The University of Adelaide

THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THEORETICAL PHYSICS

DEPARTMENT OF PHYSICS AND SPECIAL RESEARCH CENTRE FOR THE SUBATOMIC STRUCTURE OF MATTER

Hadrons and Quarks in Dense Matter:

From Nuclear Matter to Neutron Stars

Author: Daniel L. WHITTENBURY Supervisors: Prof. A. W. THOMAS Prof. A. G. WILLIAMS Dr R. YOUNG

November 10, 2015

Contents

Li	st of	Tables	vii
Li	st of	Figures	ix
Si	gned	l Statement	xv
A	ckno	wledgements x	vii
D	edica	ation	xix
\mathbf{A}	bstra	act	xxi
Li	st of	Publications xx	ciii
1	Intr	roduction	1
2	From 2.1 2.2 2.3 2.4 2.5 2.6	m Nuclear Physics to QCD and Back AgainNN Interaction and Early Nuclear PhysicsBasic Notions of Quantum Chromodynamics2.2.1QCD Lagrangian and its Symmetries2.2.2Asymptotic Freedom and Perturbation Theory2.2.3Chiral Effective Field TheoryNuclear MatterExperimental and Theoretical Knowledge of the Nuclear EoSQuantum Hadrodynamics and the Relativistic Mean Field ApproximationThe Quark-Meson Coupling Model	 9 16 17 21 24 25 30 35 42
3	Ger 3.1 3.2	neral Relativity and the Astrophysics of Neutron StarsHydrostatic EquilibriumThe Neutron Star EoS	47 49 51
4	Har 4.1 4.2 4.3 4.4 4.5 4.6	rtree-Fock QMC Applied to Nuclear Matter The Hartree-Fock QMC The Lagrangian Density Equations of Motion and the MFA The Hamiltonian Density Hartree-Fock Approximation The In-medium Dirac Equation	 57 58 59 61 62 64 72

	4.7	Detailed Evaluation of σ Meson Fock Term	73 75		
	4.0	Final Expressions for the Fock Terms	70		
	4.9	Nuclear Matter Properties	(9 00		
	4.10	Agreement in Nuclean Matter	04 05		
	4.11	Asymmetric Nuclear Matter	80		
	4.12	Sensitivity to Parameter Variation	89		
	4.13	Summary	90		
5	Har	tree–Fock QMC Applied to Neutron Stars	93		
	5.1	Generalised Beta Equilibrium Matter and Neutron Stars	93		
	5.2	Numerical Results and Discussions	96		
		5.2.1 Comparison with Other Models	102		
	5.3	Summary	103		
6	Qua	rk Matter in the Nambu–Jona-Lasinio Model	107		
	6.1	A Brief Introduction to the NJL Model	107		
	6.2	A Simple and Less Intuitive Explanation of the Mean Field Approximation	n110		
	6.3	A Fierz Invariant NJL Lagrangian Derived from the Colour Current			
		Interaction	111		
	6.4	A Better Explanation of the Mean Field Approximation Using the Path			
		Integral Formalism	113		
	6.5	Pion Phenomenology and the Fitting of the NJL Model Parameters	123		
	6.6	At Finite Density	127		
	6.7	Flavour Independent Vector Interaction	129		
	6.8	Numerical Results and Discussion	130		
	6.9	Summary	148		
7	Phase Transitions to Quark Matter 149				
	7.1	Hybrid Stars and the Phase Transition to Quark Matter	149		
	7.2	Interpolation Construction	153		
	7.3	Numerical Results and Discussion	155		
	7.4	Summary	166		
8	Sun	amary and Outlook	167		
•	TT . J		1 70		
A		Par Madel Mar Demonstriations	173		
	A.I	Bag Model Mass Parametrisations	173		
	A.2	Sen-energy	173		
	A.3	Subtraction of Contact Terms	174		
		A.3.1 Sigma Meson	174		
		A.3.2 Vector Meson ($\eta = \omega/\rho$) Vector-Vector Term	174		
		A.3.3 Vector Meson $(\eta = \omega/\rho)$ Vector-Tensor Term	175		
		A.3.4 Vector Meson $(\eta = \omega/\rho)$ Tensor-Tensor Term	175		
		A.3.5 Pion Term	176		

В	Qua	ark Ma	atter Supplemental Material	177
	B.1	Supple	ementary Material on Path Integrals, Generating Functionals and	
		the St	ationary Phase Approximation	177
		B.1.1	The Generating Functional and Green's Functions in the Canon-	
			ical Formalism	177
		B.1.2	The Path Integral Formalism	179
		B.1.3	Free Boson Theory	180
		B.1.4	Stationary and Saddle Point Approximation	181
		B.1.5	The Connected Generating Functional and the Effective Action	183
		B.1.6	Connection to QFTs at Finite Temperature and Statistical Me-	
			chanics	185
		B.1.7	Free Fermion Theory	188
	B.2	Symm	etry Lie Group and Lie Algebra Conventions	190
	B.3	Fierz '	Transformations	191
	B.4	Useful	Functional Formulas	191
	B.5	Useful	Properties Involving Determinants	192
	B.6	Schwii	nger's Proper Time Regularisation	193
	B.7	Effecti	ve Potential Derivation	193
		B.7.1	Effective Potential in Vacuum	193
		B.7.2	Effective Potential at Finite Density	194
		B.7.3	Divergent Part of the Effective Potential	198
	B.8	The G	$ap Equation \dots \dots$	199
		B.8.1	The Gap Equation in Vacuum	199
	D 0	B.8.2	The Gap Equation at Finite Density	200
	B.9	Pion I	Polarisation Function	201
	B.10) Pion-c	uark Coupling	205
	B.11	Pion I	Decay Constant	205
	B.12	Three	Momentum Regularised NJL Model with t' Hooft Term	206

Bibliography

209

List of Tables

2.2.12.3.12.5.12.5.2	Quark properties [91], masses are in units of GeV. \dots Typical parameter set for the Bethe-Weizacker formula [109] \dots Two typical QHD parameter sets. Coupling constants are dimensionless except for κ which is given in MeV. The parameter sets are given using the convention that the scalar field is positive. See the above references for the details of the fitting procedure. \dots Masses and incompressibility for the two typical QHD parameter sets given in Table 2.5.1. The masses and incompressibility are given in MeV.	17 26 42
4.9.1	Relations between baryon magnetic moments and anomalous isoscalar	42
	and isovector magnetic moments $\kappa^B_{(IS,IV)} =: \kappa^B_{(\omega,\rho)} = f_{B(\omega,\rho)}/g_{B(\omega,\rho)}$ using experimental magnetic moments [256].	80
4.13.1	Couplings, nuclear matter properties and selected hyperon optical po- tentials determined for our standard case (for which $\Lambda = 0.9$ GeV, and $R_N^{\text{free}} = 1.0$ fm) and the effect of subsequent variations in which dif- ferences from the standard parameter set are indicated in column 1. The tabulated quantities at saturation are the slope and curvature of the symmetry energy, L_0 and K_{sym} , the incompressibility K_0 , skewness coefficient Q_0 and the volume component of isospin incompressibility $K_{\tau,v}$, respectively.	92
5.3.1	Selected nuclear matter properties, hyperon optical potentials and neu- tron star properties determined for our standard case (for which $\Lambda = 0.9$ GeV, and $R_N^{\text{free}} = 1.0$ fm) and the effect of subsequent variations in which differences from the standard parameter set are indicated in column 1. The tabulated quantities at saturation are the incompress- ibility K_0 , the slope of the symmetry energy, L_0 , and hyperon optical potentials, respectively. Tabulated neutron star quantities are the stel- lar radius, maximum stellar mass and corresponding central density	
	(units $\rho_0 = 0.16 \text{ fm}^{-3}$).	106

- 2.1.1 Transformations upon Wick rotation and various definitions. 188

List of Figures

2.1.12.1.22.2.12.2.22.6.1	Division of configuration space into three regions Phase shifts versus energy for (a) ${}^{1}S_{0}$ and (b) ${}^{1}D_{2}$ partial waves. Data obtained through NN-Online [40] and INS DAC [41] on 7/2/2014 Summary of symmetries and their breaking	12 13 19 23 44
3.1.1	Summary of typical estimates for the masses of main sequence star corpses and their progenitors [218]	50
3.2.1	Schematic cross section of a neutron star, see for example Refs. [111, 189, 191]. Crust: nuclei, electrons and neutrons. Outer core: Nuclear liquid consisting of neutrons, protons, electrons and muons. Inner core: Content uncertain, commonly thought that hyperons, Bose condensates or quark matter could exist	50
4 10 1	Description of the second exist.	52
4.10.1	Pure neutron matter energy per particle as a function of density as obtained in the present work, in comparison with complete CEFT at $N^{3}LO$ order – for more details of the latter, see Ref. [260]	83
4.10.2	Density dependence of pressure in PNM as predicted in BHF, DBHF, QuMoCa and CEFT with and without three-body forces. (a) With-	
4.10.3	out three-body forces. (b) With three-body forces. The QMC model prediction is shown in (b). For more details see the text and ref. [87] (a) Pressure in SNM as a function of density as predicted in QMC model. The shaded area is taken from Ref. [265]. (b) Pressure in PNM as a function of density as predicted in the QMC model. The upper and lower shaded areas correspond to two different estimates of the contribution of the symmetry pressure to the total pressure. For more	84
4.11.1	detail see Ref. [265] \ldots	86
	function of baryon number density $L(\rho) = 3\rho \left(\frac{\partial S}{\partial z}\right)$.	87
4.11.2	The correlation between the slope and magnitude of the symmetry en- ergy S_0 . Constraints on the slope L_0 and the symmetry energy S_0 at saturation density from different experiments are overlaid. The ex- perimental methods are labelled next to the boxes with the estimated	
	uncertainties. See Ref. [87] for more details	88

5.1.1	GBEM equation of state. Kinks occur at significant hyperon threshold densities. The divergences between the "Hartree Only" QMC parametri- sation and the Hartree–Fock scenarios highlights the importance of Fock terms at high density. The "Nucleon only" BEM EoS is added for a	
5.1.2	comparison.(a) Neutral baryon chemical potentials as a function of baryon number density for the standard scenario. (b) Negative charge baryon chemical potentials as a function of baryon number density for the standard	97
5.1.3	scenario	98
5.2.1	Gravitational Mass versus radius relationship for various scenarios de- scribed in the text. The black dots represent maximum mass stars and the coloured bars represent observed pulsar constraints.	100
5.2.2	Gravitational mass versus baryonic mass. The boxes are constraints from simulations (Yellow) by Kitaura <i>et al.</i> [273] and (Orange) by Podsiadlowski <i>et al.</i> [274], which are explained in the text.	101
6.1.1	Gluons are integrated out, leading to an effective four-point quark in-	100
	teraction in the NJL model	108 124 124 126
6.8.2 6.8.3	$(\tilde{\mu}_{\rm crit})$ are red dashed	132 134 136
6.8.4	Quark mass versus total baryonic density for parameter sets (a) PS1, (b) PS2 and (c) HK	138

6.8.5	Beta-equilibrium quark matter for parameter set PS2 (solid) and HK (dashed). Each of the particle number densities is divided by the total quark density $\rho_{\text{tot}} = \rho_d + \rho_u + \rho_s = 3\rho$. The down quark fraction is red, up green, strange purple. The electron fraction (blue) is multiplied by 100 so as to be visible on the same plot. Note that the electron fraction defined here differs by a factor of 1/3 from the figures in Ch. 5. Plot (a) zero vector coupling and non-zero flavour independent vector coupling (b) flavour dependent vector interaction with $G_V = G_S/2$ and (c) flavour dependent vector interaction with $G_V = G_S$. Here we use	
6.8.6	the saturation density $\rho_0 = 0.17 \text{ fm}^{-3}$	139
6.8.7	orange and $G_{\rm V} = G_{\rm S}$ blue	140
6.8.8 6.8.9	respectively. Here we use the saturation density $\rho_0 = 0.17 \text{ fm}^{-3}$ Same as Fig. 6.8.7, but for the flavour independent vector interaction. Pressure as a function of density for the PS2 parameter set. Results using the flavour dependent interaction G_V (i.e. use Eq. (6.3.8)) (solid) and flavour independent interaction g_V (i.e. use Eq. (6.7.1)) (dashed) for different values of the vector coupling	141 142 144
6.8.10 6.8.11	Same as Fig. 6.8.9, but for the parameter set HK	145
6.8.12 6.8.13	the energy density with $\epsilon_0 = 140 \text{ MeV fm}^{-3}$	146 146
6.8.14	Same as Fig. 6.8.13, but for the parameter set HK.	147
7.2.1	Interpolating functions $f_{\pm}(\rho)$ (blue/green) and $g_{+}(\rho)$ (purple) versus density (ρ) in units fm ⁻³ . The red dashed vertical lines mark the chosen transition region $(\bar{\rho}, \Gamma) = (3\rho_0, \rho_0)$ with $\rho_0 = 0.16 \text{fm}^{-3}$.	153

- 7.3.1Energy density as a function of total baryonic density. For plot (a), the interpolation is between the "Standard" or baseline scenario of the HF-QMC model and the proper time regularised PS2 model with flavour dependent vector interaction. Similarly for plot (b), but with the three momentum regularised model with flavour dependent vector interaction. The crossover region is chosen to be $(\bar{\rho}, \Gamma) = (3\rho_0, \rho_0)$. Specific curves for both plots are indicated in the key of plot (a).
- 7.3.2Thermodynamic correction ΔP as a function of total baryonic density as arising from the interpolation. For plot (a), the interpolation is between the "Standard" or baseline scenario of the HF-QMC model and the proper time regularised PS2 model with flavour dependent vector interaction. Similarly for plot (b), but with the three momentum regularised model with flavour dependent vector interaction. The crossover region is chosen to be $(\bar{\rho}, \Gamma) = (3\rho_0, \rho_0)$. Specific curves for both plots
- Pressure as a function of total baryonic density. For plots (a,b), the 7.3.3 interpolation is between the "Standard" or baseline scenario of the HF-QMC model and the proper time regularised PS2 model with flavour dependent vector interaction. Similarly for plots (c,d), but with the three momentum regularised model with flavour dependent vector interaction. Plots (a.c) do not include the thermodynamic correction ΔP . whereas plots (b,d) include the correction for thermodynamic consistency. The crossover region is chosen to be $(\bar{\rho}, \Gamma) = (3\rho_0, \rho_0)$. Line
- 7.3.4Pressure as a function of energy density. For plots (a,b), the interpolation is between the "Standard" or baseline scenario of the HF-QMC model and the proper time regularised PS2 model with flavour dependent vector interaction. Similarly for plots (c,d), but with the three momentum regularised model with flavour dependent vector interaction. Plots (a,c) do not include the thermodynamic correction ΔP , whereas plots (b,d) include the correction for thermodynamic consistency. The crossover region is chosen to be $(\bar{\rho}, \Gamma) = (3\rho_0, \rho_0)$. Line types as in Fig. 7.3.1. 161
- 7.3.5Speed of sound squared as a function of energy density. For plots (a,b), the interpolation is between the "Standard" or baseline scenario of the HF-QMC model and the proper time regularised PS2 model with flavour dependent (solid) and independent (dashed) vector interactions. Similarly for plots (c,d), but with the three momentum regularised model with flavour dependent (solid) and independent (dashed) vector interactions. Plots (a,c) do not include the thermodynamic correction ΔP , whereas plots (b,d) include the correction for thermodynamic consistency. The crossover region is chosen to be $(\bar{\rho}, \Gamma) = (3\rho_0, \rho_0)$. Specific curves for all plots are indicated in the key of plot (a). 162

158

159

160

7.3.6	Neutron star mass as a function of radius. For plots (a,b), the interpo- lation is between the "Standard" or baseline scenario of the HF-QMC model and the proper time regularised PS2 model with flavour depen- dent (solid) and independent (dashed) vector interactions. Similarly for plots (c,d), but with the three momentum regularised model with	
	flavour dependent (solid) and independent (dashed) vector interactions. Plots (a,c) do not include the thermodynamic correction ΔP , whereas plots (b,d) include the correction for thermodynamic consistency. The crossover region is chosen to be $(\bar{\rho}, \Gamma) = (3\rho_0, \rho_0)$. Specific curves for all plots are indicated in the key of plot (a).	163
2.1.1	Schematic figure demonstrating the basis of the path integral method. The classical action S_{cl} is extremal.	179
2.1.2	(Red) Eq. (B.1.19), (Black) Real part of Eq. (B.1.20) and (Purple) Imaginary part of Eq. (B.1.20)	181
2.1.3	Summary of generating functionals of interest and their interrelations.	186
2.1.4	Wick rotation in momentum space.	189
2.1.5	Wick rotation in configuration space	190

Signed Statement

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository., the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

SIGNED: DATE:

Acknowledgements

It is with immense gratitude that I acknowledge the support and help of all those who have helped me in one way or another throughout my PhD studies. The research presented in this thesis would not have been possible without them.

First of all, I would like to single out my supervisor Anthony W. Thomas. Despite having many graduate students, he manages to make time for all of us. He has been an incredible teacher and I have benefited greatly from his constant support, patience and guidance.

In addition, I would also like to express my gratitude to my collaborators Kazuo Tsushima, Jonathan D. Carroll, Jirina Rikovska-Stone and Hrayr Matevosyan. Their help during the early stages of my PhD studies was invaluable to my development and I am indebted to them for all their efforts.

I must also thank Parada T. P. Hutauruk and Manuel E. Carrillo-Serrano for their friendship and helpful conversations both related to physics and not. They have been a great help.

Last but certainly not least, I would like to thank Sunny (Yuan Yang Sun) for her love, support and for just being Sunny. Somehow she has managed to put up with me throughout the duration of my PhD studies and has kept me sane, which are by no means easy feats.

Dedication

This thesis is dedicated to the memory of my mother Meredith Anne Kite (1960–2009) who impressed upon me from an early age the importance of education.

Abstract

The underlying theme of this thesis is an investigation of the equation of state of strongly interacting matter and the modelling of cold neutron stars. Particular emphasis is placed on the influence of quark degrees of freedom, which we investigate by using relativistic quark level models. More precisely, we study the equation of state for QCD matter in the zero temperature limit, from the confined hadronic phase to the deconfined quark phase.

We begin by exploring the equation of state for nuclear matter in the quark-meson coupling model, including full Fock terms. The comparison with phenomenological constraints can be used to restrict the few additional parameters appearing in the Fock terms which are not present at Hartree level. Because the model is based upon the in-medium modification of the quark structure of the bound hadrons, it can be readily extended to include hyperons and to calculate the equation of state of dense matter in beta-equilibrium. This leads naturally to a study of the properties of neutron stars, including their maximum mass, their radii and density profiles.

Next, we study deconfined quark matter using the three flavour Nambu–Jona-Lasinio model based on one-gluon exchange. The model is implemented by employing Schwinger's covariant method of proper time regularisation. Comparisons are made with the more commonly used three momentum regularised model with the t' Hooft determinant term. Hybrid equations of state are constructed using the developed Hartree-Fock quark-meson coupling and Nambu–Jona-Lasinio models. We consider the possibility that deconfinement may be a crossover transition. Using the resulting hybrid equations of state, the properties of hybrid stars are then calculated.

List of Publications

- Whittenbury, D.L., Matevosyan, H. H., Thomas, A.W. *Hybrid Stars using the Quark-Meson Coupling and Proper Time NJL Models* (in preparation)
- Whittenbury, D.L., Carroll, J.D., Thomas, A.W., Tsushima, K., Stone, J.R. Quark-Meson Coupling Model, Nuclear Matter Constraints and Neutron Star Properties, Phys. Rev. C 89 065801 (2014).
- Thomas, A.W., Whittenbury, D.L., Carroll, J.D., Tsushima, K., Stone, J.R. Equation of State of Dense Matter and Consequences for Neutron Stars, EPJ Web Conf.
 63 (2013) 03004.
- Whittenbury, D.L., Carroll, J. D., Thomas, A. W., Tsushima, K., and Stone, J.R. *Neutron Star Properties with Hyperons*, arXiv:1204.2614 [nucl-th] (unpublished).