CURCUMIN ACTION IN PROSTATE CANCER CELLS AND FIBROBLASTS

By Lauren Giorgio

B.HlthSc (Honours)

A thesis submitted to The University of Adelaide in total fulfilment of the requirements for the degree of Doctor of Philosophy

School of Medicine Faculty of Health Science The University of Adelaide July 2014 This thesis is dedicated to the people who never stopped believing in me

INVICTUS

Out of the night that covers me Black as the pit from pole to pole I thank whatever gods may be For my unconquerable soul

In the fell clutch of circumstance I have not winced nor cried aloud Under the bludgeoning of chance My head is bloody, but unbowed

Beyond this place of wrath and tears Looms but the horror of the shade And yet the menace of the years Finds, and shall find, me unafraid

It matters not how strait the gate How charged with punishments the scroll I am the master of my fate I am the captain of my soul

-William Ernest Henley

TABLE OF CONTENTS

DECLARATION	i
ACKNOWLEDGEMENTS	ii
ABBREVIATIONS	iv
ABSTRACT	vii
CONFERENCE PRESENTATIONS	viii
PRIZES	ix
ENGAGEMENT IN THE SCIENTIFIC COMMUNITY	x
CHAPTER 1: INTRODUCTION	1
1.1: Thesis overview	1
1.2: The normal prostate	1
1.2.1: Development	1
1.2.2: Macroscopic and microscopic structure	1
1.2.3: Hormonal control of the normal prostate	2
1.2.4: The androgen receptor	3
1.3: Prostate cancer	6
1.3.1: Epidemiology and risk factors	6
1.3.2: Pathogenesis	6
1.3.3: Diagnosis	7
1.3.4: Androgen signalling in prostate cancer	8
1.3.5: Current treatment strategies	9
1.4: The prostate microenvironment	
1.4.1: The normal prostate microenvironment	10
1.4.2: The prostate cancer microenvironment	11
1.4.3: Fibroblast-mediated drug resistance	13
1.4.4: Fibroblast-targeted therapies	13
1.4.5: Androgen receptor in the prostate cancer microenvironment	14
1.5: Curcumin	14
1.5.1: Properties and mechanisms of action	14
1.5.2: Curcumin and prostate cancer	17
1.5.3: Curcumin clinical trials for cancer	
1.5.4: Challenges associated with curcumin treatment	
1.5.5: Curcumin tolerance and resistance	19
1.5.6: Curcumin activity in fibroblasts	20
1.6: Apoptosis	21

1.6.1: Extrinsic and intrinsic apoptotic pathways	21
1.6.2: Targeting apoptosis in cancer	23
1.6.3: Curcumin in combination with pro-apoptotic receptor agonists	24
1.6.4: Drozitumab	25
1.7: Thesis objectives	26
CHAPTER 2: MATERIALS AND METHODS	27
2.1: Materials	27
2.2: Buffers and solutions	30
2.3: General methods	33
2.3.1: Cell culture	33
2.3.2: Cell proliferation and viability assays	35
2.3.3: Preparation of plasmid DNA	35
2.3.4: Transfection	36
2.3.5: Flow cytometry	37
2.3.6: Immunoblot	38
2.3.7: Quantitative real-time PCR	39
2.3.8: Chromatin immunoprecipitation	40
2.3.9: Immunohistochemistry	42
CHAPTER 3: CURCUMIN ACTION IN PROSTATE CANCER CELLS AND FIBROBLASTS	44
3.1: Introduction	44
3.2: Materials and methods	46
3.2.1: Cell culture and reagents	46
3.2.2: MTT assay	46
3.2.3: Transactivation assay	46
3.2.4: Flow cytometry	47
3.2.5: Quantitative real-time PCR	47
3.2.6: Chromatin immunoprecipitation	48
3.2.7: Immunoblot	48
3.2.8: Microarray analysis	48
3.3: Results	50
3.3.1: Identification of qRT-PCR reference genes for curcumin-treated samples.	50
3.3.2: The sensitivity of prostate epithelial and fibroblast cell lines to curcumin	50
3.3.3: Effect of curcumin on AR transactivation in prostate epithelial cells and fibroblasts	53
3.3.4: Effect of curcumin on androgen-regulated gene expression in epithelial cells and fibroblasts	54
3.3.5: Genome-wide analysis of curcumin action in prostate fibroblasts over time.	57
3.3.6: Comparing genome-wide curcumin action in LNCaP, C4-2B and PShTert-AR cells	61
3.3.7: Mechanisms of curcumin-mediated cell cycle arrest in prostate cancer cells and fibroblasts	65
3.4: Discussion	67
CHAPTER 4: CURCUMIN TOLERANCE IN PROSTATE FIBROBLASTS	71
4.1: Introduction	71
4.2: Materials and methods	73

4.2.1: Cell culture and reagents	73
4.2.2: MTT assay	73
4.2.3: Flow cytometry	73
4.2.4: Quantitative real-time PCR	73
4.2.5: Microarray analysis	74
4.2.6: Transactivation assay and transfection efficiency	74
4.2.7: Chromatin immunoprecipitation	74
4.2.8: Immunoblot and fractionation	75
4.2.9: Matrix adhesion assay	75
4.2.10: Conditioned media experiments	76
4.3: Results	77
4.3.1: Characterisation of prostate fibroblasts grown long-term in curcumin	77
4.3.2: Functional analysis of LTV and LTC fibroblasts.	78
4.3.3: Genome-wide analysis of differential LTV and LTC response to curcumin.	79
4.3.4: Functional implications of curcumin tolerant prostate fibroblasts on PC-3 cells.	85
4.3.5: The effect of curcumin tolerance on AR signalling in prostate fibroblasts.	87
4.3.6: The reversible nature of curcumin tolerance	92
4.4: Discussion	94
CHAPTER 5: THE EFFICACY OF CURCUMIN IN COMBINATION WITH DROZITUMAB	99
5.1: Introduction	99
5.2: Materials and methods	102
5.2.1: Cell culture and reagents	102
5.2.2: Cell viability assays	102
5.2.3: Flow cytometry	102
5.2.4: Animal study	102
5.2.5: Histology and immunohistochemistry	103
5.3: Results	104
5.3.1: Effect of curcumin, alone and in combination with drozitumab, on PC-3-luc cell viability	104
5.3.2: Effect of curcumin, alone and in combination with drozitumab, on PC-3-luc apoptosis	104
5.3.3: Mechanisms of drozitumab resensitisation in PC-3-luc cells	107
5.3.4: Optimisation of a PC-3-luc xenograft model.	108
5.3.5: The effect of curcumin, drozitumab, and the combination on tumour burden in vivo	110
5.3.6: In vitro investigation of xenograft study observations	112
5.3.7: Development of metastatic lesions in the PC-3-luc xenograft model.	113
5.3.8: Analysis of tumour histology and immunohistochemistry.	114
5.3.9: Re-assessment of curcumin and drozitumab sensitivity in PC-3-luc explant cells	116
5.4: Discussion	118
CHAPTER 6: GENERAL DISCUSSION	121
6.1: Overview	121
6.2: Major findings of this thesis	122
6.3: Future directions	127

6.4: Conclusion	
APPENDIX A	130
APPENDIX B	151
REFERENCES	153

DECLARATION

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis resides with the Copyright holders of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

SIGNATURE:

DATE:

ACKNOWLEDGEMENTS

First and foremost, I would like to thank the academics who helped me along the way.

I owe my deepest gratitude to Professor Andreas Evdokiou for believing in my ability and trusting me as a scientist. You generously funded the animal study, allowed me full access to all of your resources and reviewed my thesis chapters. The only repayment you wanted was to see me succeed in getting my PhD. I have learnt so much from you and would not have been able to complete this journey without your guidance.

Dr Luke Selth, I thank you from the bottom of my heart for reviewing my data and thesis throughout what was the hardest part of my PhD. I learnt a great deal from the constructive criticism you provided. You were the only person who could get me over those last few hurdles and you selflessly donated your time to doing so. You did this only to see me get my PhD and for this I will always grateful.

Professors Alastair Burt and Richard Russell, I would like to thank you for guiding me through the various challenges I faced throughout my candidature. Your professionalism and approachability was very much appreciated.

Dr Irene Zinonos, thank you for sharing your wealth of animal work knowledge and for always being available to help me, no matter how busy you were. Thank you for all the Greek feasts and for being such a wonderful friend.

Dr Grant Buchanan, thank you for the bioinformatics you performed on my microarray data and for supporting my attendance at national conferences.

Dr Tak Kee and Mr Taka Harada, thank you for giving me the opportunity to work with you on something so novel and exciting. I wish you both the best of luck in the next chapter of this work.

Dr Jeff Holst and Dr Kevin Wang, thank you for having me visit your laboratory, for teaching me everything I needed to know about flow cytometry and for reviewing my paper.

I would also like to thank Dr Eleanor Need and Dr Andrew Trotta, who were co-supervisors for part of my PhD.

When we find someone whose weirdness is compatible with ours, we fall into mutually satisfying weirdness called friendship.

'Classic' Bill Liapis, 'Young' Bill Panagopoulos, Shelley Hay, Sarah Bray, Amanda Drilling, Hilary Dorward, Aneta Zysk and Dijana Miljkovic, thank you for all your help and advice, and for keeping a smile on my face over the years.

Ms Harshani Jayasinghe, thank you for being such an incredible friend. Your visits to my office brightened my days more than you know and your positivity is infectious. I thoroughly enjoyed our adventures and all the Sri Lankan feasts! I wish you all the very best with your PhD.

Dr Tamsin Garrod, I knew you were a true friend when you helped me scrub slimy water bins and pick up horse manure. Thank you for standing by me throughout this journey, it means the world to me. The long walks and coffees were also invaluable in reducing my stress levels! I wish you all the very best with your future endeavours.

Ms Erin Swinstead, I cannot put into words how grateful I am to have had you as a friend throughout this journey. You have always had my back, especially when I did silly things like print ten thousand pages. We laughed together, we cried together and we used the Port Road park bench way too much. Sometimes we needed more than the bench, so off to sushi train we went. Even though you are so far away I still think of us as a great TIEAM! You are an inspirational woman and a true friend, and our legacy at the BHI lives on in the form of a ten metre "promotional poster". I wish you all the very best with your American adventure!

I am fortunate enough to have had the guidance of two wonderful women who kept me sane when nothing seemed to be working. Ms Ann Madigan, words cannot express how grateful I am to have had your unwavering support. I was at rock bottom when I met you but it was with your help that I was able to submit this thesis. I thank you from the bottom of my heart and commend you for being so incredibly talented at your job. Ms Vicki McCoy, thank you for our sessions. It was such a blessing to be able to chat to you, and your words of wisdom and reason were invaluable to my completion. I will carry your advice with me for many years to come!

I am very grateful to the team at The Hospital Research Foundation, especially Paul, Fiona, Bianca, Angela, Chloe, Ali, Jena, Katherine, Briony and Sophia. You have given me so many opportunities to share my research with the wider community, all of which have been invaluable to my personal development. It was an absolute pleasure to have worked with you, I commend you all for your contributions to medical research and I hope that together, we have raised prostate cancer awareness in South Australia.

I am privileged to have been surrounded by many beautiful animals throughout my studies. Ernie, Roxy, Ralph and all the horses, past and present, thank you for keeping me entertained. You were rather therapeutic during the stressful times of my PhD.

Last but certainly not least, my PhD would not have been possible without the unwavering love and support of my family.

Nana, Aunty Sue and Mick, thanks for keeping the fire in my belly and talking me through the obstacles I faced.

Mum and dad, the two most important people in the world to me. You have always inspired me to work hard, stay humble and keep aiming high. I said it in my honours thesis and I will say it again - thank you for providing me with such a peaceful home where I could always forget about all the worries of a PhD. If I can be half the people you are one day, I will be a very lucky person. I love you both very much.

Scott Townley, first of all thank you for reading and editing this thesis multiple times! You have been by my side every step of the journey and this PhD is as much yours as it is mine. You have celebrated the highs but more importantly you were there with me during every single dark day, giving me advice and encouraging me to keep moving forward one step at a time. I admire you as a scientist and for the incredibly kind, gentle and selfless person that you are. You are my pillar of strength and I cannot thank you enough. I love you.

I also wish to respectfully acknowledge the sacrifice of animal life, as without them medical research would not be possible.

ABBREVIATIONS

ABC	ATP binding cassette
ADT	androgen deprivation therapy
amp	ampere
APC	allophycocyanin
AR	androgen receptor
BCR	biochemical relapse
BLI	bioluminescence imaging
BPH	benign prostatic hyperplasia
BSA	bovine serum albumin
$C_6H_5Na_3O_72H_2O$	trisodium citrate dihydrate
CAB	combined androgen blockade
CAF	cancer-associated fibroblast
CAM-DR	cell adhesion-mediated drug resistance
CD	cyclodextrin
CDK	cyclin dependent kinase
cDNA	complementary DNA
ChIP	chromatin immunoprecipitation
cm	centimetre
CMV	cytomegalovirus
CO ₂	carbon dioxide
CRPC	castrate resistant prostate cancer
D	day
DAB	3'3'-diaminobenzidine tetrahydrochloride
DCC	dextran-coated charcoal
DcR	decoy receptor
DHT	5a-dihydrotestosterone
DISC	death-inducing signalling complex
DMSO	dimethyl sulfoxide
DNA	deoxyribonucleic acid
DR	death receptor
DRE	digital rectal examination
DTP	drug-tolerant persister
ECL	enhanced chemiluminescence
ECM	extracellular matrix
EDTA	ethylenediamine tetra-acetic acid
elF	eukaryote initiation factor
EtOH	ethanol
FACS	fluorescent activated cell sorting
FADD	fas-associated death domain
FAP	fibroblast-activated protein
	tragment crystallisable
FCS	fetal calf serum
FSH	follicle stimulating hormone
g	gram
GFP	green fluorescent protein
GSH	giutathione
h	hour
HCI	hydrochloric acid

HGPIN	high-grade prostatic intraepithelial neoplasia
HPG	hypothalamic-pituitary-gonadal
HRP	horse radish peroxidase
IC ₅₀	half maximal inhibitory concentration
laG	immunoalobulin G
IHC	immunohistochemistry
in	intraperitoneal
IPA	ingenuity pathway analysis
kh	kilo hase
kD	kilo dalton
ka	kilogram
l	litro
	luria broth
	low grado prostatio intraonitholial populacia
	litinium chioride
LINGAP	lymph node carcinoma of the prostate
	long-term curcumin
LIV	long-term vehicle
M	molar
MAb	monoclonal antibody
MAPK	mitogen-activated protein kinase
mg	milligram
MgSO ₄	magnesium sulphate
min	minute
mL	millilitre
mm	millimetre
mM	millimolar
MMP	matrix metalloproteinase
mRNA	messenger ribonucleic acid
mTOR	mammalian target of rapamycin
MTT	methylthiazol tetrazolium
NaCl	sodium chloride
NaHCO ₃	sodium bicarbonate
Na ₂ HPO ₄	sodium phosphate dibasic
NaH₂PO₄	sodium phosphate monobasic
NCBI	national centre for biotechnology information
na	nanogram
NHS	normal horse serum
nm	nanometre
nM	nanomolar
NPF	normal prostate fibroblast
PARA	pro-apontotic recentor agonist
PBS	phosphate buffered saline
PC-3	prostate carcinoma 3
nH	notential bydrogen
рп	propidium iodide
DIN	proprotori intraonitholial noonlasia
	phonal rad free
	prostate specific antigen
	prostate specific dilligen
	radioimmunoproginitation access
	radioinmunoprecipitation assay
KNA	

RNAse	ribonuclease
RO	reverse osmosis
RP	radical prostatectomy
rpm	revolutions per minute
RPMI	Roswell Park Memorial Institute
RT	room temperature
S.C.	subcutaneous
SCID	severe combined immunodeficiency
SD	standard deviation
SDS	sodium dodecyl sulphate
sec	second
SEM	standard error of the mean
TBS	tris buffered saline
TBST	tris buffered saline-tween 20
TE	tris ethylenediamine tetra-acetic acid
TKR	tyrosine kinase receptor
TNF	tumour necrosis factor
TRAIL	TNF-related apoptosis inducing ligand
Tris	tris(hydroxymethyl)aminomethane
Tris-Cl	tris(hydroxymethyl)aminomethane chloride
tRNA	transfer RNA
UGE	urogenital sinus epithelium
UGM	urogenital sinus mesenchyme
Oo	degrees celcius
ΔΔct	delta delta cycle threshold
μg	microgram
μL	microlitre
μM	micromolar
μm	micron

ABSTRACT

Curcumin is a component of the Indian spice turmeric that has shown anti-cancer activity across a range of models. This includes prostate cancer, the most commonly diagnosed cancer in Australia. While much of the current literature relates to epithelial cells, there is no information regarding curcumin activity or resistance in prostate fibroblasts. With curcumin recently entering clinical trials for prostate cancer and being increasingly used as a dietary supplement, it is critical to gain an understanding of curcumin action and potential resistance in these cells, given their reported contribution to cancer progression. Furthermore, with drug resistance being a major setback to cancer therapy, it is also important to investigate curcuminbased combination strategies to enhance efficacy and avoid the development of resistance. The aims of this thesis were therefore to comparatively investigate mechanisms of curcumin action in prostate cancer cells and fibroblasts, to explore the potential for curcumin resistance to occur in prostate fibroblasts and to examine the ability of curcumin to re-sensitise prostate cancers resistant to drozitumab, a monoclonal antibody against death receptor 5 (DR5). Curcumin inhibited prostate cancer cell and fibroblast viability, androgen receptor (AR) activity and androgen-regulated gene expression; effects potentially caused by a decrease in AR residence on DNA. While microarray analysis of curcumin-treated fibroblasts crossed with publically available data from curcumin-treated prostate cancer cells revealed little overlap in genes, both cell lineages underwent cell cycle arrest in response to treatment. However, cell cycle arrest occurred via divergent mechanisms in different prostate cell lines. Long-term culture of prostate fibroblasts in curcumin resulted in curcumin tolerance rather than resistance, characterised by increased cell survival and decreased cell cvcle arrest in response to treatment. Curcumin-tolerant fibroblasts were differentiated from sensitive fibroblasts based on a subset of differentially expressed genes, some of which had previously been associated with resistance to cancer therapies, and some of which had lost curcumin-responsiveness in tolerant fibroblasts. Many of the latter genes were androgen-regulated, and tolerant fibroblasts subsequently demonstrated reduced AR function and androgen regulation of genes, concomitant with a decrease in AR residence on DNA. The culture of tolerant fibroblasts in curcumin-free media restored curcumin sensitivity, and partially restored AR function and the ability of androgens to regulate gene expression. Tolerant fibroblasts demonstrated changes in genes responsible for extracellular matrix composition and secretion of growth factors, and when co-cultured with prostate cancer cells, a decrease in cancer cell adhesion and increase in proliferation was observed. Finally, cell line studies confirmed that curcumin re-sensitised drozitumab-resistant prostate cancer cells to drozitumab-induced apoptosis via upregulation of the drug target DR5. While the same effect was not observed in vivo, drozitumab treatment alone demonstrated surprising anti-cancer activity. This thesis provides a greater understanding of curcumin action across multiple prostate cell lines and explores, for the first time, the development and potential implications of curcumin tolerance in prostate fibroblasts. This data provides new insights into how curcumin-based therapies or prevention strategies may affect the whole prostate, and offers considerations for curcumin use in future preclinical and clinical studies.

CONFERENCE PRESENTATIONS

<u>Giorgio. L</u>, Smith. E, Drew. PA & Buchanan. G. Exploring the interaction between fibroblasts and tumour cells in prostate cancer. Basil Hetzel Institute Research Day, Adelaide, October 2011.

Trotta. AP, <u>Giorgio. L</u>, Leach. DA, Taylor. RA & Buchanan. G. Androgen receptor function in prostate fibroblasts. Australian Science and Medical Research Conference, Adelaide, June 2012.

<u>Giorgio. L</u>, Leach. DA, Smith. E, Drew. PA, Trotta. AP & Buchanan. G. Curcumin inhibits cell growth and androgen receptor function in prostate tumour and fibroblast cell lines. University of Adelaide Faculty of Health Science Postgraduate Research Conference, Adelaide, August 2012.

<u>Giorgio. L</u>, Leach. DA, Smith. E, Drew. PA, Trotta. AP & Buchanan. G. Curcumin inhibits cell growth and androgen receptor function in prostate tumour and fibroblast cell lines. Basil Hetzel Institute Research Day, Adelaide, October 2012.

<u>Giorgio. L</u>, Trotta. AP, Need. EF & Buchanan. G. Curcumin targets unique transcriptional programmes in prostate epithelial and fibroblast cell lines. Australian Society for Medical Research, Adelaide, June 2013.

<u>**Giorgio.**</u> L, Leach. DA, Trotta. AP, Wang. Q, Holst. J, Need. EF & Buchanan. G. The anti-proliferative effects of curcumin are mediated by p53-independent BRCA1 signalling in prostate fibroblasts. Prostate Cancer World Congress, Melbourne, August 2013.

<u>**Giorgio.**</u> L, Leach. DA, Trotta. AP, Wang. Q, Holst. J, Need. EF & Buchanan. G. The anti-proliferative effects of curcumin are mediated by p53-independent BRCA1 signalling in prostate fibroblasts. Australian-Canadian Prostate Cancer Research Alliance Symposium, Port Douglas, August 2013.

<u>**Giorgio.**</u> L, Leach. DA, Trotta. AP, Wang. Q, Holst. J, Need. EF & Buchanan. G. The anti-proliferative effects of curcumin are mediated by p53-independent BRCA1 signalling in prostate fibroblasts. University of Adelaide Faculty of Health Science Postgraduate Research Conference, Adelaide, August 2013.

<u>Giorgio. L</u>, Leach. DA, Trotta. AP, Need. EF & Buchanan. G. Curcumin induces divergent mechanisms of cell cycle arrest in prostate fibroblasts and cancer cells. Basil Hetzel Institute Research Day, Adelaide, October 2013.

<u>**Giorgio.**</u> L, Zinonos. I, Liapis. V, Trotta. AP, Buchanan. G & Evdokiou. A. Drozitumab, a fully humanised agonistic antibody against Apo2L/TRAIL death receptor DR5, exhibits anti-tumour activity in a PC-3 prostate cancer xenograft model. Ninth International Conference of Anticancer Research, Sithonia Greece, October 2014.

PRIZES

Best Poster Presentation in the School of Medicine. University of Adelaide Faculty of Health Science Postgraduate Research Conference, Adelaide, August 2013 (\$500 towards travel to Greece)

Best Poster Presentation for the Northern Communities Men's Health Prize. University of Adelaide Faculty of Health Science Postgraduate Research Conference, Adelaide, August 2013 (\$300)

Prostate Cancer World Congress Travel Grant, July 2013 (\$500 towards travel to PCWC in Melbourne)

SAHMRI Beat Cancer Project Travel Grant, March 2013 (\$2,500 towards travel to Greece)

Florey Medical Research Foundation Top Up Cancer Scholarship, June 2011 (\$4,000)

Australian Postgraduate Award, January 2011 to July 2014

ENGAGEMENT IN THE SCIENTIFIC COMMUNITY

Radio interview with David Hearn for Coast FM: Research update. June 2014

Invited presentation at the Walkerville Rotary Club for The Hospital Research Foundation Community Awareness Program titled 'Secret men's business: discovering new ways to treat prostate cancer'. April 2014

Presentation at the Basil Hetzel Institute of Translational Health Research titled 'Curcumin and prostate cancer: hope or hype?' March 2014

Invited presentation at the Freemason's Foundation for Men's Health titled '*Curcumin and prostate cancer: understanding the mechanisms of action in cancer cells and fibroblasts*'. September 2013

Invited presentation at the Holdfast Bay Rotary Club for The Hospital Research Foundation Community Awareness Program titled 'Secret men's business: discovering new ways to treat prostate cancer'. August 2013

Radio interview with Belinda Heggen for 5AA: Research update. April 2013

Presentation at the Disciple of Surgery Surgical Science Journal Club titled 'Sipuleucel-T immunotherapy for castrate resistant prostate cancer'. March 2013

Presentation at the Basil Hetzel Institute of Translational Health Research titled 'Curcumin and prostate cancer: mechanisms of resistance and improving delivery'. November 2012

University of Adelaide Three Minute Thesis Competition '*Prostate fibroblasts: putting Jeckyll and Hyde to better use*'. August 2012

Radio interview with David Hearn for Coast FM: Research update. June 2012

Presentation at the Basil Hetzel Institute of Translational Health Research titled 'Exploring the interaction between fibroblasts and cancer cells in prostate cancer'. August 2011