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Abstract

Underground rock formations are always under sotness mostly due to overburden
pressure and tectonic stresses. When a borehdidléxl, the rock material surrounding the
hole must carry the load which was initially sugpdrby the excavated rock. Therefore, due
to the introduction of a borehole, the pre-existatigess state in the sub-surface rock mass is
redistributed and a new stress state is inducelervicinity of the borehole. This new stress
state around the borehole can be determined diregtineans oin situ measurements, or can

be estimated by applying numerical methods or ddsem solutions.

In this thesis borehole stability analysis is utaleen by means of the linear elasticity theory.
The introduction of a borehole into a block of rogkich behaves linearly elastic, leads to
stress concentration near the hole. If the roclenataround the borehole is strong enough to
sustain the induced stress concentration, the bteelill remain stable; otherwise rock

failure will occur at the borehole wall. Therefore,key aspect in stability evaluation of a

borehole is the assessment of rock response toamieeh loading.

For borehole stability evaluation in good qualityittte rock formations, which can be
considered as isotopic, homogeneous and lineaalstie] stresses around the borehole are
usually calculated using a closed form formulattanwn as the generalised Kirsch equations.
These equations are the three-dimensional verdigheooriginal form of the well known
Kirsch equations for calculating stresses arounttcalar hole in an isotropic, linearly elastic
and homogeneous material. These equations have voidety used in the petroleum and
mining industries over the past few decades. Howete® boundary conditions on which
these equations were based have been poorly egglanthe literature and therefore merit

further investigation.

In this thesis, in order to eliminate the ambigugiysociated with the boundary conditions
assumed for deriving the analytical model for stremalysis around the borehole, finite
element analysis (FEA) was carried out to createumerical counterpart of the current
analytical solution. It appeared that the assumedndary conditions for deriving the

analytical model, i.e. the generalised Kirsch eiguat are incompatible in the physical sense.

Xii



A new set of boundary conditions in better comp&mith the physics of the problem was
introduced in order to modify the analytical mod&y, reducing the simplifying assumptions

made to facilitate the derivation of the closedif@olution.

Another key parameter in borehole stability evaarais the strength of the rock material at
the borehole wall. The rock strength is usuallyleated using a failure criterion which is a
mathematical formulation that specifies a set tfsst components at which failure occurs. A
number of different failure criteria have been adluced in the literature to describe brittle
rock failure among which the Coulomb and the Hoe&v criteria have been widely used in
industry; however, they both have limitations. Fstance, both the Coulomb and the Hoek-
Brown criteria identify the rock strength only iertns of maximum and minimum principal

stresses and do not account for the influenceeofritermediate principal stress on failure. On
the other hand, at the borehole wall where a géseess states{ > g, > 03) is encountered,

a failure criterion which neglects the influencetloé intermediate principal stress on failure

seems to be inadequate for rock strength estimatitre borehole proximity.

Although a number of three-dimensional failure esia have been proposed over the past
decades, none of them has been universally acceptadjor limitation in studying the three-

dimensional rock failure criteria is the lack okegdate true-triaxial experimental data that can
be used for validation of theoretical rock failunedels. A number of true-triaxial tests were
carried out at the University of Adelaide and tlesults, along with nine sets of published
true-triaxial experimental data, were utilised fmmparison and validation of five selected
failure criteria. These failure criteria have bedgwveloped especially for rock material and
include; the Hoek-Brown, the Pan-Hudson, the Zhahg; the Generalised Priest and the
Simplified Priest. A new three-dimensional failwr@erion was also developed by modifying

the simplified Priest criterion and was identified a three-dimensional model which best

describes the rock failure in three-dimensionasstrstate, compared to other selected criteria.

In this thesis, a case example is presented whereborehole instability is predicted by
comparing the induced major principal stress atibrehole wall to the predicted rock failure
stress. The major in situ principal stress arourel liorehole is calculated by means of the

FEA based on the assumption of a new set of boynctanditions. The rock failure stress

Xiii



under the three-dimensional stress state at thehbte wall is calculated by means of the

newly proposed three-dimensional failure criterion.
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