2

3
ρv

u −
1

3
(ρv

d + ρv
s )− ρv

e − ρv
µ = 0 (6.8.10)

ρ− 1

3
(ρv

u + ρv
d + ρv

s ) = 0 (6.8.11)

µd − µu − µe = 0 (6.8.12)

µd − µs = 0 (6.8.13)

µµ − µe = 0 . (6.8.14)

The relations imposed in Eqs. (6.8.12–6.8.13) are between the thermodynamic chemical
potentials and not the reduced chemical potentials. In terms of the individual quark
densities (ρv

i ), the total quark density (ρtot) the total baryonic density (ρ) are defined
as

ρ ≡ ρtot

3
≡ 1

3

∑
i∈{u,d,s}

ρv
i , (6.8.15)

where the 1/3 is the baryonic charge of each quark. In the limit of zero vector coupling,
the individual number densities of each quark species is related to their respective
chemical potential by

ρv
i =

(piF)3

π2
=

(−M2
i + µ2

i )
3/2

π2

GV 6=0−−−→ (−M2
i + µ̃2

i )
3/2

π2
, (6.8.16)
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where piF is the quarks Fermi momentum. For non-zero vector coupling, the chemical
potential in Eq. (6.8.16) is replaced with its reduced counterpart. As in Ch. 5, the

lepton chemical potentials are once again simply µ` =
√

(p`F)2 +m2
` , where p`F is the

lepton’s Fermi momentum. This system of five equations with five unknowns, com-
bined with the three gap equations, is then solved to determine the particle content
and thermodynamic behaviour of three flavour quark matter in beta-equilibrium with
leptons.
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Figure 6.8.5: Beta-equilibrium quark matter for parameter set PS2 (solid) and HK
(dashed). Each of the particle number densities is divided by the total quark density
ρtot = ρd + ρu + ρs = 3ρ. The down quark fraction is red, up green, strange purple.
The electron fraction (blue) is multiplied by 100 so as to be visible on the same plot.
Note that the electron fraction defined here differs by a factor of 1/3 from the figures in
Ch. 5. Plot (a) zero vector coupling and non-zero flavour independent vector coupling
(b) flavour dependent vector interaction with GV = GS/2 and (c) flavour dependent
vector interaction with GV = GS. Here we use the saturation density ρ0 = 0.17 fm−3.

Figure 6.8.5 shows the species fractions as a function of total baryon density. In this
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Figure 6.8.6: Electron density as a function of total baryonic density for parameter
set PS2 (solid) and HK (dashed). The colours indicate the strength of the flavour
dependent vector interaction, GV = 0 green, GV = GS/2 orange and GV = GS blue.

figure, the results for both the PS2 and HK parameter sets are shown and are found
to have similar particle content and behaviour. In contrast to hadronic calculations,
the only leptons to appear are electrons and in a reduced number. In Fig. 6.8.5, the
electron fraction was multiplied by 100 to make it clearly visible on the same plot as
the quark fractions. Just how small it actually is can be seen in Fig. 6.8.6. The species
fraction in the absence of a vector interaction is shown in Fig. 6.8.5 (a). Incorporating
a non-zero flavour independent vector interaction leaves the number densities of the
particles unchanged. Similar plots showing species fractions in the three flavour NJL
model with flavour independent vector interaction can be found in Refs. [282] and [334].
The onset of strangeness occurs at a slightly lower density using the PS2 model than
in the HK model. The strange quarks appear at ρ ' 3.32ρ0 in PS2 and at ρ ' 3.98ρ0

in HK. As expected, the appearance of strange quarks reduces the number of down
quarks because of the charge neutrality constraint and the up quark fraction remains
approximately constant over the density range considered. The strength of the flavour
independent vector interaction does not change the species fraction as a function of
density, but does have an affect on the thermodynamic variables, as will be discussed
below. However, in the case of a flavour dependent vector interaction, particle densities
do vary with vector coupling strength, see plot (b–c) of Fig. 6.8.5. Figure 6.8.5 (b–c)
shows the onset of strangeness occurs at lower density with increasing strength of the
flavour dependent vector interaction for both PS2 and HK models. With varying the
vector coupling between (0, GS), the threshold density for strange quarks is in the range
∼ 2–4ρ0.
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Figure 6.8.7: Chemical potentials (solid) and constituent quark masses (dashed) as
a function of total baryonic density (ρ) for the flavour dependent vector interactions.
The line colours for the quarks are up (orange), down (green) and strange (blue). Plots
(a–c) PS2 model with GV = 0, GS/2, GS, respectively. Plots (d–f) HK model with
GV = 0, GS/2, GS, respectively. Here we use the saturation density ρ0 = 0.17 fm−3.
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Figure 6.8.8: Same as Fig. 6.8.7, but for the flavour independent vector interaction.

Figures 6.8.7 and 6.8.8 show chemical potentials and constituent quark masses
as a function of total baryonic density. Figure 6.8.7 includes a flavour dependent
vector interaction, whereas Fig. 6.8.8 includes a flavour independent vector interaction.
Both PS2 and HK models show similar trends with the exception that in the HK
parameter set there is more curvature of the chemical potentials at low density. This is
undoubtedly connected to the t’ Hooft term causing the condensates to be dependent
on one another. In the HK parameter set, the strange quark mass decreases as the light
quark masses decrease—even when strange quarks have not yet appeared. Whereas
in PS2, it remains constant until it is energetically favourable to be produced. This
is because the quark condensates of each flavour are independent of each other in
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PS2. From Fig. 6.8.5, we see that at low density only the light quarks are present for
both parameter sets and all variations of the vector interaction considered. For models
incorporating the flavour dependent vector interaction, we have µs = Ms at zero strange
quark density, which can be seen in Fig. 6.8.7. As the baryonic density increases, the
separation of the chemical potential curve from the constituent quark mass curve can
be clearly seen for the strange quark. This coincides with the appearance of strange
quarks. With increasing strength of the vector interaction, the down quark chemical
potential increases faster with increasing density leading to an earlier onset of strange
quarks—compare with Fig. 6.8.5. However, for models with the flavour independent
vector interaction µs = Ms + 2gV(ρu + ρd) at zero strange quark density. Before
the density threshold is reached for strange quarks, there is a separation between the
strange quark’s chemical potential and its constituent quark mass owing to the already
present light quarks. This can be seen in Fig. 6.8.8.

Moreover, as we are working in the isospin symmetric limit i.e the current quark
masses of the light quarks are equal, the only cause for a difference between the light
constituent quark masses is the finite density contribution. In contrast to the usual
expectation that the up quark be lighter than the down quark and thereby the neutron
heavier than the proton, the down quark is found to be lighter than the up quark.
This is due to the conditions of beta-equilibrium under charge and baryon number
conservation. The down quark fraction is greater than the up quark fraction, as can be
seen in Fig. 6.8.5 and so its effective mass is reduced more than that of the up quark.
However, this difference is small and decreases with increasing density.

The reason for the differences between the flavour dependent and independent vec-
tor interactions lies in the imposed beta-equilibrium relations in Eqs. (6.8.12 -6.8.13).
Writing Eq. (6.8.12) in terms of the reduced chemical potentials for the flavour inde-
pendent vector interaction one finds

µd − µu − µe = µ̃d + 2gV

∑
i∈{u,d,s}

ρi − µ̃u − 2gV

∑
i∈{u,d,s}

ρi − µe = µ̃d − µ̃u − µe (6.8.17)

and for Eq. (6.8.13),

µd − µs = µ̃d + 2gV

∑
i∈{u,d,s}

ρi − µ̃s − 2gV

∑
i∈{u,d,s}

ρi = µ̃d − µ̃s . (6.8.18)

This equivalence of the beta-equilibrium relations between chemical potentials and re-
duced chemical potentials is the reason why the species fraction of particles do not
change with increasing vector coupling. The particle number densities are directly
related to the reduced chemical potentials via Eq. (6.8.16). This combined with the
gap equation for the quark masses, which is also only dependent on the reduced chem-
ical potential, the whole system of beta-equilibrium equations is independent of the
vector coupling. However, at a given density the chemical potentials are larger with
increasing vector coupling, but their increase is cancelled in the beta-equilibrium re-
lations (Eqs. (6.8.12–6.8.13)) leaving the particle number densities and hence also the
constituent quark masses invariant.

For the models including a flavour dependent vector interaction, there are extra
terms which do not cancel that are proportional to the vector coupling. For Eq. (6.8.12),

µd−µu−µe = µ̃d + 4GVρd− µ̃u− 4GVρu−µe = µ̃d− µ̃u−µe + 4GV(ρd− ρu) (6.8.19)
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Figure 6.8.9: Pressure as a function of density for the PS2 parameter set. Results
using the flavour dependent interaction GV (i.e. use Eq. (6.3.8)) (solid) and flavour
independent interaction gV (i.e. use Eq. (6.7.1)) (dashed) for different values of the
vector coupling.

and for Eq. (6.8.13),

µd − µs = µ̃d + 4GVρd − µ̃s − 4GVρs = µ̃d − µ̃s + 4GV(ρd − ρs) . (6.8.20)

The equilibrium conditions do not simplify down to relations of the same form between
the reduced chemical potentials. Because there remains an explicit dependence on the
vector coupling in the beta-equilibrium relations the particle number densities and
hence also the constituent quark masses change.

The pressure of quark matter is calculated from the thermodynamic relation

P = −Vtotal = −VMF ({Mi} , {µi})− Vl({µl}) , (6.8.21)

where Vl is the effective potential contribution of the non-interacting leptons. This
gives the same pressure contribution as in Ch. 5. The energy density is obtained from
the following formula

εtotal = Vtotal +
∑

i∈{u,d,s,e,µ}

µiρ
v
i , (6.8.22)

where in the second term µi remains the un-reduced thermodynamic chemical potential.
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Figure 6.8.10: Same as Fig. 6.8.9, but for the parameter set HK.

Figures 6.8.9 and 6.8.10, plainly show the appreciable affect the vector interaction
has on the pressure as a function of density. Overall, the behaviour of the two parameter
sets with change in strength and type of vector interaction is not dissimilar. For both,
there is a considerable increase in pressure upon turning on the vector coupling and
then increasing further to be equal to the scalar coupling. As anticipated, the flavour
independent vector interaction provides a larger increase in pressure at high density
(ρ & 2ρ0) for both parameter sets. The earlier onset of the strange quark makes the
models with a flavour dependent vector interaction a little softer again. However, the
vector interaction still produces a stiffer EoS state on increasing the vector coupling.
The onset of strangeness is apparent in both figures, but a little more prominent for the
HK parameter set, where the increase in strange quark fraction increases more rapidly
with density than the PS2 parameter set, softening the curve more—compare with
Fig. 6.8.5. The PS2 parameter set produces a slightly stiffer EoS, particularly at low
density. It also produces considerably less curvature in the pressure at low density and
around the region where strange quarks appear as compared to the the HK parameter
set. Figures 6.8.11 and 6.8.12 show the pressure against energy density. As would be
expected, the pressure exhibits similar behaviour as a function of energy density.
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Figure 6.8.11: Pressure as a function of energy density for the PS2 parameter set.
Results using the flavour dependent interaction GV (i.e. use Eq. (6.3.8)) (solid) and
flavour independent interaction gV (i.e. use Eq. ((6.7.1)) (dashed) for different values
of the vector coupling. Here we normalise the energy density with ε0 = 140 MeVfm−3.
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Figure 6.8.12: Same as Fig. 6.8.11, but for the parameter set HK.



CHAPTER 6. QUARK MATTER IN THE NAMBU–JONA-LASINIO MODEL 147

 800

 1000

 1200

 1400

 1600

 0  2  4  6  8  10

ε
to

ta
l/

ρ
 [

M
eV

]

Baryonic Density [ρ/ρ0] 

GV = 0  

GV = GS/2  

GV = GS  

gV = GS/2  

gV = GS  

Figure 6.8.13: Average energy per particle (including leptons) as a function of total
baryonic density for the PS2 parameter set. Results using the flavour dependent in-
teraction GV (i.e. use Eq. (6.3.8)) (solid) and flavour independent interaction gV (i.e.
use Eq. (6.7.1) (dashed) for different values of the vector coupling.
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Figure 6.8.14: Same as Fig. 6.8.13, but for the parameter set HK.

The averaged energy per particle (including leptons) is shown as a function of
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density in Figs. 6.8.13 and 6.8.14. Here there is a noticeable difference between the
two parameter sets. Note the small change in scale between the two figures. The PS2
produces less energy per particle than the HK set. The impact of the t’ Hooft term
at low density causes considerable curvature—compare with the behaviour of quark
masses in Figs. 6.8.7 and 6.8.8. Increased curvature is also present in the region where
strange quarks are occurring. Albeit, with increasing strength of the vector interaction
more energy per particle is produced for both parameter sets.

6.9 Summary

In this chapter, we began by introducing the NJL model, an effective low to interme-
diate energy model of QCD. A Fierz invariant NJL Lagrangian based on one gluon
exchange was presented and then the mean field approximation was discussed in the
path integral framework. The NJL effective potential and gap equations were presented
and derived in App. B. Numerical results for model were presented and discussed. The
results of the proper time regularised model developed in this chapter were compared
to the three momentum regularised model with t’ Hooft determinant term. The pa-
rameter set PS2 is preferred for modelling high density matter over PS1, because of
the behaviour of the constituent quark mass as a function of chemical potential. For
quark matter in beta equilibrium, the PS2 model produced overall qualitatively similar
results to the HK model despite the different behaviour of the quark masses. Although,
the PS2 model produced slightly more pressure, particularly at low density, as com-
pared with the HK model. In the next chapter we will use hadronic QMC and NJL
quark models to investigate hybrid stars.



7
Phase Transitions to Quark Matter

In this chapter we consider a transition from hadronic matter (modelled using the HF-
QMC model) to quark matter (using the NJL model). We investigate the possibility of
a smooth crossover transition in a purely phenomenological way, whereby we interpolate
between hadronic and quark model equations of state (EoS).

7.1 Hybrid Stars and the Phase Transition to Quark

Matter

It has long been thought that the densities reached inside the inner core of neutron
stars may be sufficient to produce a phase transition from hadronic matter to deconfined
quark matter forming hybrid stars. A transition to the chirally restored phase of QCD
is also thought to occur at high density. It is unknown if these two transitions coincide
and the form they may take. In understanding these transitions one would ideally like to
use QCD directly, but as already described in detail in earlier chapters this is currently
too difficult. For confinement, one typically resorts to using two phenomenological
models which epitomise the key features of QCD in the two asymptotic regions of
its phase diagram—one in the low density region modelling hadronic matter and the
other modelling quark matter at intermediate to high density—and then construct a
phase transition between the two. This means dissociation of hadrons does not occur
naturally and is dependent on how we artificially construct the transition.

Various models have been used to describe each phase and different constructions
in characterising the process of deconfinement have been investigated, such as the
Maxwell [295, 297, 340–348] and Gibbs [291, 302, 304, 334, 349–357] constructions
describing first order transitions and also interpolation/percolation constructions in-
terpreting the transition to be of crossover type [282, 283, 334, 358–360]. The calcu-
lated properties of hybrid stars are considerably influenced by the choice of models and

149
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type of construction used to describe the transition. In this section, we will discuss
each of these constructions and how they relate to one another. However, in Sec. 7.2
we choose to investigate the possibility that the transition is described by a smooth
crossover using a phenomenological interpolation procedure.

In chapters 5 and 6, we considered each phase to be in beta-equilibrium and also
charge neutral. The requirement of charge neutrality effectively reduced each phase to
a one component system controlled by the baryonic density or equivalently a baryonic
chemical potential. Built on this foundation, one is naturally led to consider phase
transitions in neutron stars modelled assuming a one component description, i.e., a
Maxwell construction. This is the simplest possibility for constructing a phase tran-
sition and historically the most studied. In such a construction, looking at pressure
versus baryonic chemical potential, one can infer the transition from hadronic to quark
matter by where the curves for each phase meet. On either side of this point, the
phase with the greatest pressure is the dominant phase. More precisely, the transition
point in the Maxwell construction is identified by the following conditions of thermal,
mechanical and one component chemical equilibrium

THP = TQP , PHP = PQP , µHPn = µQPn , (7.1.1)

where in the quark phase the neutron chemical potential is defined as µQPn = µu + 2µd.
This first order transition corresponds to a kink in the pressure versus neutron chemical
potential plane and a constant pressure plateau in the pressure versus density plane.
This plateau connects the hadronic phase to the quark phase. With this sudden jump
in the density at constant pressure, the Maxwell construction does not allow for the
possibility of a mixed phase where both hadrons and quarks can coexist together. For
actual hybrid stars, in this construction, they will have a hadronic outer layer and
dense quark core with no possibility for a mixed phase in between.

When modelling phase transitions in neutron stars using the Maxwell construction
each phase is considered independently charge neutral. However, as was first pointed
out by Glendenning [349], if a mixed phase exists then charge neutrality can be achieved
globally rather than locally. To consider this possibility we are led to the Gibbs con-
struction for a multi-component system. In the context of hybrid stars, we have a two
component system corresponding to two conserved quantities, namely baryon number
and charge. The removal of the unrealistic requirement of local charge neutrality has
been found to have important consequences for hybrid EoS [349].

The Gibbs construction for a first order transition requires that thermal, mechan-
ical and chemical equilibrium are implemented in the mixed phase region. Chemical
equilibrium requires that the, now two, independent chemical potentials (the neutron
and electron chemical potentials) of the two oppositely charged phases are equal. Out-
side of the coexistence region the phase with the greatest pressure is the persistent
phase. As the hadronic phase is known to be the dominant phase at low density, one
calculates the hadronic phase and uses the calculated neutron and electron chemical
potentials as input into the quark phase calculation of the equation of state. Obviously,
in the purely hadronic phase there is only one independent chemical potential owing
to the requirement of charge neutrality, but in searching for a mixed phase where we
do not require local charge neutrality, but rather global charge neutrality, we must
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pass both the neutron and electron chemical potentials from the hadronic matter cal-
culation to the quark matter calculation. If at some density the pressures of the two
phases become equal, then a mixed phase is possible. If this mixed phase exists, it can
potentially persist over a range of densities with the pressure increasing monotonically
with density. In the mixed phase, hadronic matter will possess a charge and quark
matter the opposite charge.

The Maxwell and Gibbs constructions described above are bulk constructions, treat-
ing both hadron and quark matter as uniform matter. Important finite size effects
are neglected, such as the surface tension at the hadron-quark interface and also the
Coulomb interaction. These effects have been shown to lead to the formation of geo-
metrical structures forming phases commonly referred to as pasta or structured mixed
phases. From more sophisticated calculations which take into account these effects,
see for example Refs. [345, 361–367], it is known that these structures tend to smooth
the pressure plateau seen in the Maxwell construction. Moreover, the Maxwell con-
struction can be considered a limiting scenario where the surface tension is large and
conversely for the Gibbs construction where it is taken to vanish.

These constructions describing first order transitions typically make it difficult to
construct stiff hybrid EoS compatible with large neutron star mass observations, unless
the hadronic EoS is already sufficiently stiff. However, some models have been able to
produce massive hybrid stars compatible with observation, see for example [299, 334,
343, 347, 357].

The conventional first order constructions produce hybrid EoS which are typically
softer than hadronic EoS. The EoS are softer because in order to implement the Maxwell
and Gibbs constructions, the quark pressure must be less than the hadronic pressure
at low neutron chemical potential, intersect at some point, and then remain above with
increasing chemical potential. This requirement implicitly restricts the possible hybrid
EoS to be softer than hadronic EoS in general.

Moreover, since no known model has a realistic description of the confinement mech-
anism this adds to the difficulty in providing a reasonable description of the matter
in the transition region. Model derived hadronic and quark EoS may only provide
adequate explanations of strongly interacting matter in respectively the low and high
density limits. These models may, in fact, be unreliable in the intermediate transi-
tion region where the requirements of thermal, mechanical and chemical equilibrium
are imposed. The requirement of mechanical equilibrium (PQ = PH) deserves special
emphasis because models not including confinement would necessarily produce unnat-
urally large pressure. In some situations, to ensure a transition at a reasonable density,
model parameters must be restricted or a bag constant introduced to lower the pres-
sure [360]. Either of these choices will also affect the high density behaviour of the
EoS [360]. We use the usual convention, where the pressure and the energy density
vanish in vacuum. However, a bag constant could be introduced to produce non-zero
values in vacuum. A larger positive value would lower the quark pressure helping to
enable such a first order transition. For this reason, the Maxwell and Gibbs construc-
tions could fail to capture essential features of the transition region accurately despite
the models being otherwise reliable in their respective asymptotic limits.

In searching for the hadron–quark phase transition by the Maxwell and Gibbs
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constructions, the implicit assumption is made that the transition is first order. This is
generally assumed, but the hadron–quark transition may not be a first order transition
in the interior of the QCD phase diagram. It may take the form of a crossover transition
similar to what is predicted by lattice QCD at low density and high temperatures [368–
371]. If deconfinement were to take the form of a crossover, we could parametrise our
ignorance of the transition region by phenomenologically interpolating between the
hadron and quark EoS. This possibility has recently received much attention from
several groups [282, 283, 334, 359, 360].

An argument which suggests the possibility that the transition may be a crossover
rather than a phase transition follows from the known extended nature of hadrons.
With hadrons being a colour singlet cluster of confined quarks, an inference to be drawn
from their nature is that a progressive transition to quark matter may occur where
hadrons and quarks coexist and interact with one another. As the densities reached
inside neutron stars are generally thought not to be greater than 10ρ0, the quarks are
most likely not asymptotically free, but are rather still strongly interacting [282, 283]. It
is well known that including a vector interaction among quarks can significantly stiffen
an EoS [295], meaning that if a crossover transition to a stiff quark EoS occurred at low
enough density, this would therefore offer a possible resolution between EoS with exotic
degrees of freedom and the recent observations of massive neutron stars [282, 283].

Hybrid EoS were previously calculated using a Gibbs construction employing a
Hartree QMC model and a simpler version of the NJL model without vector interac-
tions in Refs. [351, 372]. More recently, a Gibbs construction was employed between
a different variation of the Hartree-Fock QMC model and a bag model [357]. We will
not consider the above constructions further. Instead, we will contemplate the possi-
bility that the transition is actually a smooth crossover. This will be done using the
Hartree–Fock Quark-Meson Coupling (QMC) model developed in Ch. 5 to describe
the hadronic phase and the three flavour NJL model developed in Ch. 6 for the quark
phase. In using these two models, quark degrees of freedom are influencing both re-
gions with the latter also exemplifying chiral symmetry breaking. With both models
employing quark degrees of freedom it is hoped that they will be more reliable in the
transition region. In this region where hadrons and quarks are expected to coexist,
it is likely that the quark substructure of hadrons would play an important role and
their interaction with the external quarks to be strong. The QMC model has the
advantage over models which employ point-like descriptions of hadrons by modelling
the baryons as MIT bags. In addition to incorporating this structure which has been
shown to be connected to many-body forces in a non-relativistic limit, it also includes
its in-medium modification potentially making it more realistic by inclusion of this ad-
ditional physics. Although, this is still a crude model of confinement and it still lacks
an interaction between hadrons and the already deconfined external quarks.

In the next section we discuss the percolation picture of the hadron–quark tran-
sition. This kind of transition was, for example, recently investigated by Masuda et
al [282, 283] using several hadronic models and the three momentum regularised NJL
model. Their hadronic EoS were obtained using a G-matrix formulation employing
various realistic potentials, such as the Argonne AV18 and Paris [69], Reid and Ni-
jmegen [373] potentials supplemented with three-body forces. They also considered
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Figure 7.2.1: Interpolating functions f±(ρ) (blue/green) and g+(ρ) (purple) versus
density (ρ) in units fm−3. The red dashed vertical lines mark the chosen transition
region (ρ̄,Γ) = (3ρ0, ρ0) with ρ0 = 0.16fm−3.

a relativistic mean field model SCL3ΛΣ [374]. They concluded that massive hybrid
stars (MNS ∼ 2M�) could be produced using a percolation picture provided the quark
matter EoS was stiff enough and the transition occurred at moderately low density
(ρ ∼ 3ρ0), providing a possible reconciliation of exotic degrees of freedom with the
Demorest and Antoniadis observations [202, 203]. We now examine this possibility
using the Hartree–Fock QMC model and both the proper–time and three momentum
regularised versions of the NJL model.

7.2 Interpolation Construction

If we assume that we understand how the low and high density matter behaves asymp-
totically, then we can parametrise our ignorance of the intermediate region where the
phase transition occurs using an interpolating scheme. It should be understood that
the choice of interpolating scheme is not unique. Masuda et al [282, 283] investigated
two different interpolation constructions, pressure versus baryonic density and energy
density versus baryonic density employing a hyperbolic tangent function. Hell and
Weise [334] interpolated pressure as a function of energy density using a similar func-
tion. Alvarez Castillo et al [359] and Kojo et al [360] interpolated pressure as function
of baryonic chemical potential using a gaussian and polynomial description, respec-
tively. For each interpolation method, one thermodynamic variable was interpolated
as a function of another, then the remaining variables were calculated from the interpo-
lated variable. This results in additional thermodynamic corrections to the calculated
variables beyond mere interpolation. These additional corrections are meant to pre-
serve thermodynamic consistency between the variables, which may be important in
applications to physical systems such as hybrid stars. However, since these corrections
originate from a phenomenological interpolation it is not clear whether they are phys-
ically meaningful or simply an artefact of the interpolation construction used. Only a
deeper understanding of QCD thermodynamics can answer this. For this reason, we
show numerical results with and without this thermodynamic correction.
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We follow Ref. [282] and interpolate energy density as a function of total baryonic
density. To facilitate the transition between the hadron and quark EoS we introduce
the following sigmoid interpolating functions

f±(ρ) =
1

2
(1± tanh(X)) , (7.2.1)

where X =
ρ− ρ̄

Γ
and the transition region is chosen to be ρ ∈ [ρ̄− Γ, ρ̄+ Γ] with

(ρ̄,Γ) = (3ρ0, ρ0) and ρ0 = 0.16fm−3. The transition from hadronic EoS to the quark
EoS is centred about ρ̄ with the width of the transition region determined by Γ. The in-
terpolating functions are depicted in Fig. 7.2.1. These sigmoid functions are continuous,
monotonic and differentiable, varying smoothly between the horizontal asymptotes of 0
and 1. There is no physical argument for these functions other than we want a smooth
function to facilitate the transition from the hadronic EoS to the quark EoS produc-
ing a faux crossover transition. In this manner, two EoS based on different models,
including complementary physics and aimed at describing matter in different density
regimes, can be smoothly transitioned between in a reasonable, but phenomenological
way. Alternative functions could of course be used, as long as they smoothly transi-
tioned between the two EoS. Moreover, it is not necessary to use the hyperbolic tangent
function to construct a sigmoid function, it is just a convenient choice as most pro-
gramming languages have this as an inbuilt function. Other sigmoid functions utilising
algebraic forms or the well known error function would produce very similar results.

The energy density is interpolated using Eq. (7.2.1) by

ε(ρ) = εHP(ρ)f−(ρ) + εQP(ρ)f+(ρ) . (7.2.2)

Note that the functions f±(ρ) cannot be interpreted as the quark or hadronic matter
volume fraction (as in a Gibbs construction mixed phase), they merely interpolate the
energy density.

When the energy density is taken as the interpolated variable as a function of den-
sity, the pressure is then calculated from this interpolated energy density (Eq. (7.2.2)),
using

P (ρ) = ρ2∂(ε/ρ)

∂ρ
. (7.2.3)

This leads to
P (ρ) = PHP(ρ)f−(ρ) + PQP(ρ)f+(ρ) + ∆P , (7.2.4)

where the correction

∆P = ρ [εQP(ρ)g+(ρ) + εHP(ρ)g−(ρ)] . (7.2.5)

The functions g±(ρ) are the density derivatives of the interpolating functions,

g±(ρ) =
df±(ρ)

dρ
= ± 2

Γ
(eX + e−X)−2 . (7.2.6)

Functions defined as the derivative of a sigmoid function are bell shaped curves because
of the inherent “s” shape of all sigmoid functions. The density dependence of g+ is
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shown in Fig. 7.2.1 , from this it can be inferred that the thermodynamic correction,
∆P , will only contribute significantly in the transition region. It is also dependent
on the difference of the energy density between the two EoS. If a narrower transition
region is chosen, then the bell curve will be more sharply peaked with a larger maximum
producing a more substantial contribution to the pressure.

Using the above procedure we can easily construct many hybrid EoS. However,
we cannot indiscriminately interpolate between hadronic and quark EoS. Rather we
should also impose additional criteria to ensure we obtain a physically meaningful EoS.
The requirements that the EoS be both stable and causal impose stringent constraints
ruling out many possible interpolations.

In interpolating between the two EoS, the requirement of stability, i.e., the pressure
gradient be greater than zero,

dP

dρ
> 0 , (7.2.7)

is very restrictive. Interpolated EoS that do not meet this requirement are not useful
in modelling hybrid stars. Without the thermodynamic correction to the pressure it
is clear from the interpolating functions and the EoS presented in earlier chapters will
lead to an interpolated EoS that satisfies this constraint. However, the additional
correction may induce inflection points in the EoS possibly leading to an instability.

By a causal EoS we simply mean an EoS where the speed of sound in matter, cs, is
less than the speed of light (c = 1):

c2
s =

dP

dε
< 1 . (7.2.8)

Here we simply calculate it from a high order polynomial fit to the EoS data file.
Besides acting as a constraint, it is also a useful measure of the stiffness of an EoS.

7.3 Numerical Results and Discussion

Throughout this section the interpolations shown in figures, unless otherwise stated,
are between the “Standard” or baseline scenario of the HF-QMC model and the PS2
and HK models incorporating a flavour dependent vector interaction with the transi-
tion region chosen to be (ρ̄,Γ) = (3ρ0, ρ0). Variations beyond these constructions are
examined in Tables 7.3.1 and 7.3.2.

The interpolation of energy density as a function of density by Eq. (7.2.2) is shown
in Fig. 7.3.1. The interpolated energy densities are compared to the quark and hadronic
energy densities. There is a noticeable difference between PS2 and HK models, the HK
models produce an energy density greater than the hadronic energy density for all val-
ues of the vector coupling. In the case of the PS2 model with no vector interaction
the hadronic energy density is greater than the quark energy density for the density
range shown. When the vector interaction is increased to half the scalar coupling, the
hadronic energy density is greater than the quark energy density up until the density
reaches ρ ∼ 0.7 fm−3, then the quark energy density is greater. The difference of the
quark and hadronic energy density significantly affects the correction to the pressure to
maintain thermodynamic consistency. It also dictates the sign of the correction as seen
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from Eq. (7.2.5). A large separation of the quark and hadronic energy density curves in-
dicates a larger correction is needed to maintain thermodynamic consistency—compare
with Fig. 7.3.2. For all HK models, ∆P is positive and hence it will stiffen the EoS at
the beginning of the transition region and soften towards the end. The strength of the
vector interaction significantly influences the magnitude of ∆P and on increasing its
strength ∆P is amplified considerably. As for the PS2 models, the sign of ∆P varies
with density and the strength of the vector interaction. In the absence of the vector
interaction, it is negative because of the density dependence of the difference of the
quark and hadron energy densities. Thus, in contrast to HK models, it will soften the
EoS at the beginning of the transition region and stiffen towards the end.

Figures 7.3.3 and 7.3.4 show pressure with and without the thermodynamic correc-
tion as a function of total baryonic density and energy density, respectively. As can be
seen by comparing curves with and without the thermodynamic correction, the inter-
polated EoS is significantly affected by ∆P in the transition region. Without the ther-
modynamic correction, the transitions between the hadronic and all quark EoS occur
smoothly without violating the constraints of thermodynamic stability and causality
as would be expected from monotonic functions like those expressed in Eq. (7.2.1).
Also, away from the transition region (ρ̄,Γ) = (3ρ0, ρ0) the interpolated EoS are al-
most equivalent to the un-interpolated hadronic and quark EoS. However, in plots (d)
of Figs. 7.3.3 and 7.3.4, the correction to the pressure is so significant that the resulting
EoS becomes unstable for HK models with GV = GS/2 and GV = GS. The greater the
separation in the ε–ρ plane, the larger the correction ∆P , leading to more significant
change in the pressure.

The speed of sound in matter squared is shown in Fig. 7.3.5 as a function of energy
density. Interpolations between the hadronic EoS and quark models with both types
of vector interaction are included in Fig. 7.3.5. On comparing with Fig. 7.3.4, it can be
seen that as an EoS softens, sound slows down and as the EoS stiffens, sound speeds
up. The speed of sound is a very good measure of the stiffness of an EoS. Without the
thermodynamic correction the interpolated EoS with PS2 models are generally stiffer
than those with HK models, particularly at low and intermediate density. It is also
clear that the flavour independent vector interaction produces a stiffer EoS and hence
faster sound than models incorporating the flavour dependent vector interaction. On
inclusion of the thermodynamic correction, however, interpolated EoS with HK models
incorporating a vector interaction are stiffer than their PS2 counterparts. The speed of
sound is enhanced in the transition region for both PS2 and HK models. However, it is
not as significant for the PS2 models. The EoS shown in Fig. 7.3.5 remain causal and
most interpolated EoS examined in the tables also remain causal. However, there were
a few exceptions. Those that did not meet the stability and causality requirements
are indicated by an asterisks (∗) in Tables 7.3.1 and 7.3.2. In plot (d) of Fig. 7.3.5,
the speed of sound becomes imaginary for HK models with GV = GS/2 and GV = GS,
once again indicating an unstable EoS .

If an interpolated EoS was found to be unstable or to violate causality, that does
not mean an interpolation between those particular hadronic and quark models is not
possible in general. It simply means it is not possible to construct a consistent EoS in
our current interpolation scheme. Equations of state that do not meet our requirements
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of stability and causality with our chosen interpolation scheme are simply discarded.
More detailed investigations on the dependence of the interpolation scheme are beyond
the scope of this thesis and are left for future work.

Interpolated EoS which satisfied the two constraints were used as input to integrate
the TOV equations1. The resulting M–R relations for several interpolations, with and
without the thermodynamic correction, are shown in Fig. 7.3.6. All curves shown in
Fig. 7.3.6 use the “Standard” or baseline scenario of the HF-QMC model, so all vari-
ations are a result of changes in the quark model and the thermodynamic correction
∆P . Without ∆P , interpolations with PS2 models are shown to produce massive hy-
brid stars, compatible with the Demorest and Antoniadis observations [202, 203], even
in the absence of a vector interaction. However, for HK models only when gV = GS

is a sufficiently massive hybrid star, compatible with observations, actually produced.
The only difference between these interpolated EoS is the quark model. The predic-
tion of more massive hybrid stars is a result of the stiffer PS2 quark EoS at low and
intermediate density. The softer HK models predict radii about 0.5 km smaller than
PS2 models, but for both models increasing the vector coupling increases the radius
only slightly.

Including ∆P has a significant impact on the M–R relationships for all models.
Considering the interpolated EoS with the PS2 quark models, those with GV = 0
and gV = GV = GS/2 predict smaller maximum masses, whereas the gV = GV = GS

models produce more massive hybrid stars. In the absence of a vector interaction the
interpolated EoS with the PS2 model no longer satisfies the constraints set by the
observations of massive stars. More noticeable, however, is the separation of curves
in terms of radii. The softening at the start of the transition region coming from the
correction ∆P significantly reduces the radius, particularly for GV = 0. The other
models also predict smaller radii than when ∆P was ignored. As for the interpolated
EoS utilising the HK models, the maximum masses are considerably larger and radii
are bigger because ∆P is always positive and larger in magnitude. The model with
GV = 0 still does not meet the astrophysical constraints.

A summary of maximum mass configurations is presented in Table 7.3.1. To show
the dependence of the interpolated EoS on the hadronic EoS we also included interpo-
lations between the overly stiff variation of the HF-QMC model, where the cut-off used
in the Fock terms is increased from Λ = 0.9 GeV to Λ = 1.3 GeV. From this table, it
can be inferred that the properties of the maximum mass configurations of hybrid stars
are affected by the hadronic model, but are mostly influenced by the quark model.

Table 7.3.2 summarises hybrid star properties under variation of the transition
region, ρ̄ ∈ {3ρ0, 4ρ0, 5ρ0}. As would naively be expected, pushing the centre of the
transition region to higher density tends to produce a less stiff EoS for the majority
of the interpolations which naturally translates to smaller maximum masses for hybrid
stars. On delaying the transition to higher densities, it was found to be more difficult
to construct a consistent EoS between the chosen hadronic and quark models. This was
conspicuously evident for the HK models, partly owning to the greater separation in the
ε–ρ plane of the hadronic and quark model curves, leading to a larger thermodynamic
correction ∆P .

1The BPS EoS was attached at low density as in Ch. 5.
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Figure 7.3.1: Energy density as a function of total baryonic density. For plot (a), the
interpolation is between the “Standard” or baseline scenario of the HF-QMC model
and the proper time regularised PS2 model with flavour dependent vector interaction.
Similarly for plot (b), but with the three momentum regularised model with flavour
dependent vector interaction. The crossover region is chosen to be (ρ̄,Γ) = (3ρ0, ρ0).
Specific curves for both plots are indicated in the key of plot (a).
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Hadronic Quark GV Vector Mmax [M�] R [km] ρmax
c [ρ0]

Model Model Int. No ∆P ∆P No ∆P ∆P No ∆P ∆P
Standard PS2 0 - 2.15 1.75 12.52 10.25 5.50 7.54
Standard PS2 GS/2 dep. 2.20 2.05 12.57 11.54 5.18 5.90
Standard PS2 GS/2 indep. 2.28 2.14 12.44 11.44 5.28 5.94
Standard PS2 GS dep. 2.23 2.34 12.54 12.41 5.00 4.98
Standard PS2 GS indep. 2.37 2.46 12.42 12.27 5.02 5.02
Standard HK 0 - 1.64 1.90 11.41 12.73 6.32 4.90
Standard HK GS/2 dep. 1.76 ∗ 11.75 ∗ 5.40 ∗
Standard HK GS/2 indep. 1.92 2.52 11.30 13.35 5.92 4.36
Standard HK GS dep. 1.82 ∗ 11.57 ∗ 5.38 ∗
Standard HK GS indep. 2.01 2.87 11.39 13.66 5.40 4.08
Λ = 1.3 PS2 0 - 2.19 1.73 12.74 10.24 5.34 7.68
Λ = 1.3 PS2 GS/2 dep. 2.25 2.03 12.79 11.57 5.02 5.94
Λ = 1.3 PS2 GS/2 indep. 2.32 2.12 12.64 11.46 5.14 5.98
Λ = 1.3 PS2 GS dep. 2.28 2.32 12.75 12.48 4.86 4.96
Λ = 1.3 PS2 GS indep. 2.40 2.44 12.61 12.31 4.90 5.02
Λ = 1.3 HK 0 - 1.69 1.89 11.73 12.95 5.96 4.66
Λ = 1.3 HK GS/2 dep. 1.81 ∗ 12.12 ∗ 5.04 ∗
Λ = 1.3 HK GS/2 indep. 1.95 2.52 11.56 13.47 5.70 4.28
Λ = 1.3 HK GS dep. 1.87 ∗ 11.97 ∗ 5.00 ∗
Λ = 1.3 HK GS indep. 2.11 2.87 11.62 13.73 5.24 4.04

Table 7.3.1: Hybrid star properties in the percolation picture. The crossover region
is chosen to be (ρ̄,Γ) = (3ρ0, ρ0). An astericks (∗) indicates that a consistent EoS
could not be constructed between that variation of hadronic and quark models with
the chosen interpolation method.
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Quark GV ρ̄ Mmax [M�] R [km] ρmax
c [ρ0]

Model No ∆P ∆P No ∆P ∆P No ∆P ∆P
PS2 0 3ρ0 2.15 1.75 12.52 10.25 5.5 7.54
PS2 0 4ρ0 1.98 ∗ 11.84 ∗ 6.18 ∗
PS2 0 5ρ0 1.87 ∗ 11.54 ∗ 6.56 ∗
PS2 GS/2 3ρ0 2.20 2.05 12.57 11.54 5.18 5.90
PS2 GS/2 4ρ0 2.01 1.99 11.74 11.43 5.96 6.30
PS2 GS/2 5ρ0 1.89 1.96 11.36 11.20 6.42 6.78
PS2 GS 3ρ0 2.23 2.34 12.54 12.41 5.00 4.98
PS2 GS 4ρ0 2.03 2.28 11.61 11.85 5.82 5.72
PS2 GS 5ρ0 1.91 ∗ 11.17 ∗ 6.36 ∗
HK 0 3ρ0 1.64 1.90 11.41 12.73 6.32 4.90
HK 0 4ρ0 1.74 1.92 11.91 12.24 5.70 5.50
HK 0 5ρ0 1.78 ∗ 12.00 ∗ 5.60 ∗
HK GS/2 3ρ0 1.76 ∗ 11.75 ∗ 5.40 ∗
HK GS/2 4ρ0 1.78 ∗ 11.92 ∗ 5.26 ∗
HK GS/2 5ρ0 1.79 ∗ 11.93 ∗ 5.38 ∗
HK GS 3ρ0 1.82 ∗ 11.57 ∗ 5.38 ∗
HK GS 4ρ0 1.82 ∗ 11.59 ∗ 5.38 ∗
HK GS 5ρ0 1.81 ∗ 11.61 ∗ 5.50 ∗

Table 7.3.2: Hybrid star properties in the percolation picture under variation of ρ̄ ∈
{3ρ0, 4ρ0, 5ρ0}. The “Standard” or baseline scenario is used for the hadronic model
and the flavour dependent vector interaction is used in each of the quark models. An
astericks (∗) indicates that a consistent EoS could not be constructed between that
variation of hadronic and quark models with the chosen interpolation method.
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7.4 Summary

In this chapter we began by discussing phase transitions from hadronic matter to quark
matter, with emphasis on the conventional first order treatments via the Maxwell and
Gibbs constructions. How they are implemented, their properties and their short-
comings were highlighted. We then discussed modeling the transition as a smooth
crossover, a possibility which has recently been given much consideration in the liter-
ature [282, 283, 334, 358–360]. Motivation for such a transition was discussed and one
method for implementing this kind of transition was presented. The numerical results
for the faux crossover construction between the HF-QMC and NJL models developed
in earlier chapters were then presented and discussed.

The interpolation transitions for the “Standard” and the “Λ = 1.3 GeV” scenarios
from Ch. 5 were shown. The latter was chosen so we could make a comparison with
the “Standard” scenario and an overly stiff version of the model to see the effect the
hadronic model has on the maximum neutron star mass in this kind of transition. It
appears that the hadronic model only has a small affect on the maximum neutron star
mass and it is mostly dependent on the quark model.

The affect of this interpolation method on the EoS of dense matter is shown in
Fig. 7.3.3 and 7.3.4. At low and high density it can be seen to approach the assumed
asymptotic limits, i.e. the hadronic and quark EoS, but in the intermediate region the
pressure can be somewhat weakened or enhanced depending on ∆P . It produces a
decrease in the pressure at the beginning of the transition region and increase towards
the end for PS2 models and the opposite behaviour for HK models. This clearly comes
from the density dependence of the difference between the energy densities of the two
EoS (see Eq. (7.2.5)) and is therefore dependent on the two EoS we are interpolating
between. Moreover, it suggests that the pressure in the transition region can potentially
be outside the limits set by the hadronic and quark EoS and possibly have inflection
points leading to an instability or violation of causality.

The main conclusion of this chapter is that the observations of large neutron stars
can certainly be explained within such a construction using the HF-QMC and NJL
models, if the quark model is sufficiently stiff and the transition occurred at low den-
sity, ρ̄ ∼ 3ρ0. This is in agreement with other recent works using similar and alterna-
tive methods to phenomenologically implement a faux crossover between hadronic and
quark models.

Another important conclusion is that the correction ∆P (Eq. (7.2.5)) has a con-
siderable influence on the interpolated EoS. As it arises from calculating the pressure
from the phenomenologically interpolated energy density, its meaning is somewhat am-
biguous. It is required for thermodynamic consistency, but on one hand it may merely
be an artefact of our chosen interpolation scheme. On the other hand, it could be
associated to non-perturbative physical effects in the transition region. More in depth
work is certainly needed to understand the validity and importance of this term and the
overall dependence on the interpolation scheme. Further insight can only come from
more detailed analysis of QCD thermodynamics above 2ρ0. Moreover, future heavy
ion collision experiments probing this region will certainly play an important role.
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Summary and Outlook

In this final chapter, we summarise the content of our thesis and discuss possible future
directions for the line of research presented here.

The underlying theme of this thesis was the calculation of the equation of state of
strongly interacting matter at zero temperature and the modelling of cold neutron stars.
The influence of quark degrees of freedom was especially emphasised with inclusion of
their effects not only in the deconfined quark phase, but also the confined hadronic
phase where they are usually neglected.

We began by exploring the hadronic equation of state for nuclear matter in the
quark-meson coupling model, including full Fock terms. The equation of state for
symmetric nuclear matter (SNM) and pure neutron matter (PNM) were calculated
in a Hartree-Fock approximation of the quark-meson coupling (QMC) model. We
included the effects of the four lightest mesons (σ, ω, ρ and π) and most notably the
tensor interaction of the vector mesons. The results for a comprehensive set of nuclear
matter properties, including K0, L0, Ksym, Q0, Kτ,v and hyperon optical potentials
at saturation density were studied in detail. We compared our numerical results with
empirical data, CEFT and alternative models.

For most properties of nuclear matter, such as the incompressibility, we found good
agreement with values extracted from empirical data for the majority of model vari-
ations considered. While the incompressibility was found to increase by the addition
of the Fock terms in some cases and tended to lie at the mid to top end of the ac-
ceptable range, it serves as a useful constraint on the additional mass parameter, Λ,
associated with the form factor that appears at the meson-baryon vertices (the latter
only being needed when the Fock terms are computed). A modest variation of the
nuclear matter observables with this parameter (which must lie above the masses of
the exchanged mesons included in the theory) was found. However, hyperon optical
potentials were not as accurately reproduced within the model. We found it necessary
to phenomenologically rescale the hyperon scalar couplings to achieve agreement with
accepted empirically extracted values.
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The symmetry energy and its slope were noticeably influenced by the Fock terms,
specifically curvature was introduced into these quantities through the tensor interac-
tion. At saturation density we found in all cases that the isospin incompressibility is
within accepted constraint limits and while the slope of the symmetry energy is on the
larger side, it does lie within the broad limits reported by Tsang et al. [87].

The consistency found between the theoretical predictions of N3LO chiral effective
field theory and the QMC model studied here for PNM up to and around nuclear
matter density is very satisfying. Beyond saturation density a slightly higher energy per
particle as a function of density was found. As the QMC model naturally incorporates
many-body effects it was not surprising to find that it produced a stiffer EoS than
models lacking three-body forces, but it also predicted a somewhat stiffer EoS above
saturation density than those that did.

Overall we found the Fock terms, especially the ρN tensor interaction, to have a
significant affect on the EoS of nuclear matter. This is partly because the couplings of
the model are fit to the saturation properties of SNM. The additional attraction from
the Fock terms after contact subtraction leads to an increased ω vector coupling. It is
increased because the delicate balance between the attractive and repulsive potentials
leading to the saturation of nuclear matter is changed.

After constraining the Hartree-Fock QMC model at saturation density we then
applied it to matter in generalised beta equilibrium (GBEM, including leptons and the
entire spin-1/2 baryon octet). Here we have taken the view that hadrons remain the
pertinent degrees of freedom, implicitly assuming no transition to more exotic matter
occurs up to ρ ∼ 1.2 fm−3. The resulting EoS were then used as input to integrate the
TOV equations and investigate the static properties of cold neutron stars.

At densities above three times nuclear matter density, the nucleon Fock terms were
found to contribute significantly to the EoS and the corresponding attraction is what
is responsible for the increased pressure and larger maximum stellar masses in several
scenarios. On increasing form factor mass, Λ, the maximum stellar mass increases
because of the increased vector coupling and pressure coming from the Fock terms.
This increased pressure arises mainly from the ρ meson contribution. Even with the
brief appearance of an additional hyperon in our baseline scenario, the value of Mmax is
still slightly larger than for the “Dirac Only” scenario because of the tensor interaction.
We saw that the maximum neutron star mass, for the case of nuclear matter in beta-
equilibrium where hyperons must appear, lies in the range 1.80 to 2.07M�. Radii also
tended to increase with Λ owing to the stiffer EoS. It was found that increasing the
strength of the Fock terms could not be pushed too far. For the value of Λ = 1.3GeV
the incompressibility is too high and radii are becoming too large.

The increased vector coupling produces a stiffer EoS making it easier to produce
neutron stars with maximum masses compatible with observation. However, the si-
multaneous description of nuclear matter observables, hyperon optical potentials and
massive neutron stars was difficult to achieve within the model. This, plus the depen-
dence of the incompressibility and maximum mass on Λ, led us to conclude that the
Hartree-Fock model used here with σ, ω, ρ and π mesons can only reproduce nuclear
matter properties, phenomenological hypernuclear optical potentials and massive neu-
tron star observations if there is significant rescaling of the hyperon coupling constants.
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Allowing for the rescaling of hyperon couplings we conclude that the maximum mass
allowed in the model lies in the range 1.8− 2.1M�.

With increasing density, hadrons begin to overlap and therefore are not likely to
remain the relevant degrees of freedom. At some point they may dissociate into some
form of quark matter. Whether or not the central densities achieved in neutron stars
are sufficient to produce such a transition is uncertain. This possibility motivated us
to study deconfined quark matter and the possibility of a deconfinement transition in
neutron stars. Transitions to quark matter have been studied by many authors, see for
example Refs. [282–284] for recent accounts.

We study deconfined quark matter using the three flavour Nambu–Jona-Lasinio
model based on one-gluon exchange. The model is implemented by employing Schwinger’s
covariant method of proper time regularisation. Comparisons are made with the more
commonly used three momentum regularised model with the t’ Hooft determinant
term. Two different parametrisations were considered, enforcing two different energy
scales within the model. The parameter set PS2 (M` = 201 MeV) was preferred for
modelling high density matter over PS1 (M` = 400 MeV), because of the behaviour
of the constituent quark mass as a function of chemical potential. For quark matter
in beta equilibrium, the PS2 model produced overall qualitatively similar results to
the three momentum regularised model with t’ Hooft determinant term using the HK
parameter set despite the different behaviour of the quark masses. Although, the PS2
model produced slightly more pressure, particularly at low density, as compared with
the HK model.

The inclusion of a flavour dependent vector interaction, which arises naturally after
the application of Fierz transformations to the colour current interaction, was seen
to significantly stiffen the quark matter EoS. A simpler flavour independent vector
interaction was also considered and found to produce an even stiffer EoS. These vector
interactions suggest slightly different species fractions in quark matter. For the flavour
dependent interaction, the species fraction changes with increasing strength of the
vector interaction because of the explicit dependence of the beta-equilibrium equations
on the vector coupling. Whereas, the flavour independent vector interaction leaves the
species fractions invariant.

For reasons outlined in Ch. 7, we chose to model the transition to quark matter
as a smooth crossover. This possibility is particularly intriguing and has been given
much consideration recently [282, 283, 334, 358–360]. Motivation for such a transition
was discussed and one method for implementing this kind of transition was presented.
Hybrid equations of state were constructed using this faux crossover construction and
then the properties of hybrid stars were calculated.

The transition was implemented between the developed HF-QMC and NJL models.
In particular, the interpolations were implemented for two variations of the HF-QMC
model and the two NJL models with varying vector interactions. The “Standard” or
baseline HF-QMC model scenario and an overly stiff version of the model, namely the
“Λ = 1.3 GeV” scenario, were chosen to see what affect the hadronic model had on the
maximum neutron star mass. It was found that the hadronic model only had a small
affect and it was mostly dependent on the quark model.

In the faux crossover method implemented in Ch. 7, at low and high density the
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interpolated EoS can be seen to approach the assumed asymptotic limits, i.e. the
hadronic and quark EoS, but in the intermediate region the pressure can be somewhat
weakened or enhanced depending on the thermodynamic correction ∆P . This correc-
tion results from requiring thermodynamic consistency and the density dependence of
the difference between the energy densities of the two EoS. Therefore ∆P is dependent
on the two EoS we are interpolating between. This correction has a considerable influ-
ence on the interpolated EoS, yet its meaning is somewhat ambiguous. It is required
for thermodynamic consistency, but it may merely be an artefact of our chosen inter-
polation scheme. However, it could be associated to non-perturbative physical effects
in the transition region. As already mentioned, more in depth work is certainly needed
to understand the validity and importance of this term and the overall dependence on
the interpolation scheme.

The enforcement of stability and causality constraints ruled out many possible
constructions, although, it was concluded that the observations of large neutron stars by
Demorest [202] and Antoniadis [203] can certainly be explained within this construction
using the HF-QMC and NJL models, if the quark model is sufficiently stiff and the
transition occurred at low density, ρ̄ ∼ 3ρ0. Our findings with the models used in this
thesis are in agreement with other recent works using similar and alternative methods
to phenomenologically implement a faux crossover between various hadronic and quark
models [282, 283, 334, 358–360]. Moreover, the qualitative findings of the faux crossover
construction used here should also extend to other hadronic and quark models.

We would now like to highlight an important point. The conceptual separation
between the incompressibility at saturation density or the slope of the symmetry energy
and ‘stiffness’ at higher densities is critical. It is the latter, i.e., the stiffness above
saturation density, which leads to massive neutron stars.

There are many possible future directions for the research presented here. Proba-
bly the most pressing issue for enhancing the description of the hadronic sector, within
this Hartree-Fock version of the QMC model, is reproducing the correct binding of
hyperons in nuclear matter. Specifically, the under binding of Λ hyperons in nuclear
matter and accounting for the known existence of Λ-hypernuclei without the need to
phenomenologically rescale couplings. As the scalar couplings are dependent on the
model of confinement it would be interesting to consider alternatives to bag models.
A possible alternative to the bag model is, for example, the hadronised NJL model
whereby one solves the Faddeev equation [318–320, 375]. It would also be important
to investigate the combined effect of the tensor interaction and quark degrees of free-
dom have on not only ground state properties of finite nuclei, but also excited state
properties, such as giant and pygmy resonances. Inclusion of additional meson degrees
of freedom could also be considered. However, it is the treatment of the lightest mesons
that is most important, and the inclusion of heavier mesons (e.g. δ, K∗, . . . ) would
necessarily be more model dependent.

As a first step of modelling three flavour quark matter in the proper time regularised
NJL model we have neglected superconducting phases and restricted ourself to the
mean field approximation. From other investigations, it would seem to be important to
extend this version of the model to superconducting matter (see for example Refs. [290–
292, 294]) and to also include quantum fluctuations which lie beyond the leading order
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mean field approximation [323].
The hybrid EoS developed here hinge on the assumption that the deconfinement

transition is a crossover and that we can smoothly interpolate between hadronic and
quark models, essentially parametrising our ignorance of the intermediate transition
region. Determining whether it is indeed a crossover or not may be possible with
upcoming HIC experiments probing even higher densities and greater asymmetries.
If it were found to be a valid assumption, it would offer a possible resolution to the
problem of exotic degrees of freedom and massive compact stars. However, more work
would be needed to understand the interpolation dependence and the physical meaning
behind corrections such as ∆P .

Understanding QCD, its thermodynamics (phase diagram and EoS), emergent phe-
nomena and how to make the connection to traditional nuclear physics have long been
very important and difficult open problems. In particular, the nature of confinement
and how to connect the so-called non-perturbative and perturbative regimes of QCD
will need to be better understood before we can finally say that we really understand
the strong interaction and hence also its application to interesting physical systems like
neutron stars and finite nuclei. Much research has been performed on these topics and
they will continue to be avenues of intense research for the foreseeable future with a
lively back and forth between theory and experiment. Nonetheless, the future is very
bright for such investigations with numerous terrestrial experiments and astrophysical
observations that will be carried out in the very near future. These are anticipated to
shed new light, informing and inspiring further theoretical studies.
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A
Hadronic Matter Supplemental Material

A.1 Bag Model Mass Parametrisations

We use the bag model mass parametrisation including one-gluon exchange as obtained
in Ref. [188]. For the spin-1/2 octet baryons these parametrisations are as follows:

M∗
N = MN − gσσ + (0.002143 + 0.10562Rfree

N − 0.01791(Rfree
N )2)(gσσ)2 , (A.1.1)

M∗
Λ = MΛ − (0.6672 + 0.04638Rfree

N − 0.0022(Rfree
N )2)gσσ

+ (0.00146 + 0.0691Rfree
N − 0.00862(Rfree

N )2)(gσσ)2 ,

(A.1.2)

M∗
Σ = MΣ − (0.6653− 0.08244Rfree

N + 0.00193(Rfree
N )2)gσσ

+ (0.00064 + 0.07869Rfree
N − 0.0179(Rfree

N )2)(gσσ)2 ,

(A.1.3)

M∗
Ξ = MΞ − (0.3331 + 0.00985Rfree

N − 0.00287(Rfree
N )2)gσσ

+ (−0.00032 + 0.0388Rfree
N − 0.0054(Rfree

N )2)(gσσ)2 .

(A.1.4)

A.2 Self-energy

In the nuclear matter rest frame the self-energy of a baryon can be written as [150]

Σ(k) = Σs(k) + γ0Σ0(k) + ~γ · ~kΣv(k) . (A.2.1)
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The individual functions can be obtained by taking the appropriate traces, such that

Σs(k) =
1

4
Tr [Σ(k)] , (A.2.2)

Σ0(k) =
1

4
Tr
[
γ0Σ(k)

]
, (A.2.3)

Σv(k) = − 1

4|~k|2
Tr
[
~γ · ~kΣ(k)

]
. (A.2.4)

A.3 Subtraction of Contact Terms

In the process to isolate and subtract the contact terms in the integrands, we neglect
energy transfer, such that

q2 = (p ′ − p)2 = p′2 + p2 − 2p ′ · p = 2M∗2
B − 2p ′ · p , (A.3.1)

⇒ p ′ · p = M∗2
B −

q2

2
'M∗2

B +
~q2

2
. (A.3.2)

A.3.1 Sigma Meson

For the σ meson we have

M∗2
B + E(~p ′)E(~p)− ~p ′ · ~p = M∗2

B + p′ · p

' 2M∗2
B +

~q2

2
. (A.3.3)

Therefore,

2M∗2
B + ~q2

2

~q2 +m2
σ

=
2M∗2

B

~q2 +m2
σ

+
1

2

~q2

~q2 +m2
σ

=
2M∗2

B

~q2 +m2
σ

+
1

2
(1− m2

σ

~q2 +m2
σ

)

=
2M∗2

B −
m2
σ

2

~q2 +m2
σ

+
1

2
. (A.3.4)

The constant term
1

2
is the contact term, which we multiply by the variable ξ. In all

scenarios presented in the this thesis we use ξ = 0.

A.3.2 Vector Meson (η = ω/ρ) Vector-Vector Term

For the vector meson, η = ω/ρ, we have for the Vector-Vector term

2M∗2
B − E(~p ′)E(~p) + ~p ′ · ~p = 2M∗2

B − p ′ · p
= M∗2

B +
q · q

2
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' M∗2
B −

~q2

2
. (A.3.5)

Therefore,

M∗2
B −

~q2

2

~q2 +m2
η

=
M∗2

B

~q2 +m2
η

− 1

2

~q2

~q2 +m2
η

=
M∗2

B +
m2
η

2

~q2 +m2
η

− 1

2
, (A.3.6)

where the second term is multiplied by ξ.

A.3.3 Vector Meson (η = ω/ρ) Vector-Tensor Term

For the vector meson, η = ω/ρ, we have for the Vector-Tensor term

M∗2
B − E(~p ′)E(~p) + ~p ′ · ~p = M∗2

B − p ′ · p
=

q · q
2

' −~q
2

2
. (A.3.7)

Therefore,

− 1

2

~q2

~q2 +m2
η

=
1

2

(
m2
η

~q2 +m2
η

− 1

)
, (A.3.8)

where the second term is multiplied by ξ.

A.3.4 Vector Meson (η = ω/ρ) Tensor-Tensor Term

For the vector meson, η = ω/ρ, we have for the Tensor-Tensor term

(5M∗2
B − E(~p ′)E(~p) + ~p ′ · ~p)(M∗2

B − E(~p ′)E(~p) + ~p ′ · ~p)

= (4M∗2
B +

q · q
2

)(
q · q

2
)

' (4M∗2
B −

~q · ~q
2

)(−~q · ~q
2

) . (A.3.9)

Therefore,

−~q
2

2
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4M∗2

B −
~q2

2

~q2 +m2
η

)
= −1

2
(4M∗2

B −
~q2

2
)(1−

m2
η

~q2 +m2
η

)
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B +

~q2

4
)(1−
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η

~q2 +m2
η

)

= −2M2
B +

2M∗2
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2
η
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η
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~q2

4
−
m2
η

4

~q2
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= (−2M∗2
B −

m2
η

4
+
~q2

4
) +

2M∗2
B m

2
η

~q2 +m2
η

+
m4
η

4(~q2 +m2
η)

,

(A.3.10)

where the term in the bracket is multiplied by ξ.

A.3.5 Pion Term

For the π meson term we have

E(~p ′)E(~p)− ~p ′ · ~p−M∗2
B = M∗2

B −
q · q

2
−M∗2

B '
~q2

2
. (A.3.11)

Therefore,
1

2

~q2

~q2 +m2
π

=
1

2
− 1

2

m2
π

~q2 +m2
π

, (A.3.12)

where the first term is multiplied by ξ.
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Quark Matter Supplemental Material

B.1 Supplementary Material on Path Integrals, Gen-

erating Functionals and the Stationary Phase

Approximation

As discussed in introductory QFT texts (e.g. Refs. [253, 254]) a theory can be quan-
tised by using either canonical or path integral quantisation. The former method can
become unwieldy for complicated theories, whereas the latter presents several useful
simplifications that make the treatment of intricate theories simpler. Using the path
integral method one can also obtain non–perturbative information through bosonisa-
tion and the Schwinger–Dyson equations. As we are considering the NJL model viewed
as a low energy effective theory of QCD, where nonperturbative effects are important,
we will use the path integral method to quantise and derive the NJL thermodynamic
potential and gap equations for the quarks. Before diving into their derivation in the
NJL model we will briefly review basic properties of the path integral for bosons and
fermions and explain a connection to the partition function.

B.1.1 The Generating Functional and Green’s Functions in
the Canonical Formalism

In statistical physics one usually exploits the partition function of a system to determine
thermodynamical quantities and correlation functions. A similar tack can be taken in a
QFT by introducing a generating functional Z[J ], where J(x) is some source function.
From this generating functional all the Green’s functions of a theory can be obtained
through functional differentiation. I will briefly review this and related ideas which
are necessary for obtaining the EoS of quark matter—see Refs. [253, 254, 376–378] for
extended discussions of the following material.
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A source function J(x) is introduced by coupling it linearly with a field φ(x) such
that

L[φ(x)]→ L[φ(x)] + J(x)φ(x) (B.1.1)

or equivalently
H[φ(x)]→ H[φ(x)]− J(x)φ(x) . (B.1.2)

This amounts to a new interaction term which induces excitations in the field φ(x) and
hence its name source function. We decompose the Hamiltonian as

H[φ(x)] = H0[φ(x)] +HI [φ(x)]− J(x)φ(x) , (B.1.3)

where H0 and HI are the free and interacting parts of the Hamiltonian respectively,
likewise for the Lagrangian. The generating functional of a QFT is akin to the partition
function of statistical mechanics and is defined as

Z[J ] = 〈Ω|U(∞,−∞)|Ω〉J , (B.1.4)

where U is the time evolution operator and |Ω〉 is the full interacting ground state.
This amplitude tells us the probability that, in the presence of the source function
J(x), we start with no particles and finish with no particles. Eq. (B.1.4) is not
normalised and should be normalised by dividing by Z[J = 0] defining the normalised
generating functional Z[J ]. This normalization assures that in the absence of a source
the persistence of the vacuum is absolute, that is Z[J = 0] = 1. It also removes
contributions due to particles spontaneously appearing and disappearing completely
independent from the source function (i.e. vacuum contributions) and we will see that
this normalization is necessary to obtain finite expressions.

The evolution operator can be written in terms of Dyson’s exponential form

U(∞,−∞) = Tei
∫
d4x{HI+J(x)φ(x)} , (B.1.5)

where T is the time ordering operator, but with the understanding that the fields
are in the Heisenberg picture. Then, by expanding the exponential in Eq.(B.1.5), the
normalised generating functional can then be expressed as

Z[J ] = 1 +
∞∑
n=1

in

n!

∫
d4x1 . . . d

4xnJ(x1) . . . J(xn)〈Ω|TφH(x1) . . . φH(xn)|Ω〉 . (B.1.6)

Thus the n-point Green’s functions are given simply by functional differentiation,

G(n)(x1, . . . , xn) ≡ 〈Ω|TφH(x1) . . . φH(xn)|Ω〉 =
1

in
δnZ[J ]

δJ(x1) . . . δJ(xn)

∣∣∣∣
J=0

. (B.1.7)

The generating functional can be found by either relating it to the S-matrix via the
the Gell-Mann-Low theorem or using the path integral, which will be discussed next.
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Figure 2.1.1: Schematic figure demonstrating the basis of the path integral method.
The classical action Scl is extremal.

B.1.2 The Path Integral Formalism

We will omit the usual spiel about path integrals and assume the reader is already
familar with Feynman’s path integration technique, where one sums over all possible
(paths, field configurations) weighted by a phase factor eiS/~ where the S in the expo-
nent is the action (c.f. Fig. B.1.2). The fields are taken to be in the Heisenberg picture
and are not operators. The n–point correlations calculated in this formalism can be
shown to be equivalent to the time ordered expectation values of the corresponding
operators in the canonical formalism [253].

In this formalism the generating functional in terms of the path integral is

Z[J ] =

∫
D[φ(x)] ei

∫
d4x L0[φ(x)]+LI [φ(x)]+J(x)φ(x) . (B.1.8)

We can only really do Gaussian type path integrals explicitly. The free part of the La-
grangian can generally be put into this form. The interaction part of the Lagrangian
is the part which causes some difficulty. In the NJL model under consideration, it
is quartic in the quark fields. However, in certain cases we can transform the inter-
acting part of the theory into something more palatable using Hubbard-Stratonovich
transformations [316, 317]. These are discussed in Ch. 6.



B.1. SUPPLEMENTARY MATERIAL ON PATH INTEGRALS, GENERATING
FUNCTIONALS AND THE STATIONARY PHASE APPROXIMATION 180

B.1.3 Free Boson Theory

We begin with the path integral for the generating functional for a free boson scalar
field theory. The Lagrangian for such a field φ is

L0[φ(x)] =
1

2
(∂µφ(x))2 − 1

2
m2φ(x)2 . (B.1.9)

The generating functional is then given by

Z0[J ] =

∫
D[φ(x)] ei

∫
d4x{L0[φ(x)]+J(x)φ(x)} (B.1.10)

=

∫
D[φ(x)] ei

∫
d4x{ 1

2
(∂µφ(x))2− 1

2
m2φ(x)2+J(x)φ(x)} . (B.1.11)

Using integration by parts in the exponent and making the assumption that the field
dies off at infinity (thus, allowing us to neglect the boundary term), results in

Z0[J ] =

∫
D[φ(x)] ei

∫
d4x{− 1

2
φ(x)∂2φ(x)− 1

2
m2φ(x)2+J(x)φ(x)} (B.1.12)

=

∫
D[φ(x)] ei

∫
d4x{+ 1

2
φ(x)[−(∂2+m2)]φ(x))+J(x)φ(x)} (B.1.13)

=
N√

Det(A(x, y))
e−

1
2

∫
d4xd4yJ(x)[iA−1(x,y)]J(y) , (B.1.14)

where the last line can be obtained by simplifying to finite n dimensional vectors and
matrices, diagonalising the matrix A = −(∂2 +m2), evaluating the separated Gaussian
integrals and then taking the limit n→∞. The factor out front of the exponential in
Eq. (B.1.14) is a product of an infinite constant and a potentially divergent determinant
(product of an infinite number of eigenvalues), but normalization removes this divergent
prefactor leaving

Z0[J ] = e−
1
2

∫
d4xd4yJ(x)i∆(x,y)J(y) , (B.1.15)

where we have identified iA−1(x, y) with the scalar boson propagator i∆(x, y)—i.e. the
two-point Green’s function, which can be readily seen as correct by Eq. (B.1.7).

Note if we are only interested in the equilibrium properties, then we will be led to
consider the natural logarithm of the unnormalised generating functional and set the
source function to zero, which gives

Log (Z[J = 0]) = Log

[
N√

Det (A(x, y))

]
(B.1.16)

= Log(N)− 1

2
Log [Det (A(x, y))] (B.1.17)

= Log(N)− 1

2
Tr [Log (A(x, y))] . (B.1.18)

Note that the LogN term is a constant and hence has no effect on the equilibrium
properties. In the last line we made use of the property # 4 in App. B.5.
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Figure 2.1.2: (Red) Eq. (B.1.19), (Black) Real part of Eq. (B.1.20) and (Purple) Imag-
inary part of Eq. (B.1.20).

B.1.4 Stationary and Saddle Point Approximation

Before considering the stationary and saddle point approximation to path integrals we
will consider the Gaussian or normal distribution function

fR(x) =
1√
2πσ

∫ ∞
−∞

dx exp

(
−(x− µ)2

2σ2

)
(B.1.19)

and a complex generalisation

fC(x) =
1√
2πσ

∫ ∞
−∞

dx exp

(
+i

(x− µ)2

2σ2

)
, (B.1.20)

where µ is the mean, σ is the standard deviation and σ2 is the variance. Eq. (B.1.19) and
Eq. (B.1.20) are respectively simple models of Euclidean and Minkowski path integrals.
The behaviour of the integrands is depicted in Fig. (B.1.4). The real Gaussian has a
maximum at its mean and contributes significantly when |x − µ| ≤ σ i.e. close to its
mean value. Its complex counterpart has both real and imaginary parts which are also
depicted in Fig. (B.1.4). This phase factor does not vary much about its stationary
point i.e when |x−µ| ≤ σ, beyond which it fluctuates rapidly. These rapidly fluctuating
contributions cancel, meaning that the most significant contribution comes from the
domain close to the mean. These observations are the basis for the stationary phase
and saddle point approximations to the Minkowski and Euclidean path integrals. These
methods are generalisations of Laplace’s method and are discussed in [322] for ordinary
integrals and in [310] for path integrals.

We will not discuss the application of these methods to ordinary integrals like the
analogue models in Eqs. (B.1.19) and (B.1.20), instead we simply refer the reader to
Ref. [322] and apply a stationary phase analysis to a simple quantum field theory.

Consider a scalar bosonic theory whose generating functional is given by

Z[J ] =

∫
Dφ exp

(
i

~
[S[φ] + J · φ]

)
, (B.1.21)
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where S is te action and we use the following dot notation

J · ϕ =

∫
d4x J(x)ϕ(x) . (B.1.22)

Equation (B.1.21) is the same as Eq. (B.1.10) with the exception that we have kept
~ explicit instead of making use of natural units by setting ~ = 1. By analogy to the
arguments given above for the analogue of the Minkowski path integral it is obvious
that as ~ → 0, the semi-classical limit, the dominant contribution comes from the
critical points, φa(c), which are the solutions to

δS

δφ(x)

∣∣∣∣
φ=φa

(c)

+ J = 0 . (B.1.23)

Away from a stationary point the integrand fluctuates rapidly, effectively cancelling all
contributions, leading only to an asymptotically small contribution.

In general, there may be multiple stationary points. Assuming that this set of
stationary points is finite and that each one can be isolated in some neighbourhood
Ua ⊂ R1,3, where Ui∩Uj = ∅ for i 6= j. From this assumption, the generating functional
can be written as

Z[J ] =
∑

a=1,...,k

∫
Ua

Dφ exp

(
i

~
[S[φ] + J · φ]

)
+ asymptotically small contributions .

(B.1.24)
The exponent in the phase factor can be expanded about each stationary point by
considering, φ = φa(c)+~1/2φa(q), where the ~1/2φa(q) describes small quantum fluctuations
about the stationary point φa(c), such that

S[φ(x)] + J(x) · φ(x) = S[φa(c)(x)] + J(x) · φa(c)(x) (B.1.25)

+ ~1/2

∫ d4x φa(q)(x)

 δS

δφ(x)

∣∣∣∣
φ=φa

(c)

+ J(x)


+

~
2

∫
d4x

∫
d4y

φa(q)(x)
δ2S

δφ(x)δφ(y)

∣∣∣∣
φ=φa

(c)

φa(q)(y)


+ . . . .

(B.1.26)

We allow each region Ua to extend to the whole of Minkowski space R1,3. The first two
terms in Eq. (B.1.25) are no longer integrated over all the field configurations as the
φa(c) are just constant points in the space of all field configurations. The third term in
parentheses is zero by the classical equations of motion, i.e Eq. (B.1.23). These obser-
vations lead to the following expression for the generating functional upon truncating
to second order

Z[J ] =
∑

a=1,...,k

exp

(
i

~
(S[φa(c)] + J · φa(c))

)
(B.1.27)
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×
∫
D(~1/2φa(q)) exp

(
i

~

[
~
2

∫
d4x

∫
d4y

(
φa(q)

δ2S

δφ(x)δφ(y)

∣∣∣∣
φ=φa

(c)

φa(q)

)])
,

where we have made use of the invariance of the measure under translations (Dφ =
D(φa(c) + ~1/2φa(q)) = D(~1/2φa(q))). This simplifies the generating functional, Z[J ], to a
Gaussian integral over φa(q). Performing the integration yields

Z[J ] = Ñ
∑

a=1,...,k

exp

(
i

~
(S[φa(c)] + J · φa(c))

)[
Det

(
δ2S

δφ(x)δφ(y)

∣∣∣∣
φ=φa

(c)

)]−1/2

,

(B.1.28)
where Det is a functional determinant. Eq. (B.1.28) is basically a resummation of 1-loop
graphs. The Hessian of the action is an operator and its inverse defines a propagator
for the quantum fluctuation φ(q). In terms of the NJL model this corresponds to the
propagators of the auxiliary fields, i.e., the mesons. Making use of the operator identity

Log
[
Det

(
Ô
)]

=Tr
[
Log

(
Ô
)]

we have

Z[J ] = Ñ
∑

a=1,...,k

exp

(
i

~
(S[φa(c)] + J · φa(c)) +

i~
2

Tr

[
Log

(
δ2S

δφ(x)δφ(y)

∣∣∣∣
φ=φa

(c)

)])
,

(B.1.29)
For simplicity in our NJL model calculations using the Lagrangian given by Eq. (6.3.8),

we assume that there is only one unique critical point. Given that the bosonised form
of this Lagrangian is at most quadratic in the auxiliary fields, we will assume that
the critical point can be uniquely determined by physical considerations. In higher-
order multi-quark interactions other critical points may appear and make important
contributions [379].

B.1.5 The Connected Generating Functional and the Effective
Action

The connected generating functional W [J ] is related to the generating functional Z[J ]
by

Z[J ] = eiW [J ] . (B.1.30)

Clearly, if the exponential is expanded in a functional Taylor series then every con-
nected and disconnected graph is generated as every disconnected graph is a product
of connected graphs. It just remains to show the expansion coefficients are correct
[253]. The connected generating functional is then calculated by taking the logarithm

W [J ] = −iLogZ[J ] . (B.1.31)

Taking the first functional derivative with respect to the source function J and setting
the source to zero we obtain the expectation value of the field φ, that is

δW [J ]

δJ(x)
= −i 1

Z[J ]

δZ[J ]

δJ(x)

∣∣∣∣
J=0

= 〈φ(x)〉 . (B.1.32)
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The second order functional derivatives with respect to the source functions give rise
to the two point connected Green’s functions and so on,

G(n)
conn(x1, . . . , xn) = 〈φ(x1), . . . , φ(xn)〉conn = −in+1 δW [J ]

δJ(x1) . . . J(x2)

∣∣∣∣
J=0

. (B.1.33)

A new object can be obtained from the connected generating functional by refrain-
ing from setting the source function to zero, such that

δW [J ]

δJ(x)
= −i 1

Z[J ]

δZ[J ]

δJ(x)
= 〈φ(x)〉[J ] ≡ ϕ(x) , (B.1.34)

where ϕ(x) is commonly referred to as a background field. It is a classical function of
space-time, but a functional of the source function J . The situation can be inverted
and the source function, J , can be thought of a functional of ϕ instead. Using this
background field we can obtain yet another generating functional Γ[ϕ] via a Legendre
transformation,

Γ[ϕ] = W [J ]− J · ϕ . (B.1.35)

This new generating functional, Γ, is called the effective action and is the generating
functional for the one particle irreducible (1PI) graphs1. It is a functional of the classical
field ϕ only. Performing functional differentiation with respect to ϕ, one obtains

δΓ[ϕ]

δϕ(x)
= −J(x) . (B.1.36)

Evaluating Eq. (B.1.36) at ϕ(x) = 〈φ(x)〉 implies the source function is zero and that
the Euler-Lagrange equations can be obtained by extremising the effective action

δΓ[ϕ]

δϕ(x)

∣∣∣∣
ϕ=〈φ〉

= 0 . (B.1.37)

The Hessian of the effective action gives the inverse propagator

δ2Γ[ϕ]

δϕ(x)δϕ(y)

∣∣∣∣
ϕ=〈φ〉

= ∆−1(x− y) . (B.1.38)

More generally, the n-point 1PI correlation functions can be obtained from higher-order
functional differentiations,

G
(n)
1PI(x1, . . . , xn) = 〈φ(x1, . . . , xn)〉1PI = i

δnΓ[ϕ]

δϕ(x1) . . . δϕ(xn)

∣∣∣∣
ϕ=〈φ〉

. (B.1.39)

The relationships between the action, S; and the generating functional, Z[J ]; the
connected generating functional, W [J ]; and the effective action, Γ[ϕ]; are summarised
in Fig. (B.1.5).

1a.k.a. proper vertices
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Moreover, with this generating functional we can define an effective potential. The
effective action can be generally written as

Γ[ϕ] =

∫
d4x [f(ϕ)∂µϕ∂

µϕ− Veff(ϕ) + higer order derivative terms] , (B.1.40)

where Veff(ϕ) is called the effective potential. Simplifying to a constant field configu-
ration ϕ(x) = ϕ(const)

Γ[ϕ(const)] =

∫
d4x

[
−Veff(ϕ(const))

]
= −Veff(ϕ(const))VR1,3 , (B.1.41)

where VR1,3 denotes the space-time volume.
To calculate the effective action and potential one generally needs to choose an ap-

proximation scheme. The effective action is related to the original generating functional
by

e
i
~{Γ[ϕ]+J ·ϕ} = N

∫
Dφ e

i
~{S[φ]+J ·φ} . (B.1.42)

As can be seen in Eq. (B.1.42), Γ[ϕ], includes the quantum effects due to the functional
integration. To extract useful information from this equation we consider the effective
action expanded in a power series of ~:

Γ[ϕ] =
∞∑
n=0

~nΓ(n)[ϕ] (B.1.43)

on the left hand side of Eq. (B.1.42) and we perform a stationary phase analysis (
described in Sec. B.1.4 on the right hand side and equate powers of ~. The leading
term for the (quantum) effective action is simply the (classical) action,

Γ(0)[φ
(c)] = S[φ(c)] , (B.1.44)

where to this order ϕ = φ(c) = 〈φ〉. This order of approximation corresponds to the
mean field approximation.

B.1.6 Connection to QFTs at Finite Temperature and Statis-
tical Mechanics

The subtle connection between QFT and statistical mechanics can be understood rather
simply [376]. To explain their relation to one another we will introduce the method
known as the Matsubara or imaginary time formalism. It requires the introduction of
the concepts of imaginary time and Wick rotations allowing us to map a zero temper-
ature QFT to a statistical (finite temperature or thermal) field theory. We will not
develop the finite temperature formalism fully, and we merely note that other methods
do exist to generalise QFTs to finite temperature, such as the real time formalism,
but as we are only interested in the equilibrium properties of (the zero temperature
limit of) the quark matter EoS the Matsubara formalism will suffice. It is introduced
to elucidate the connection between the generating functional in a zero temperature
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General Unnormalised Generating functional:

Z[J ]

Normalised Generating Functional:

Z[J ] =
Z[J ]

Z[0]

Connected Generating Functional:

W [J ] = −iLogZ[J ]

Effective action or Generating Functional for
1PI graphs:

Γ[ϕ] = W [J ]− J · ϕ

S

Γ[ϕ] W [J ] Z[J ]

Path Integral~→0

Legendre Log/Exp

Figure 2.1.3: Summary of generating functionals of interest and their interrelations.

QFT, its partition function and to make a connection to the more familiar statistical
mechanics.

As discussed in the previous sections the generating functional contains all the
information of a QFT. To study the statistical behaviour of a quantum system in
thermal equilibrium the analogous quantity, the partition function, is introduced. An
appropriate ensemble is first chosen and the density matrix is defined. From this
the partition function can then be defined. The partition function in which we are
interested in this thesis is the grand canonical partition function, as we will be taking
both the chemical potential of any conserved charges and the temperature to be fixed
( the temperature will be taken to be zero, but for the moment we will consider the
temperature to be finite ). For the grand canonical ensemble the density matrix is

ρ(β) = e−β(Ĥ−µN̂) (B.1.45)

where β is the inverse equilibrium temperature, β =
1

kBT
and kB is the Boltzmann

constant, which we take to be unity. The Ĥ is the Hamiltonian describing the system,
N̂i are the number operators of the conserved charges and the µi are the associated
chemical potentials. The grand canonical partition function is in general given by

Z = Trρ(β) = Tr
[
e−β(Ĥ−µiN̂i)

]
, (B.1.46)
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where the trace, Tr, stands for the “sum” over all expectation values in any complete
basis. In a QFT the trace is an integral over an infinite dimensional basis. From
this partition function all the equilibrium thermodynamical variables and correlation
functions can be determined and as such it is also referred as a generating functional.

The generating functional and partition function are defined in terms of an ex-
ponential evolution operator and an exponential Boltzmann like factor. In QFT this

exponential is complex taking the form e−iĤt/~, whereas in statistical mechanics it is

real, ∼ e−βĤ . The similarity between these two theories, by which both their generating
functionals are dependent on exponential functions, motivates the transformations

it

~
←→ 1

kBT
, (B.1.47)

mapping a QFT onto a statistical (thermal) field theory or vice versa. In this way
imaginary time (τ ≡ it) in a QFT behaves as inverse temperature in a statistical field
theory.

It is important to realise that imaginary time is not introduced by simply multiply-
ing by i, but rather performing a rotation of t or equivalently p0 in the complex plane
by −π/2 or π/2 respectively. These rotations are depicted in Figs. B.1.6 and B.1.6.
This analytic continuation into the complex plane is called a Wick rotation, a Wick
rotated QFT a Euclidean quantum field theory, its action the Euclidean action, and
so on. The rotation changes the signature of metric from Minkowski (+,−,−,−) to
Euclidean (+,+,+,+). The transition to imaginary time ( or Euclidean space ) has
important consequences such as the path integral appears to have better convergence
and be better defined. Moreover, we no longer need to introduce the Feynman iε in the
propagators because there is no longer a pole for real values of momentum and energy.

Upon the identification ∆τ = i∆t = β, the imaginary time integral is integrated
only over a finite interval on the imaginary axis and by definition of the partition func-
tion, the trace imposes the evolution of the initial state back to the same state. For a
real scalar boson theory, this results in a restriction on the possible field configurations
to be periodic in τ with period β. Conversely, due to the anti-commuting nature of
fermions their field configurations are restricted to be anti-periodic. This compactifica-
tion in the imaginary time coordinate means that the Fourier expansions of the fields
will only depend on a discrete set of frequencies, where the (anti-)periodicity restricts
the frequencies to be

ωn =


2nπ

β
bosons

(2n+ 1)π

β
fermions

. (B.1.48)

That is, only even modes contribute for bosons and only odd modes contribute for
fermions. It is also important to realise that in using the Matsubara formalism to
generalise a zero temperature QFT to finite temperature there is no longer a time, time
has been traded for finite temperature. In this formalism we can work out the Finite
temperature Green’s functions, thermal averages and even do perturbation theory, but
it is only relevant for a system in thermodynamic equilibrium. It is assumed that
one can rotate back, but this may not always be well defined. See Table B.1.6 for a
summary of changes that occur upon rotation.
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Table 2.1.1: Transformations upon Wick rotation and various definitions.

Minkowski Euclidean

gµν −δµν
t −iτ
~x ~x

xµ ≡ (t, ~x) xµE ≡ (τ, ~x)
x2 −x2

E

d4x −id4xE

p0 ip4

~p ~p
pµ ≡ (p0, ~p) pµE ≡ (p4, ~p)

d4p id4pE

p2 −p2
E

V 0 −iV4

~V ~V

V µ ≡ (V 0, ~V ) V µ
E ≡ (V 4, ~V )

iS −SE

Z[J ] ≡
∫
Dφe

i
~S[φ] ≡ e

iW
~ ZE[J ] ≡

∫
Dφe−

1
~SE [φ] ≡ e

WE
~

W [J ] ≡ −i~LogZ[J ] WE[J ] ≡ ~LogZE[J ]

ϕ(x) ≡ δW

δJ(x)
ϕE(x) ≡ δWE

δJ(x)
Γ[ϕ] ≡ W [J ]− J · ϕ ΓE[ϕ] ≡ J · ϕ−WE[J ]

Γ1−loop[ϕ] ≡ S[ϕ] +
i~
2

Tr [Log (S ′′[ϕ])] Γ1−loop
E [ϕ] ≡ SE[ϕ] +

~
2

Tr [Log (S ′′E[ϕ])]

To obtain the equilibrium quantities of interest, such as the internal energy, pressure
and density, one uses the usual methods of statistical mechanics obtaining the ther-
modynamic potential, which is analogous to the zero temperature effective potential.
At zero temperature we do not have the restriction to a finite imaginary time inter-
val and therefore do not have to worry about the considerations of discrete frequency
modes due to the compactification that occurs at finite temperature. Alternatively, if
we instead mapped our QFT to a thermal field theory by the method described above
and obtained the thermodynamical variables through the partition function, and then
took the zero temperature limit, this would reduce to the same result at our level of
approximation in the calculation of the quark matter EoS using the NJL model. More-
over, the thermal Green’s functions and thermal averages would also reduce to their
zero temperature counter parts.

B.1.7 Free Fermion Theory

The free fermions are described by the following Lagrangian density

L0 = ψ̄(i/∂ −m)ψ , (B.1.49)
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<

=
p0

p0 −→ ip4

Figure 2.1.4: Wick rotation in momentum space.

where ψ and its adjoint ψ̄ = ψ†γ0 are four component Dirac spinors, /∂ = γµ∂µ and γµ

are the Dirac matrices [253]. The equation of motion, the Dirac equation, is obtained
from the Euler-Lagrange equation.

Using the standard methods, the conjugate momentum of the field ψ is found to be
πψ = iψ† and therefore must be treated independently from ψ. By Noether’s theorem
this Lagrangian has the conserved current jµ = ψ̄γµψ due to a U(1) invariance. The
associated conserved charge is

Q =

∫
d3xj0 = ψ†ψ . (B.1.50)

Fermions obey the Pauli exclusion principle and as a consequence the fields ψ
and ψ̄ anti-commute. In the path integral formulation, these fields are interpreted
as Grassmann numbers. We will not review the basic results involving fermionic path
integrals and instead refer the reader to Refs. [253] and [376]. In a similar way in which
the scalar boson generating functional is derived, the fermion generating functional can
also be derived. It is important to note that the fields ψ and ψ̄ couple to different
sources η̄(x) and η(x), respectively. In the case of anti-commuting Grassman numbers
the useful finite dimensional identity which can be generalised to an infinite number of
dimensions is ∫

dη†1dη1 . . . dη
†
NdηNe

η†Dη = DetD , (B.1.51)

where D is an N ×N matrix. The unnormalised generating functional is

Z[η, η̄] =

∫
D[ψ(x)]D[ψ̄(x)] (B.1.52)

× exp

(
i

∫
d4x

[
ψ̄(x)(i/∂ −m)ψ(x) + η̄(x)ψ(x) + ψ̄(x)η(x)

])
= Det(S−1) exp

(
−i
∫
d4xd4y η̄(x)(i/∂ −m)−1η(y)

)
. (B.1.53)
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<

=

t

t −→ −iτ

Figure 2.1.5: Wick rotation in configuration space.

Eq. (B.1.53) can be normalised by dividing by Z[η = 0, η̄ = 0]. For reference the
normalised generating functional is

Z[η, η̄] = exp

(
−i
∫
d4xd4y η̄(x)S(x− y)η(y)

)
, (B.1.54)

where we introduced the Fermion propagator S(x− y) = (i/∂ −m)−1.

B.2 Symmetry Lie Group and Lie Algebra Conven-

tions

SU(N) generators Ga, a = 1, . . . , N2 − 1 satisfy the commutation relations

[Ga, Gb] = ifabcGc , (B.2.1)

where fabc are the structure constants of the group. These generators form the as-
sociated Lie algebra su(N) with the Lie bracket defined by the commutator. These
generators are normalised such that Tr[GaGb] = 2δab and are commonly supplemented
by

G0 =

√
2

N
1N . (B.2.2)

Specifically, the SU(2) generators τa, Pauli matrices, are given by

τ1 =

[
0 1
1 0

]
, τ2 =

[
0 −i
i 0

]
, τ3 =

[
1 0
0 −1

]
. (B.2.3)

These are supplemented by τ0 = 12.
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The SU(3) generators ta(λa) for colour(flavour), are given by

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 , λ3 =

 1 0 0
0 −1 0
0 0 0

 , (B.2.4)

λ4 =

 0 0 1
0 0 0
1 0 0

 , λ5 =

 0 0 −i
0 0 0
i 0 0

 , λ6 =

 0 0 0
0 0 1
0 1 0

 , (B.2.5)

λ7 =

 0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 . (B.2.6)

(B.2.7)

and are referred to as the Gell–Mann matrices. These matrices which generate SU(3)

can be supplemented by λ0 =

√
2

3
13.

B.3 Fierz Transformations

A number of textbooks and review articles derive Fierz transformations, we refer the
reader to Ref. [310]. Fierz transformations for the Dirac space portion of the interac-
tion vertices in the qq̄–channel are given by

(1ND
)ij(1ND

)kl
(iγ5)ij(iγ5)kl
(γα)ij(γ

α)kl
(γµγ5)ij(γ

µγ5)kl
(σµν)ij(σ

µν)kl

 =


1/4 −1/4 1/4 −1/4 1/8
−1/4 1/4 1/4 −1/4 −1/8

1 1 −1/2 −1/2 0
−1 −1 −1/2 −1/2 0
3 −3 0 0 −1/2




(1ND
)il(1ND

)kj
(iγ5)il(iγ5)kj
(γα)il(γ

α)kj
(γµγ5)il(γ

µγ5)kj
(σµν)il(σ

µν)kj

 .

(B.3.1)
General SU(N) Fierz transformations for the colour and flavour space portions of

the interaction vertices are given by

[
(1N)ij(1N)kl
(λa)ij(λa)kl

]
=

 1/N 1/2

2(
N2 − 1

N2
) −1/N

[ (1N)il(1N)kj
(λa)il(λa)kj

]
. (B.3.2)

B.4 Useful Functional Formulas

Given a functional F = F [f(x)], then consider its value as f(x)→ f(x) + δη(x). The
functional Taylor expansion in powers of the perturbation is

F [f(x) + δη(x)] = F [f(x)] +

∫
d4x δη(x)

δF [f(x)]

δf(x)
(B.4.1)

+
1

2

∫
d4xd4y δη(x)

δ2F [f(x)]

δf(x)δf(y)
δη(y) + . . .
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A functional Taylor expansion is used in the stationary phase approximation.
The following formulas are useful for determining meson propagators:

δ

δf(y)
Tr
[
Log

(
Ô[f(x)]

)]
= Tr

[
Ô−1[f(x)]

δÔ[f(x)]

δf(y)

]
(B.4.2)

and

δ2

δf(z)δf(y)
Tr
[
Log

(
Ô[f(x)]

)]
=

δ

δf(z)
Tr

[
Ô−1[f(x)]

δÔ[f(x)]

δf(y)

]
(B.4.3)

= −Tr

[
Ô−1[f(x)]

δÔ[f(x)]

δf(z)
Ô−1[f(x)]

δÔ[f(x)]

δf(y)

]

+Tr

[
Ô−1[f(x)]

δ2Ô[f(x)]

δf(z)δf(y)

]
.

(B.4.4)

B.5 Useful Properties Involving Determinants

In the following a ∈ F where F is a field (in the abstract algebra sense of the word)
considered usually to be either R or C, 1N is an identity matrix of dimension N and
A, B are non-singular matrices. The following properties also generalise to operators.

1. Det(AB) = DetA.DetB

2. Det(a1N) = aN

3. Det(a1N ⊗ 1M) = Det(a1NM) = aNM , where the tensor product for matrices is
simply the Kronecker product.

4.

Det
(
Ô
)

=
∏
i

λi (B.5.1)

= Exp

[
Log

(∏
i

λi

)]
(B.5.2)

= Exp

[∑
i

Log (λi)

]
(B.5.3)

= Exp
[
Tr
(

Log
{
Ô
})]

(B.5.4)

where Ô is a non-singular operator and λi are its eigenvalues, obtaining

Log
[
Det

(
Ô
)]

= Tr
[
Log

(
Ô
)]

. (B.5.5)
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B.6 Schwinger’s Proper Time Regularisation

Schwinger’s proper time regularisation scheme [321] is a two step process. It begins
with the identification

LogA = −
∫
dτ

e−τA

τ
. (B.6.1)

Taking the partial derivative with respect to A on both sides of Eq. (B.6.1) one can
show that

1

A
=

∫
dτ e−τA , (B.6.2)

1

A2
=

∫
dτ τe−τA , (B.6.3)

and so on. Using the principle of mathematical induction one can extend this to

1

An
=

1

(n− 1)!

∫
dτ τn−1e−τA . (B.6.4)

This way of rewriting the above terms does not regularise the integrals appearing in
NJL model calculations, but it puts them into a form where terms may easily be
combined and then regularised. Upon making use of one of the above identifications
the integrand is then multiplied by a regulating function, rUV(τ), which we will take
to be a straightforward step function,

rUV(τ) = Θ

(
τ − 1

Λ2
UV

)
. (B.6.5)

This is the most common form [290, 291, 310, 315, 380, 381], although alternative forms
for the regulating function could be considered [310]. It should also be noted that the
model could be regularised at the level of the action in this way, instead of regulating
each divergent expression as it appears by the above substitutions [310]. At our level
of approximation both approaches are equivalent.

B.7 Effective Potential Derivation

B.7.1 Effective Potential in Vacuum

In vacuum the mean field effective potential is calculated from Eqs. (6.4.15), (6.4.39)
and (6.4.37). As a function of the constituent quark masses, or equivalently the quark
condensates, the effective potential takes the form

V NJL
MF (Mu,Md,Ms) = iTr

[
Log

(
S−1

)]
+ 2GS

∑
i∈{u,d,s}

(ρs
i)

2 (B.7.1)

= i
∑

i∈{u,d,s}

Tr
[
Log

(
S−1
i

)]
+ 2GS

∑
i∈{u,d,s}

(ρs
i)

2 , (B.7.2)

where the last trace is a functional trace over configuration space and also over Dirac
and colour spaces. The first trace is also over flavour space, but as S−1 is diago-
nal, Eq. (6.4.7), this amounts to just a sum over flavours. Diagonality follows from
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Eq. (6.4.7), Eq. (6.4.44) and the fact that only S(c)
u , S

(c)
d and S(c)

s are non-zero. In
Eq. (B.7.1) we also made use of

8∑
a=0

(S
(c)
a )2

4GS

=
8∑

a=0

GS〈ψ̄λaψ〉2 = 2GS

∑
i∈{u,d,s}

〈ψ̄iψi〉2 = 2GS

∑
i∈{u,d,s}

(ρs
i)

2 . (B.7.3)

Using property # 4 of App. B.5, the fact that the our expressions are degenerate in
colour2 and the following result that the determinant in Dirac space of the inverse
propagator is

DetD(/p−Mi) = DetD


−Mi 0 p0 − p3 −p1 + ip2

0 −Mi −p1 + ip2 p0 + p3

p0 + p3 p1 − ip2 −Mi 0
p1 + ip2 p0 − p3 0 −Mi

 = (p2 −M2
i )2 ,

(B.7.4)
the first term in Eq. (B.7.2) can be written as

i
∑

i∈{u,d,s}

Tr
[
Log

(
S−1
i

)]
= i

∑
i∈{u,d,s}

NC

∫
d4p

(2π)4
Log(p2 −M2

i )2 (B.7.5)

= 2iNC

∑
i∈{u,d,s}

∫
d4p

(2π)4
Log(p2 −M2

i ) . (B.7.6)

This term is divergent and must be regularised. Eq. (B.7.2) can now be written as

V NJL
MF (Mu,Md,Ms) = 2iNC

∑
i∈{u,d,s}

∫
d4p

(2π)4
Log(p2 −M2

i ) + 2GS

∑
i∈{u,d,s}

(ρs
i)

2 . (B.7.7)

B.7.2 Effective Potential at Finite Density

At finite density the mean field effective potential is calculated in the same manner as
in the case of the vacuum. The additional term in the Lagrangian, Eq. (6.6.1), and
the vector interactions which now contributes, lead to the following expression for the
quark inverse propagator in momentum space for each flavour i

S−1
i (p) = (p0 + µ̃i)γ

0 − ~p · ~γ −mi + 4GSρ
s
i , (B.7.8)

where we have introduced the “reduced” chemical potential

µ̃i = µi − 4GV〈ψ†iψi〉 . (B.7.9)

The vector interaction reduces the chemical potential. The modification of the quark
propagator leads to additional terms in the effective potential. The constituent quark
masses or equivalently the the quark condensates are modified due to the appearance

2or equivalently do the tensor product between Dirac and colour space terms and use property #
3 of App. (B.5) and standard property of logarithms that Logax = xLoga
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of these new terms in the effective potential. The mean field or leading contribution
to the effective potential is now given by the following function

V NJL
MF ({Mi} , {µi}) = i

∑
i∈{u,d,s}

Tr
[
Log

(
S−1
i

)]
+ 2GS

∑
i∈{u,d,s}

(ρs
i)

2 − 2GV

∑
i∈{u,d,s}

(ρv
i )

2

(B.7.10)

= i
∑

i∈{u,d,s}

Log
[
Det

(
S−1
i

)]
+ 2GS

∑
i∈{u,d,s}

(ρs
i)

2 − 2GV

∑
i∈{u,d,s}

(ρv
i )

2 ,

(B.7.11)

where we have followed the same arguments used in the case of the vacuum effective
potential. The trace is once again a functional trace over configuration space and
also over Dirac and colour indices. This expression is still degenerate in colour and
combined with the result that the determinant in Dirac space of the inverse propagator
is now

DetD(/p−Mi + γ0µ̃i) = ((p0 + µ̃i)
2 − ~p 2 −M2

i )2 , (B.7.12)

the first term in Eq. (B.7.11) can be written as

i
∑

i∈{u,d,s}

Tr
[
Log

(
S−1
i

)]
= i

∑
i∈{u,d,s}

LogDetS−1
i (B.7.13)

= 2iNC

∑
i∈{u,d,s}

∫
d4p

(2π)4
Log

[
(p0 + µ̃i)

2 − ~p 2 −M2
i

]
.

(B.7.14)

To further simplify this term we symmetrise. This can be done because we integrate
over both positive and negative values of p0, so that:

2

∫
d4p

(2π)4
Log

[
(p0 + µ̃i)

2 − ~p 2 −M2
i

]
=

∫
d4p

(2π)4
Log

[
(p0 + µ̃i)

2 − ~p 2 −M2
i

]
+

∫
d4p

(2π)4
Log

[
(p0 + µ̃i)

2 − ~p 2 −M2
i

]
=

∫
d4p

(2π)4
Log

[
(p0 + µ̃i)

2 − ~p 2 −M2
i

]
+

∫
d4p

(2π)4
Log

[
(−p0 + µ̃i)

2 − ~p 2 −M2
i

]
=

∫
d4p

(2π)4
Log

[(
(p0 + µ̃i)

2 − ~p 2 −M2
i

)
.
(
(−p0 + µ̃i)

2 − ~p 2 −M2
i

)]
.

(B.7.15)

Introducing Ep,i =
√
~p 2 +M2

i and expanding the square brackets out and then re-

grouping the terms, in the following way(
(p0 + µ̃i)

2 − ~p 2 −M2
i

)
.
(
(−p0 + µ̃i)

2 − ~p 2 −M2
i

)
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=
(
(p0 + µ̃i)

2 − Ep,i
)
.
(
(−p0 + µ̃i)

2 − Ep,i
)

=
(
(Ep,i − µ̃i)− p0

) (
(Ep,i − µ̃i) + p0

) (
(Ep,i + µ̃i)− p0

) (
(Ep,i + µ̃i) + p0

)
=

(
(Ep,i − µ̃i)2 − (p0)2

) (
(Ep,i + µ̃i)

2 − (p0)2
)

=
(
(p0)2 − (Ep,i − µ̃i)2

) (
(p0)2 − (Ep,i + µ̃i)

2
)

(B.7.16)

Substituting Eq. (B.7.16) back into Eq. (B.7.15) and adding and subtracting the vac-
uum contribution we obtain

i
∑

i∈{u,d,s}

Tr
[
Log

(
S−1
i

)]
= 2iNC

∑
i∈{u,d,s}

∫
d4p

(2π)4
Log

[
(p0 + µ̃i)

2 − ~p 2 −M2
i

]
= iNC

∑
i∈{u,d,s}

∫
d4p

(2π)4
Log

[(
(p0)2 − (Ep,i − µ̃i)2

)
.

.
(
(p0)2 − (Ep,i + µ̃i)

2
)]

= iNC

∑
i∈{u,d,s}

∫
d4p

(2π)4
Log

[(
(p0)2 − (Ep,i − µ̃i)2

)]
+iNC

∑
i∈{u,d,s}

∫
d4p

(2π)4
Log

[(
(p0)2 − (Ep,i + µ̃i)

2
)]

= iNC

∑
i∈{u,d,s}

∫
d4p

(2π)4
Log

[(
(p0)2 − (Ep,i − µ̃i)2

)]
+iNC

∑
i∈{u,d,s}

∫
d4p

(2π)4
Log

[(
(p0)2 − (Ep,i + µ̃i)

2
)]

+2iNC

∑
i∈{u,d,s}

∫
d4p

(2π)4
Log

[
(p0)2 − E2

p,i

]
−2iNC

∑
i∈{u,d,s}

∫
d4p

(2π)4
Log

[
(p0)2 − E2

p,i

]
= iNC

∑
i∈{u,d,s}

∫
d4p

(2π)4
Log

[
(p0)2 − (Ep,i − µ̃i)2

(p0)2 − E2
p,i

]

+iNC

∑
i∈{u,d,s}

∫
d4p

(2π)4
Log

[
(p0)2 − (Ep,i + µ̃i)

2

(p0)2 − E2
p,i

]

+2iNC

∑
i∈{u,d,s}

∫
d4p

(2π)4
Log

[
p2 −M2

i

]
. (B.7.17)

The last integral is simply the vacuum contribution. The first two integrals contain
the finite density contribution to the effective potential. Using [382]∫

dp0 Log

[
(p0)2 − a2 + iε

(p0)2 − b2 + iε

]
= 2πi (|a| − |b|) (B.7.18)
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we can perform the integration over p0 and obtain the Fermi contribution to be

V NJL
Fermi({Mi} , {µi}) = iNC

∑
i∈{u,d,s}

∫
d4p

(2π)4
Log

[
(p0)2 − (Ep,i − µ̃i)2

(p0)2 − E2
p,i

]

+iNC

∑
i∈{u,d,s}

∫
d4p

(2π)4
Log

[
(p0)2 − (Ep,i + µ̃i)

2

(p0)2 − E2
p,i

]
(B.7.19)

= −NC

∑
i∈{u,d,s}

∫
d3p

(2π)3
(|Ep,i − µ̃i|+ |Ep,i + µ̃i| − 2|Ep,i|)

(B.7.20)

= −2NC

∑
i∈{u,d,s}

∫
d3p

(2π)3
Θ(µ̃i − Ep,i)(µ̃i − Ep,i) . (B.7.21)

This term is not divergent and does not need to be regularised as it is cut off by the
step function. Although the model should only be considered valid below the UV cut
off.

Eq. (B.7.11) can now be written as

V NJL
MF ({Mi} , {µi}) = V NJL

div ({Mi} , {µi}) + V NJL
fin ({Mi} , {µi}) . (B.7.22)

where

V NJL
div ({Mi} , {µi}) = 2iNC

∑
i∈{u,d,s}

∫
d4p

(2π)4
Log(p2 −M2

i ) + 2GS

∑
i∈{u,d,s}

(ρs
i)

2 (B.7.23)

and for the finite density contribution we have

V NJL
fin ({Mi} , {µi}) = V NJL

Fermi({Mi} , {µi})− 2GV

∑
i∈{u,d,s}

(ρv
i )

2 (B.7.24)

= V NJL
Fermi({Mi} , {µi})−

∑
i∈{u,d,s}

(µ̃i − µi)2

8GV

. (B.7.25)

To calculate the equation of state at finite density we redefine the effective poten-
tial by subtracting a constant, so that the mean field pressure (PMF = −VMF) is by
definition zero in vacuum. This subtraction is performed by,

VMF({Mi} , {µi}) ≡ V NJL
MF ({Mi} , {µi})− V NJL

MF ({Mi = Mi0} , {µi = 0}) , (B.7.26)

where we now relabel the vacuum values of the constituent quark masses, condensates
and densities with a subscript zero. The final expression at finite density is then

VMF({Mi} , {µi}) = Vdiv({Mi} , {µi}) + Vfin({Mi} , {µi}) , (B.7.27)

where V NJL
fin ({Mi} , {µi}) is still given by Eq. (B.7.25), as we only subtracted the vacuum

contribution. We have just dropped the NJL superscript for convenience and simplicity
of notation. The divergent contribution breaks up into three pieces

Vdiv({Mi} , {µi}) = V vac
div ({Mi} , {µi}) + 2GS

∑
i∈{u,d,s}

(ρs
i)

2 − 2GS

∑
i∈{u,d,s}

(ρs
i0)2 (B.7.28)
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= V vac
div ({Mi} , {µi}) +

∑
i∈{u,d,s}

(Mi −mi)
2

8GS

−
∑

i∈{u,d,s}

(Mi0 −mi)
2

8GS

,

(B.7.29)

where the first is the divergent vacuum contribution (quark loop term) and is

V vac
div ({Mi} , {µi}) = 2iNc

∑
i∈{u,d,s}

∫
d4k

(2π)4
Log

[
k2 −M2

i + iε

k2 −M2
i0 + iε

]
. (B.7.30)

In App. (B.7.3) it is evaluated in our chosen regularisation scheme, Schwinger’s proper
time method.

B.7.3 Divergent Part of the Effective Potential

The first term of the divergent part of the vacuum contribution to the effective potential
is given by

V vac
div (Mu,Md,Ms) = 2iNc

∑
i∈{u,d,s}

∫
d4k

(2π)4
Log

[
k2 −M2

i + iε

k2 −M2
i0 + iε

]
(B.7.31)

To evaluate we perform a Wick rotation in the p0 plane (see Table (B.1.6)), which
means we no longer have a need for the iε terms, giving

V vac
div (Mu,Md,Ms) = −6

∑
i∈{u,d,s}

∫
d4kE

(2π)4
Log

[
−k2

E −M2
i

−k2
E −M2

i0

]
. (B.7.32)

Eq. (B.7.32) is now in Euclidean momentum space. Assuming isotropy we make use of
the 4 dimensional hyperspherical symmetry. That is, to evaluate Eq. (B.7.32) further
we use the volume of a four dimensional hypersphere in momentum space, V4D =
1

2
π2k4

E, thus the Euclidean space measure is d4kE = 2π2k3
EdkE and

V vac
div (Mu,Md,Ms) = −6

∑
i∈{u,d,s}

∫ ∞
0

2π2

(2π)4
dkEk

3
E Log

[
k2

E +M2
i

k2
E +M2

i0

]
(B.7.33)

= − 3

4π2

∑
i∈{u,d,s}

∫ ∞
0

dkEk
3
E

[
Log

(
k2

E +M2
i

)
− Log

(
k2

E +M2
i0

)]
.

(B.7.34)

As noted earlier this is divergent. We make the proper time replacement

LogA −→ −
∫ ∞
−∞

dτ

τ
e−τA (B.7.35)

and impose a UV cutoff, ΛUV, to regularise the vacuum contribution,

V vac
div (Mu,Md,Ms) =

3

4π2

∑
i∈{u,d,s}

∫ ∞
0

dkEk
3
E

∫ ∞
1

Λ2
UV

dτ

τ

(
e−τ(k

2
E+M2

i ) − e−τ(k2
E+M2

i0)
) .

(B.7.36)
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Next we interchange the order of integrations and perform the momentum integral,

V vac
div (Mu,Md,Ms) =

3

4π2

∑
i∈{u,d,s}

∫ ∞
1

Λ2
UV

[
dτ

τ

(
e−τM

2
i − e−τM2

i0

)∫ ∞
0

dkEk
3
E e−τk

2
E

]
(B.7.37)

=
3

4π2

∑
i∈{u,d,s}

∫ ∞
1

Λ2
UV

dτ

τ

(
e−τM

2
i − e−τM2

i0

)
.

1

2τ 2
(B.7.38)

=
3

8π2

∑
i∈{u,d,s}

∫ ∞
1

Λ2
UV

dτ

τ 3

(
e−τM

2
i − e−τM2

i0

)
(B.7.39)

=
3

8π2

∑
i∈{u,d,s}

[
M4

i Γ(−2,
M2

i

Λ2
UV

)−M4
i0Γ(−2,

M2
i0

Λ2
UV

)

]
, (B.7.40)

where Γ(a, z) is the incomplete gamma function. Eq. (B.7.40) can also be written in
terms of the exponential integral Ei(x),

V vac
div (Mu,Md,Ms) =

3

16π2

∑
i∈{u,d,s}

[(
e−M

2
i /Λ

2
UVΛ4

UV(1− M2
i

Λ2
UV

)−M4
i Ei(−M2

i

Λ2
UV

)

−
(
e−M

2
i0/Λ

2
UVΛ4

UV(1− M2
i0

Λ2
UV

)−M4
i0Ei(−M

2
i0

Λ2
UV

)]
.

(B.7.41)

B.8 The Gap Equation

B.8.1 The Gap Equation in Vacuum

In vacuum the quark propagator for flavour i is

Si(p) ≡ SiF(p) =
1

/p−Mi + iε
, (B.8.1)

where the subscript F indicates the usual Feynman propagator. The iε term will
disappear on rotation to Euclidean momentum space as it will no longer be needed,
because the propagator no longer has poles for real momentum and energy. The gap
equation is given by

Mi = mi − 4GS〈ψ̄iψi〉 . (B.8.2)

Using Eq. (B.8.1) one can the can write the quark condensate for flavour i as

〈ψ̄iψi〉 = −iTrSi (B.8.3)

= −iTr

∫
d4p

(2π)4

1

/p−Mi + iε
(B.8.4)

= −iTr

∫
d4p

(2π)4

/p+Mi

p2 −M2
i + iε

(B.8.5)
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= −4iNCMi

∫
d4p

(2π)4

1

p2 −M2
i + iε

. (B.8.6)

We now Wick rotate making use of the properties summarised in Table B.1.6. The
condensate becomes

〈ψ̄iψi〉 = −4(i)2NCMi

∫
d4pE

(2π)4

1

−p2
E −M2

i

. (B.8.7)

Thus, in Euclidean momentum space the quark condensate takes the following form

〈ψ̄iψi〉 = −NCMi

2π2

∫ ∞
0

dpE
p3

E

p2
E +M2

i

, (B.8.8)

which is divergent. It is regularised using Schwinger’s proper time regularisation scheme

〈ψ̄iψi〉 = −NCMi

2π2

∫ ∞
0

dpE
p3

E

p2
E +M2

i

(B.8.9)

= −NCMi

2π2

∫ ∞
0

dpE p3
E

∫ ∞
1

Λ2
UV

dτe−τ(p
2
E+M2

i ) (B.8.10)

= −NCMi

2π2

∫ ∞
1

Λ2
UV

dτ

∫ ∞
0

dpE p3
Ee
−τ(p2

E+M2
i ) (B.8.11)

= −NCMi

2π2

∫ ∞
1

Λ2
UV

dτ
e−τM

2
i

2τ 2
. (B.8.12)

Finally the vacuum gap equation is written as

Mi = mi + 4GS
NCMi

2π2

∫ ∞
1

Λ2
UV

dτ
e−τM

2
i

2τ 2
(B.8.13)

= mi +
3GSMi

π2

∫ ∞
1

Λ2
UV

dτ
e−τM

2
i

τ 2
, (B.8.14)

where we have used NC = 3. This expression can also be obtained from

∂V NJL
MF

∂Mi

= 0 , (B.8.15)

where V NJL
MF is given by Eq. (B.7.7).

B.8.2 The Gap Equation at Finite Density

The quark propagator in-medium is

Si(p) = SiF(p) + SiD(p) (B.8.16)

=
1

/p−Mi

+ i
π

Ep,i
(/p+Mi)Θ(µi − Ep,i)δ(p0 − Ep,i) . (B.8.17)
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The gap equation is given by

Mi = mi − 4GS〈ψ̄iψi〉 , (B.8.18)

where the condensate for flavour i is

〈ψ̄iψi〉 = −iTrSi = −iTrSiF − iTrSiD . (B.8.19)

The first term in Eq. (B.8.19) is the vacuum contribution calculated in App. B.8.1.
The second term is evaluated as follows

−iTrSiD = −iTr

[
i
π

Ep,i
(/p+Mi)Θ(µi − Ep,i)δ(p0 − Ep,i)

]
(B.8.20)

= 2NC

∫
d3p

(2π)3

Mi

Ep,i
Θ(µi − Ep,i) (B.8.21)

=
MiNC

2π2

[
µi

√
µ2
i −M2

i −M2
i Log

[
µi +

√
µ2
i −M2

i

Mi

]]
. (B.8.22)

The resulting expression for the in-medium gap equation is

Mi = mi +
3GSMi

π2

∫ ∞
1

Λ2
UV

dτ
1

τ 2
e−τM

2
i (B.8.23)

− 2GSMiNC

π2

[
µi

√
µ2
i −M2

i −M2
i Log

[
µi +

√
µ2
i −M2

i

Mi

]]
.

(B.8.24)

Note that the Fermi contribution is finite, although the expression as a whole should
be viewed as only valid below the UV cut-off. In the presence of a vector interaction
the chemical potential is replaced by the reduced chemical potential. This expression
can also be obtained from

∂VMF

∂Mi

= 0 , (B.8.25)

where VMF is given by Eq. (B.7.27).

B.9 Pion Polarisation Function

Here we outline the calculation of the pion polarisation graph in the proper time
regularisation scheme. It is worth noting that we are considering objects in a direct
product space

Dirac⊗ Flavour⊗ Colour , (B.9.1)

so that when the interaction is the same for say all colours we have an Nc-fold de-
generacy. This can be seen from the more general trace formula Tr[Â ⊗ B̂ ⊗ Ĉ] =
Tr[Â]Tr[B̂]Tr[Ĉ] , where Â, B̂, Ĉ are operators in the above 3 spaces.
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The pion polarisation function is

1

i
Ππ(k2) = 6

∫
d4p

(2π)4

Tr
[
iγ5(/p+ /k

2
+M)iγ5(/p− /k

2
+M)

]
((p+ k

2
)2 −M2)((p− k

2
)2 −M2)

, (B.9.2)

where the traces over colour and flavour have been performed. The Dirac trace is
evaluated as follows

Tr

[
γ5(/p+

/k

2
+M)γ5(/p−

/k

2
+M)

]
= Tr

[
γ5/pγ5/p

]
− 1

2
Tr
[
γ5/pγ5/k

]
+Tr

[
γ5/pγ5M

]
+

1

2
Tr
[
γ5/kγ5/p

]
−1

2
Tr [γ5/kγ5] +

1

2
Tr [γ5/kγ5M ]

+Tr
[
γ5Mγ5/p

]
− 1

2
Tr [γ5Mγ5/k]

+Tr [γ5Mγ5M ] . (B.9.3)

Using the fact that the trace of an odd number of gamma matrices is zero, γ2
5 = 1D ,

γµγν = −γνγµ and Tr[/a/b] = 4a · b we arrive at the following

Tr

[
γ5(/p+

/k

2
+M)γ5(/p−

/k

2
+M)

]
= 4(M2 − p2 +

k2

4
) . (B.9.4)

This evaluation of the trace can be substituted back into the polarisation equation and
we can continue with the calculation of the pion polarisation graph. The next step is
to write the denominator in terms of partial fractions. That is,

1

ab
=

(a+ b)

(a+ b)
.

1

ab
=

a
ab

+ b
ab

a+ b
=

1
a

+ 1
b

a+ b

a = (p+
1

2
k)2 −M2 (B.9.5)

b = (p− 1

2
k)2 −M2 (B.9.6)

a+ b = (p+
1

2
k)2 −M2 + (p− 1

2
k)2 −M2 (B.9.7)

= 2(p2 +
1

4
k2 −M2) . (B.9.8)

Note that the trace evaluated above in Eq. (B.9.4) can be rewritten as

4(M2 − p2 +
k2

4
) = 4((M2 − p2 − k2

4
) +

1

2
k2) . (B.9.9)

The first term on the RHS of Eq. (B.9.9) is the same as (−2)× the denominator. Thus
the polarisation function becomes

1

i
Ππ(p) = 12

∫
d4p

(2π)4

(
1

(p+ 1
2
k)2 −M2

+
1

(p− 1
2
k)2 −M2

)
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−24

∫
d4p

(2π)4

(
k2/2

((p− 1
2
k)2 −M2)((p+ 1

2
k)2 −M2)

)
. (B.9.10)

In the first term of Eq. (B.9.10) we have two integrals. It is possible to shift the

momentum in the first p→ p′ = p+
1

2
k and the momentum in the second to p→ p′′ =

p− 1

2
k, then we can relabel p such that the first term is just

Term 1 = 2× 12

∫
d4p

(2π)4

1

p2 −M2
. (B.9.11)

This integral is common in the NJL model, also appearing in the gap equation for
example. For this reason we evaluate it explicitly here in our chosen regularisation
scheme, proper time regularisation. First we will need to Wick rotate from Minkowski
space to Euclidean space, giving

Term 1 = i24

∫
d4pE
(2π)4

1

−p2
E −M2

(B.9.12)

= −i24

∫
d4pE
(2π)4

1

p2
E +M2

(B.9.13)

= −i24
1

(2π)4

∫
2π2p3

EdpE
1

p2
E +M2

= −i 3

π2

∫ ∞
0

dpEp
3
E

1

p2
E +M2

. (B.9.14)

Using the proper time replacement for regulating the divergent integral term 1 becomes

Term 1 = −i 3

π2

∫ ∞
0

dpE p3
E

∫ ∞
1/Λ2

UV

dτ e−τ(p2
E+M2) (B.9.15)

= −i 3

π2

∫ ∞
1/Λ2

UV

dτ e−τM
2

∫ ∞
0

dpE p3
E e−τp

2
E . (B.9.16)

Using ∫ ∞
0

dpE p3
E e−τp

2
E =

1

2τ 2
, (B.9.17)

we thus have

Term 1 = −i 3

π2

∫ ∞
1/Λ2

UV

dτ
e−τM

2

2τ 2
. (B.9.18)

Term 2 of Eq. (B.9.10) is

Term 2 = −24
k2

2

∫
d4p

(2π)4

1

((p+ 1
2
k)2 −M2)((p− 1

2
k)2 −M2)

. (B.9.19)

Now we use the Feynman parameter trick to obtain

Term 2 = −24
k2

2

∫
d4p

(2π)4

∫ 1

0

dx[
x((p+ 1

2
k)2 −M2) + (1− x)((p− 1

2
k)2 −M2)

]2
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(B.9.20)

and simplifying the denominator we have

Denominator =

[
x(p2 +

1

4
k2 + p · k −M2) + p2 − p · k

+
1

4
k2 −M2 − x(p2 − p · k +

1

4
k2 −M2)

]2

=

[
xp · k + p2 − p · k +

1

4
k2 −M2 + xp · k

]2

. (B.9.21)

To simplify the denominator we shift the momentum p→ p− xk +
1

2
k, such that

(Denominator)1/2 = 2xp · k + p2 − p · k +
1

4
k2 −M2

= 2x(p− xk +
1

2
k) · k

+(p− xk +
1

2
k)2

−(p− xk +
1

2
k) · k

+
1

4
k2

−M2

= p2 + k2(x− x2)−M2 . (B.9.22)

Next we substitute Eq. (B.9.22) back into term 2, Eq. (B.9.20), and Wick rotate into
Euclidean space

Term 2 = −24× 2π2

16π4

k2

2
i

∫ 1

0

dx

∫ ∞
0

dpEp
3
E

(p2
E + k2(x2 − x) +M2)

2 . (B.9.23)

What now remains is to use proper time regularisation, yielding

Term 2 = −3k2i

2π2

∫ 1

0

dx

∫ ∞
0

dpE p3
E

∫ ∞
1/Λ2

UV

dτ τe−τ[p
2
E+k2(x2−x)+M2]

= −3k2i

2π2

∫ 1

0

dx

∫ ∞
1/Λ2

UV

dτ τe−τ[k
2(x2−x)+M2]

∫ ∞
0

dpE p3
Ee
−τp2

E

= −3k2i

4π2

∫ 1

0

dx

∫ ∞
1/Λ2

UV

dτ
e−τ[k

2(x2−x)+M2]

τ
. (B.9.24)

The polarisation function for the pion is finally given by

1

i
Ππ(k2) = − 3i

π2
I1(M2)− 3k2i

4π2
I2(k2,M2) , (B.9.25)



APPENDIX B. QUARK MATTER SUPPLEMENTAL MATERIAL 205

where

I1(M2) =

∫ ∞
1/Λ2

UV

dτ
e−τM

2

2τ 2
(B.9.26)

and

I2(k2,M2) =

∫ 1

0

dx

∫ ∞
1/Λ2

UV

dτ
e−τ[k

2(x2−x)+M2]

τ
. (B.9.27)

Eqs. (B.9.26) and (B.9.27) can be evaluated numerically.

B.10 Pion-quark Coupling

From Eq. (B.9.25) it can be shown that the pion-quark coupling is given by

1

g2
πqq

=
∂Ππ

∂q2

∣∣∣∣
q2=m2

π

=
3

4π2

∫ 1

0

dx

∫ ∞
1/Λ2

UV

dτ

[
1

τ
−m2

π(x2 − x)

]
e−τ(m2

π(x2−x)+M2) , (B.10.1)

where x is a Feynman parameter.

B.11 Pion Decay Constant

To calculate the pion decay constant we take as our starting point the matrix element,
Eq. (2.2.11),

〈0|ψ̄(0)γµγ5
λa
2
ψ(0)|πb〉 = ifπq

µδab . (B.11.1)

Performing the flavour and colour traces we obtain

iqµfπ = −gπqqNC

∫
d4p

(2π)4
Tr

[
γµγ5S`(p+

1

2
q)γ5S`(p−

1

2
q)

]
. (B.11.2)

The Dirac trace is performed by the usual methods and can be shown to be

Tr

[
γµγ5(/p+

/q

2
+M)γ5(/p−

/q

2
+M)

]
= −4Mqµ . (B.11.3)

On substitution of this result (Eq. (B.11.3)) into Eq. (B.11.2), we see that the pion
decay constant can be expressed as

fπ = −igπqq4NCM

∫
d4p

(2π)4

1(
(p+ q/2)2 −M2 + iε

) (
(p− q/2)2 −M2 + iε

) (B.11.4)

Using Feynman’s parameter trick

1

AB
=

∫ 1

0

dx

[xA+ (1− x)B]2
(B.11.5)
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to re-express the integral in Eq. (B.11.4) and shifting the momentum p→ p+q/2−xq,
Eq. (B.11.4) becomes

fπ = −igπqq4NCM

∫
d4p

(2π)4

∫ 1

0

dx

[p2 + q2(x− x2)−M2 + iε]2
. (B.11.6)

Wick rotating and implementing proper time regularisation we obtain the final expres-
sion for the pion decay constant

fπ = −igπqq4NCMi

∫
d4pE
(2π)4

∫ 1

0

dx

[−p2
E + q2(x− x2)−M2]

2

= gπqq4NCM

∫
d4pE
(2π)4

∫ 1

0

dx

[p2
E + q2(x2 − x) +M2]

2

= gπqq4NCM

∫ ∞
0

2π2p3
EdpE

16π4

∫ 1

0

dx

[p2
E + q2(x2 − x) +M2]

2

= gπqq
NCM

2π2

∫ 1

0

dx

∫ ∞
1/Λ2

UV

dττ

∫ ∞
0

dpE p3
Ee
−τ(p2

E+q2(x2−x)+M2)

= gπqq
NCM

4π2

∫ 1

0

dx

∫ ∞
1/Λ2

UV

dτ
e−τ(q

2(x2−x)+M2)

τ
. (B.11.7)

B.12 Three Momentum Regularised NJL Model with

t’ Hooft Term

In the main body of the thesis, for comparison purposes, we also present results using
the three flavour NJL model with the so called t’ Hooft determinant term. This NJL
model is regularised using the simpler non-covariant three momentum regularisation
scheme. This model was used for example in Ref. [282] to investigate hybrid stars. Our
definition of the couplings is slightly different from Ref. [282]. The Lagrangian density
under investigation here is explicitly given by

LTM = LNJL + Ldet , (B.12.1)

where LNJL is given by Eq. (6.3.8) and

Ldet = −GD

[
detF

[
ψ̄ (1 + γ5)ψ

]
+ detF

[
ψ̄ (1− γ5)ψ

]]
. (B.12.2)

The determinant detF is a flavour determinant and as such it mixes quarks of different
flavours.

Following the same methods and notation as used in earlier sections, the effective
mean field potential for this NJL model can be shown to be

V TM
MF ({Mi} , {µi}) = −2NC

∑
i∈{u,d,s}

∫
d3p

(2π)3
EiΘ(Λ− |~p |)
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−2NC

∑
i∈{u,d,s}

∫
d3p

(2π)3
Θ(µ̃i − Ei)(µ̃i − Ei)

+2GS

∑
i∈{u,d,s}

(ρs
i)

2 − 4GDρ
s
uρ

s
dρ

s
s − 2GV

∑
i∈{u,d,s}

(ρv
i )

2 − V TM
0

(B.12.3)

where Ei =
√
~p 2 +M2

i . The constant vacuum term subtracted in Eq. (B.12.3) to give

zero pressure in vacuum is

V TM
0 = 2GS

∑
i∈{u,d,s}

(ρs
0i)

2 − 4GDρ
s
0uρ

s
0dρ

s
0s − 2NC

∑
i∈{u,d,s}

∫
d3p

(2π)3
E0iΘ(Λ− |~p |) ,

(B.12.4)

where the subscript 0 means the vacuum value i.e E0i =
√
~p 2 +M2

0i. The constituent

quark masses are given by

Mi = mi − 4GSρ
s
i + 2GDρ

s
jρ

s
k , (B.12.5)

where the subscripts (i, j, k) are a cyclic permutation of (u, d, s). The scalar condensate
of quark i is

ρs
i = − 3

π2

∫ Λ

pi
F

dp p2Mi

Ei
(B.12.6)

and its Fermi momentum in the presence of a vector interaction is piF =
√
µ̃2
i −M2

i Θ(µ̃i−
Mi).
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Nonlocality effects in the phase diagram of neutral quark matter. Physics of
Particles and Nuclei, 39(7):1040–1043, December 2008.

[353] Jun Xu, Lie-Wen Chen, Che Ming Ko, and Bao-An Li. Isospin- and momentum-
dependent effective interactions for the baryon octet and the properties of hybrid
stars. Physical Review C, 81(5):055803, May 2010.

[354] Guo Yun Shao. Evolution of proto-neutron stars with the hadron-quark phase
transition. Physics Letters, Section B: Nuclear, Elementary Particle and High-
Energy Physics, 704(4):343–346, 2011.

[355] Domenico Logoteta, Ignazio Bombaci, Constança Providência, and Isaac Vidaña.
Chiral model approach to quark matter nucleation in neutron stars. Physical
Review D, 85(2):023003, January 2012.

[356] Domenico Logoteta, Constança Providência, Isaac Vidaña, and Ignazio Bombaci.
Quark matter nucleation with a microscopic hadronic equation of state. Physical
Review C, 85(5):055807, May 2012.

[357] Tsuyoshi Miyatsu, Myung-ki Cheoun, and Koichi Saito. Equation of state for
neutron stars with hyperons and quarks in relativistic Hartree-Fock approxima-
tion. arXiv, 1506.05552:1–37, 2015.

[358] M Asakawa and T Hatsuda. What thermodynamics tells us about the QCD
plasma. Phys. Rev. D, 55(7):4488–4491, 1997.

[359] D.E. Alvarez Castillo, Sanjin Benić, David Blaschke, and Rafa astowiecki.
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