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Abstract

We develop a method for systematically constructing Lagrangian functions for dissipative mechanical, electrical, and
electromechanical systems. We derive the equations of motion for some typical electromechanical systems using
deterministic principles that are strictly variational. We do not use any ad hoc features that are added on after the analysis
has been completed, such as the Rayleigh dissipation function. We generalise the concept of potential, and define
generalised potentials for dissipative lumped system elements. Our innovation offers a unified approach to the analysis of
electromechanical systems where there are energy and power terms in both the mechanical and electrical parts of the
system. Using our novel technique, we can take advantage of the analytic approach from mechanics, and we can apply
these powerful analytical methods to electrical and to electromechanical systems. We can analyse systems that include non-
conservative forces. Our methodology is deterministic, and does does require any special intuition, and is thus suitable for
automation via a computer-based algebra package.
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Introduction and Motivation

It is a widely believed that the Lagrangian approach to

dynamical systems cannot be applied to dissipative systems that

include non-conservative forces. For example, Feynman [1] writes

that ‘‘The principle of least action only works for conservative systems—where

all the forces can be gotten from a potential function.’’ Lanczos [2], writes

‘‘Forces of a frictional nature, which have no work function, are outside the

realm of variational principles, while the Newtonian scheme has no difficulty in

including them. Such forces originate from inter-molecular phenomena, which

are neglected in the macroscopic description of motion. If the macroscopic

parameters of a mechanical system are completed by the addition of microscopic

parameters, forces not derivable from a work function would in all probability

not occur.’’ Lanczos [2], and also writes ‘‘Frictional forces (viscosity)

which originate from a transfer of macroscopic into microscopic motions demand

an increase in the number of degrees of freedom and the application of statistical

principles. They are automatically beyond the macroscopic variational

treatment.’’ These eminent people were justified in their opinions.

In 1931, Bauer[3] proved a corollary, which states that ‘‘The

equations of motion of a dissipative linear dynamical system with constant

coefficients are not given by a variational principle.’’ Since then, various

mathematical scientists have been trying to find ways around this

problem. It is clear that dissipative forces present a problem to

traditional Lagrangian analysis, which means that the Newtonian

approach has historically had an advantage, particularly where

dissipative forces are significant.

There are a number of formalisms for applying a Newtonian

(force-based) approach to mixed electromechanical systems. The

bond-graph approach is based on the systematic use of effort and

flow variables. The work of Karnopp et al. [4] is important in this

regard. We will employ some aspects of Karnopp’s work, including

the homomorphic mappings of variables between different

systems. There are clear analogies between mechanical and

electrical oscillators, and we make use of these.

The Newtonian approach has been dominant in practical

discipline areas, such as mechanical engineering. In contrast, the

Lagrangian approach, which is very elegant, has tended to

dominate advanced physics texts. For example, the Hamiltonian

approach dominates the subject of quantum mechanics. Penrose

[5], refers to this paradigm as the ‘‘magical Lagrangian formalism.’’ He

goes on to write that ‘‘The existence of such a mathematically elegant

unifying picture appears to be telling us something deep about our physical

universe.’’

There are a number of more prosaic factors in favour of the

Lagrangian approach, which include:

N In the Lagrangian formulation, forces of constraint do no

work, and need not be considered in the analysis. It is often not

necessary to calculate internal stresses or forces of reaction.

N Post [6] points out that it is easy to state the underlying

physical laws in arbitrary, curvilinear coordinates. It is possible

to use generalised coordinates that directly reflect the nature of

the physical system.

N Noether’s theorem tells us that, if the Lagrangian function

possesses a continuous smooth symmetry, then there will be a

conservation law associated with that symmetry [5]. For

conservative systems, this leads to the laws of conservation of

momentum and conservation of energy. These conservation

laws essentially give us one integration of the laws of motion for

free. For example we can calculate the final momentum, and

the final energy of a system without the need to explicitly

integrate the laws of motion.
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N Lagrangian modelling of machines, automatically takes care of

energy transfer between different components of a whole

system. This prevents incomplete models, which give rise to

errors and paradoxes, such as the problem of the Penfield

motor [7]. We believe that Lagrangian modelling is a natural

choice, where energy is exchanged between different types of

storage elements, in such systems as: a moving wire in a

magnetic field, the D’Arsonval moving-coil meter, or for

electromechanical systems more generally.

N In the Hamiltonian formulation, only first derivatives are

required, not second derivatives.

N Many quantum systems, such as the hydrogen atom, only have

a few degrees of freedom, and a complete description of all the

microscopic parameters is possible. This means that frictional

forces may not even need to be considered.

Perhaps the strongest theoretical motivation for the Lagrangian

approach is that it explicitly represents the symmetries of the

underlying physical laws. Melia [8] writes: ‘‘As we shall see, the sole

motivation for using action principles is to improve our understanding of the

underlying physics, with a goal of extracting additional physical laws that

might not otherwise be apparent.’’

Prior to the work of Riewe [9,10], there was no satisfactory

method for completely including non-conservative forces into a

variational framework. Riewe writes that ‘‘It is a strange paradox that

the most advanced methods of classical mechanics deal only with conservative

systems, while almost all classical processes observed in the physical world are

non-conservative.’’ We regard the approach used by Riewe as the

most satisfactory method for including non-conservative forces

into a variational framework. In this paper we apply his approach,

for mechanical systems, to the new areas of electrical and

electromechanical systems. This is still a topic of active research.

The fractional calculus of variations has recently been presented

comprehensively by Malinowska and Torres [11].

The work of Dreisigmeyer and Young is also significant. In

2003 they published a paper on nonconservative Lagrangian

mechanics, which made use of fractional integration and

differentiation [12]. In 2004, they extended the pessimistic

corollary of Bauer [13], to show that is is not possible to derive

a single retarded equation of motion using a variational principle.

They then went on to suggest that a possible way around the

dilemma would be to use convolution products in Lagrangian

functions, citing the work of Tonti [14]. In 2004, Dreisigmeyer

and Young[15] published another paper on nonconservative

Lagrangian mechanics, in which they derived purely causal

equations of motion. They made use of left fractional derivatives.

In this paper, we provide recipes for constructing Lagrangian

functions, and show (by example) how these techniques can be

employed more generally. We believe that the Lagrangian

approach naturally models energy exchange within complex

machinery, where energy can be stored and transferred between

many different forms, including: energy of inertia, elastic energy,

frictional loss, energy of the magnetic field, energy of the electric

field, and resistive loss. Our approach can be used to confer the

advantages of the variational method of analysis to a wide range of

electromechanical systems, including systems that suffer from

dissipative loss.

A short summary of the variational approach
We can denote a Lagrangian function for a system as L, then we

can specify the total action of the system as

I~
ðT2

T1

L dt, ð1Þ

where T1 and T2 represent the boundaries of the closed time

interval over which we wish to conduct our analysis. Equation 1 is

referred to an action integral. It is a functional that maps functions,

L, onto numbers, I . The Euler-Lagrange equation specifies a

necessary condition for the first variation of the action integral to

vanish, d I½ � = 0. Suppose that the Lagrangian function includes

references to a generalised coordinate, x(t), and to its first

derivative _xx so L~L x, _xxð Þ, then the action is extremal when we

choose x(t) in such a way that the Euler-Lagrange equation is

satisfied:

d

dt

LL
L _xx

� �
{

LL
Lx

~0: ð2Þ

This is the same as saying that all first order variation of the

action is zero, d I½ �~0. The Euler Lagrange equation is an

ordinary differential equation that describes the dynamics of the

system, in terms of the specified generalised coordinates, such as

x(t).

For mechanical systems the Lagrangian is written in terms of

energy functions, which are summed together with appropriate

sign conventions. They typical symbols are kinetic energy of

inertia, T _xxð Þ, and potential (elastic or gravitational) energy, V xð Þ.
For these systems the Lagrangian function can be written as:

L~T{V. As we shall see, a classical example is a mass on a

spring, where L~T{V~ 1

2
m _xx2{

1

2
kx2.

We will use the notation of Gel’fand [16], who denotes a general

kth order derivative as: x kð Þ. This is more versatile than the more

traditional ‘‘dot’’ notation, of Newton. It is common for

Lagrangian analysis to only consider integral derivatives, of low

orders, of the generalised coordinates. For example, we might

consider x~x 0ð Þ, _xx~x 1ð Þ and possibly €xx~x 2ð Þ. Gel’fand writes the

generalised integer-order Euler-Lagrange equation a form that

includes higher derivatives, and is equivalent to:

X?
k~0

{1ð Þk: dk

dtk

LL
Lx kð Þ

� �
~0, ð3Þ

where where k[Z, and where it is understood that
LL

Lx kð Þ~0, for

values of k where the Lagrangian has no dependence on the kth

derivative of the coordinate. The proof of Equation 3, can be

obtained by repeatedly integrating by parts, and applying the du

Bois-Reymond lemma. Proofs can be found in Gel’fand [16] and

Smith [17].

Since the seminal work of Riewe [9,10], a number of other

authors have used his approach. These include Agrawal [18],

Rabei [19], Frederico [20], Musielak [21], Elnabulsi [22], and

Almeida [23–25]. Our main purpose here is to extend this work

into the area of electrical circuits, and electromechanical systems.

Fractional Calculus. The indices of differentiation in The

Euler Lagrange Equation 3 can be fractional, which leads to the

formulation:

Variational Approach to Electromechanical Systems
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X
Va

{1ð Þa: da

dta

LL
Lx að Þ

� �
~0, ð4Þ

where a[Q, and where it is understood that
LL

Lx að Þ~0, for values of

a where the Lagrangian has no dependence on the ath derivative

of the coordinate. The proof of this proposition depends on a

fractional version of integration by parts, and is found in Riewe

[9].

The theory of the fractional calculus has been well documented,

and summaries can be found in Oldham et al. [26]. The topic of

Fractional Calculus of Variations (FCV) has recently been

presented, in an unified and complete way, by Malinowska and

Torres [11]. We present a summary of basic results for

convenience.

Fractional derivatives are not local unless k is an integer, which

means that their value depends on a region around the point of

evaluation. The choice of region is important. For engineering

purposes, we only need to solve initial value problems, where time

is between some initial time, such as 0, and a later time, t. This is

compatible with the left Riemann-Liouville fractional derivative,

starting at zero:

f að Þ tð Þ : ~0Da
t f tð Þ : ~

1

C k{að Þ
dk

dtk

ðt

0

t{tð Þf tð Þdt, ð5Þ

where k{1vavk. Of course in the case where a is an integer,

and a~k, we have

f að Þ tð Þ : ~
dk

dtk
f tð Þ, ð6Þ

which is the usual time-derivative. The definitions in Equations 5

and 6 are cited by Almeida [25], and we use them in this paper.

Fractional derivatives are not generally commutative, but in this

paper we only need the semi-derivative, 0D
1=2
t , which is

commutative

0D
1=2
t 0D

1=2
t f (t)~0D1

t ~
d

dt
f tð Þ, ð7Þ

together with the fact that fractional derivatives are the left-

inverses of fractional integrals.

For engineering purposes, we often work with Laplace

transforms. If we take the Laplace transform of Equation 5 then

we obtain:

L x pð Þ tð Þ
h i

~sp:X sð Þ{
Xn{1

k~0

x p{k{1ð Þ 0{ð Þ
h i

t~0
, ð8Þ

where L x tð Þ½ �~X sð Þ. This equation can be used to define

fractional derivatives for cases where the Laplace transform exists,

although it may require initial values of fractional derivatives. There

is a definition of fractional derivatives, due to Caputo, which only

requires the initial values of derivatives with integral powers. This

requires some degree of approximation. We do not explicitly use

the Caputo definition in this paper.

We note that fractional derivatives can be complicated to work

with, which can lead to human error. This is a limitation of the

approach. We argue that the variational approach is worth the

effort in cases where systems are compound, and exchange

different types of energy between different parts of the system. In

this case, the Lagrangian modelling is more likely to be complete,

and not leave out essential terms. For engineering purposes, we are

satisfied if our definitions give rise to correct ordinary differential

equations of motion that are valid in a closed time-interval, 0,t½ �.

Discussion and Analysis

A mechanical harmonic oscillator
We consider a common problem from classical mechanics, of a

mass on a spring. This problem is widely used to define notation,

and can be found in: Lamb [27], Goldstein [28], McCuskey [29],

Resnick & Halliday [30], Whylie [31], Fowles [32], Feynman [1],

Rabenstein [33] and Lomen [34], and many others.

The mechanical harmonic oscillator consists of a mass, spring

and massive support (or foundation). The complete system is

shown in the schematic diagram in Figure 1. A mass, m, is

attached to a spring, k, which is attached to a massive support.

There is some difficulty with the schematic notation for the spring,

k, since the traditional schematic symbol for a spring resembles the

traditional schematic symbol for a resistor. This creates problems if

we need to represent both of these different objects in a single

drawing. We have followed examples from Giesecke et al. [35]. In

particular our symbol for the spring has a different aspect ratio to

the symbol for the resistor, and the terminations at the ends are

different. The position of the spring is measured relative to a

datum position, which is in a fixed position relative to the massive

support. Without any loss of generality we can choose the location

of the no-load position of the mass, which gives a simple rule for

the stored energy in the spring, V~ 1

2
kx2.

The classical problem of a mechanical oscillator is shown in

Figure 1. Together the mass and spring form a mechanical

harmonic oscillator. Williams [36] specifies a Lagrangian for this

physical system in terms of the single spatial coordinate, x, and

writes:

L~T{V~
1

2
m _xx2{

1

2
kx2, ð9Þ

where T~
1

2
m _xxð Þ2, which is the kinetic energy in the inertia of the

mass and V~ 1

2
k xð Þ2 is the strain energy stored in the spring. The

Figure 1. A mass on a spring. We consider the simple introductory
problem of a mass, m, on a spring, with stiffness constant of k. The
kinetic energy stored by the inertia of the mass is denoted by

T~
1

2
m _xx2 . The elastic potential energy stored in the spring is denoted

by V~ 1

2
kx2 . The independent coordinate is denoted by the position, x.

The Lagrangian function is traditionally written as L~T{V, which can

be written explicitly as L~
1

2
m _xx2{

1

2
kx2 .

doi:10.1371/journal.pone.0077190.g001
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Lagrangian function, in Equation 9 is in a form where we can

directly apply the Euler and Lagrange Equation to obtain:

m _xxzkx~mx(1)zkx(0)~0, ð10Þ

which is the standard Ordinary Differential Equation (ODE) for

this system. Equation 10 can be solved using a number of

techniques, including the method of the Laplace transform, to

obtain:

x(t)~A cos vtð ÞzB sin vtð Þ, ð11Þ

where A and B should be chosen in order to satisfy the initial

conditions, and v~
ffiffiffiffiffiffiffiffiffi
k=m

p
is the un-damped natural angular

frequency of oscillation, in radians per second. In this completely

un-damped case, v is also the resonant angular frequency.

A homomorphic mapping
The example shown in Figure 1 is simple and well known, and

lies completely within a mechanical problem domain. It is not

immediately obvious how to extend this type of work to an

electrical domain. We need a homomorphic mapping of variables

that can relate different variables in different physical domains

The mapping needs to relate the names of variables, as well as the

set of permissible functions and operators that work on those

variables. We use the mapping described in Karnopp et al. [4],

which is summarised in Table 1.

An electrical harmonic system
If we place a capacitor, C in parallel (and series) with an

inductor, L, as shown in Figure 2, then the resulting system will

form an electromagnetic harmonic oscillator.

If we temporarily ignore the presence of resistance, then we

obtain the circuit in Figure 2 is the exact analogue of the

mechanical system in Figure 1. In order to emphasise the

homomorphic mapping between the mechanical and electrical

domains, we map the Lagrangian function in Equation 9, using

the homomorphic mapping in Table 1, to obtain

L~T{V~ L

2
_qq2{

1

2C
q2, ð12Þ

where L is the inductance, C is the capacitance and q is the charge

that is transferred through the circuit. We note that Equation 12 is

a correct Lagrangian function for the circuit in Figure 2.

In Equation 12, we use the variable q as a coordinate, in

accordance with homomorphic mapping due to Karnopp. It is the

more usual practice in electrical engineering to use the voltage

across a capacitor, v, as though it were a generalised coordinate.

Fortunately, it is possible to subject the Lagrangian function in

Equation 12 to a Legendre transformation, of q~Cv, to obtain a

new Lagrangian function that is consistent with the previous

Lagrangian function (in terms of energy exchange), but uses the

conventional coordinate of v (rather than q). This new Lagrangian

function is self-contained in the sense that the energy terms for

inductor only include references to parameters that pertain to the

inductor, and the energy terms for capacitor only include

references to parameters that pertain to the capacitor. There are

no cross-terms. If we impose this last condition then the Legendre

transformation is unique and we obtain a new Lagrangian

function:

L~T{V~ 1

2L
v {1ð Þ
� �2

{
C

2
v 0ð Þ
� �2

, ð13Þ

where the independent generalised coordinate is now v. The

function v 0ð Þ is the zeroth derivative of v, which is identical with v.

We can write v 0ð Þ~v. The function v {1ð Þ denotes the derivative of

v to the order of -1, which is equivalent to the integral of v. We can

write v {1ð Þ tð Þ~
Ð t

0
v tð Þdt.

Lagrangian terms for some common lumped

electromechanical elements. We can see from the last

example that electrical and mechanical systems can be mapped

Table 1. A homomorphic mapping due to Karnopp et al.

Concept Mechanical Electrical

Coordinate displacement, x charge, q

flow variable
velocity, v~

dx

dt
current~i~

dq

dt

energy energy U energy U
effort variable

force, F~
dU
dx

voltage~v~
dU
dq

energy increment dU~F :dx dU~v:dq

power~dU=dt P~F :
dx

dt
~F :v P~v:

dq

dt
~v:i

inertial element mass, m inductance, L

generalised momentum
momentum, p~m:

dx

dt
magnetic flux, W~L:

dq

dt

Newton’s second law
F~m:

d2x

dt2
~m:a v~L:

d2q

dt2
~L:

di

dt

elastic element stiffness constant, k inverse capacitance, 1/C

Hooke’s second law F = 2k ? x
v~z

1

C
:q

dissipative element damping, c resistance, R

frictional force
F~{c:

dx

dt
~{c:v V~zR:

dq

dt
~zR:i

Joule’s law P~v2c P~i2R

energy of inertia U~
1

2

1

m
:p2~

1

2
m:v2 U~

1

2

1

L
:W2~

1

2
L:i2

elastic energy U~
1

2
k:x2~

1

2

1

k
:F2 U~

1

2
: 1

C
:q2~

1

2
C:v2

A homomorphic mapping: The names and purposes of the most important
electromechanical dynamical concepts.
doi:10.1371/journal.pone.0077190.t001

Figure 2. An LC electromagnetic harmonic circuit. We consider a
capacitor, C, in parallel with an inductor, L. We consider the idealised
case where there is no dissipative loss, or resistance R. The Lagrangian
function can be written as L~T{V, where the magnetic energy
stored by the field of the inductor, denoted by T~L _qq2

�
2, and the

electrical potential energy stored in the capacitor is denoted by
V~q2

�
2Cð Þ, and q = Cv is the coordinate, which we interpret as the

electrical charge that is transferred through the circuit.
doi:10.1371/journal.pone.0077190.g002
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onto one another but some care has to be taken with regard to

what we regard as a coordinate. The canonical choice for a

massive particle is to regard the spatial position as the coordinate

and to regard the generalised momentum as the other variable of

interest. These choices are not arbitrary. The coordinate, x, must

be an exact differential, for example:
Þ

xdx~0 for all possible

closed paths. In quantum mechanics, position, x, and momentum,

p, are conjugate variables. The relationship between x and p is a

physical phenomenon, not just an arbitrary choice. Finally we

know from classical mechanics that x and p play a role in

Liouville’s theorem. See Reif [37] and Wannier [38], for example.

Liouville’s theorem would not apply in the same way if we were to

describe particle motion in terms of force and velocity, rather than

position and momentum. If we want to apply Liouville’s theorem

to a complicated electrical system with many degrees of freedom

then we really need to use magnetic flux, W, and electric flux, q, to

describe each element of the system. This has been carried out in

some specialist areas, such as Allison [39], but it is not common,

and is not likely to become universal in the electrical engineering

literature in the foreseeable future.

The conventional choice of electrical variables, voltage, v, and

current, i are of a fundamentally different type to the conventional

choice of mechanical variables, x and p. These incompatible

conventions are not likely to change. The best solution seems to be

that we should re-write the Lagrangian terms, using the

conventional electrical variables, but to do so in such a way that

the energy values are preserved, and all sign and phase

relationships are consistent. These conversions are not physical

laws. They have the same status as the conversion from degrees

Fahrenheit to Kelvin, for example. The Lagrangian terms, for

common electrical engineering lumped elements, are shown in

Table 2 and Table 3. If we wish to include one of these devices in a

system (and we wish to carry out Lagrangian analysis) then we only

need to look up the relevant term in a table, and to include that

term, in the Lagrangian function. No other special modelling or

cognition is required. The process is direct enough to be able to be

carried out by computer. In the interests of consistency with

convention, we also include a table for the more familiar

Lagrangian terms, in Table 4.

Finally, we note that some of the Lagrangian terms are

imaginary, and that the resulting Lagrangian functions will, in

general, be complex. We consider arithmetic operations to operate

within the field of complex numbers, C. The traditional case, of

real Lagrangian functions, is a special case of our more general

formulation. Our formulation is consistent with the earlier work of

Illert [40], who applied the concept of complex Lagrangian

functions to the classical seashell problem.

A damped mechanical harmonic system
We consider the damped mechanical oscillator, as shown in

Figure 3, with mass, m, spring constant, k, and coefficient of

damping, c. This problem is solved by Riewe [9]. In our case, we

only need to take the Lagrangian terms from Table 4 and add

them together to form the Lagrangian function for the system.

This is shown as follows,

Table 2. Table of Lagrangian terms, in terms of current.

parameter phasor Lagrangian L order, k
Euler-
Lagrange

inductance, L I = (2j/(vL)) V 1

2
L i 0ð Þ
� �2 0 + Li(0)

resistance, R I = (1/R) V zj

2
R i {1=2ð Þ
� �2 21/2 + Ri(21)

capacitance, C I = (+jvC) V {1

2C
i {1ð Þ
� �2 21 z 1

C
i {2ð Þ

Lagrangian terms, with current: We list the common electrical lumped
parameters, and compare the admittance with the corresponding term from
the Lagrangian function. We also list the order of differentiation, k, and the
corresponding term from the Euler-Lagrange equation. The phase direction of
the Lagrangian term leads the phase direction of the admittance by 90u. This is
equivalent to multiplying the Lagrangian term by +j. We can multiply the
Lagrangian term by any constant that we like, as long as we do this
consistently. If we were to remove the factor of +j then the Lagrangian terms
and the admittances will have consistent phases, but all the Lagrangians will
have new phases, and some of these will not be consistent with existing
practice in mechanics. In this paper, we rigorously adopt the convention that is
used in mechanics, which means that we do not use the sign convention that is
common in electrical engineering.
doi:10.1371/journal.pone.0077190.t002

Table 3. Table of Lagrangian terms, in terms of voltage, v.

parameter Phasor Lagrangian L order, k
Euler-
Lagrange

inductance, L V = (jvL) I 1

2L
v {1ð Þ
� �2 21

{
1

L
v {2ð Þ

resistance, R V = RI {j

2R
v {1=2ð Þ
� �2 21/2

{
1

R
v {1ð Þ

capacitance, C V = 2jvCI {C

2
v 0ð Þ
� �2 0 2Cv(0)

Lagrangian terms, with voltage: We list common lumped electrical
parameters, and compare the impedance with the corresponding term from
the Lagrangian function. We also list the order of differentiation, k, and the
corresponding term from the Euler-Lagrange equation. The phase direction of
the Lagrangian term lags the phase direction of the impedance by 90u. This is
equivalent to multiplying the Lagrangian term by 2j. We can multiply the
Lagrangian term by any constant that we like, as long as we do this
consistently. If we were to remove the factor of 2j then the Lagrangian terms
and the admittances will have consistent phases, but all the Lagrangians will
have new phases and some of these will not be consistent with existing
practice in mechanics. In this paper, we rigorously adopt the convention that is
used in mechanics, which means that we do not use the sign convention that is
common in electrical engineering.
doi:10.1371/journal.pone.0077190.t003

Table 4. Table of mechanical Lagrangian terms.

parameter Lagrangian 3D Lagrangian 1D order, k
Euler-
Lagrange

mass, m 1

2m
pj j2 1

2
m x 1ð Þ
� �2 1 2mx(2)

damping, c
z

j

2
c x 1=2ð Þ�� ��2 z

j

2
c x 1=2ð Þ
� �2 1/2 2cx(1)

spring, k
{

1

2
k xj j2 {

1

2
k x 0ð Þ
� �2 0 2kx(0)

Lagrangian terms for mechanical parameters: We list the common
lumped mechanical parameters. From left to right, we list the common symbol
for the parameter, the Lagrangian for the 3D vector case (in terms of position or
momentum), the Lagrangian for the 1D case (in terms of the position only), the
order of differentiation employed, and the resulting them in the Euler-Lagrange
Equation. We use the sign convention of Gel’fand and Fomin [16] for the terms
of the Euler-Lagrange Equation. Some authors introduce an additional minus
sign, in order to make all of these terms positive.
doi:10.1371/journal.pone.0077190.t004

Variational Approach to Electromechanical Systems

PLOS ONE | www.plosone.org 5 February 2014 | Volume 9 | Issue 2 | e77190



L~
1

2
m _xxð Þ2z j

2
c x 1=2ð Þ
� �2

{
1

2
k xð Þ2

~
1

2
m x 1ð Þ
� �2

z
j

2
c x 1=2ð Þ
� �2

{
1

2
k x 0ð Þ
� �2

: ð14Þ

The resulting Euler-Lagrange equation can be assembled from

the Euler-Lagrange terms in Table 4, or calculated directly, using

Equation 4. The result is given by

{ mx 2ð Þzcx 1ð Þzkx 0ð Þ
� �

~0, ð15Þ

which is the same result that we would obtain if we used a free

body diagram and Newton’s laws of motion.

The use of constraints
The use of the calculus of variations to evaluate extremal

functions, subject to constraints is described in a number of

references, including Lanczos [2]. It is possible to regard perfect

sources, of voltage or charge (or force or velocity), as constraints.

This can simplify the working of some problems. We include an

example here.

We consider the case of a purely resistive system. Jaynes [41]

traces this problem back as far as Kirchhoff [42], and points out

that the condition that no electric charge should accumulate at any

point in a resistive material requires that +: s+v(x)ð Þ~0, which is

just the Euler-Lagrange equation stating that the production of

Joule heat in a domain D,
Ð
D s +vð Þ2dD is stationary with respect

to variations dv xð Þ that vanish at the boundary of D. It should be

noted that this variational principle applies only to strictly resistive

circuits. It needs to be embedded into another theory, or extended

if we have to model combined systems, which include stored

energy.

Kirchhoff’s voltage law is partly a matter of definition, but it is

not arbitrary. It relates to thermodynamics in subtle ways. In a

quasi-static situation where radiation is not significant voltage is

just energy per unit charge, v~DU=Dq. It is tempting to regard

Kirchhoff’s current law as a statement of the conservation of

charge, but this is misleading. Even if we grant the continuity of

charge, +JzLr=Lt~0 then it would still be possible to have

accumulation of charge. The equivalent principles of ‘‘no

accumulation of charge’’ and ‘‘minimum production of Joule heat

in a domain’’ are ultimately statistical in nature, and are related to

Figure 3. A damped mechanical harmonic oscillator. By
introducing non-conservative, or dissipative, elements into a system
we need to generalise our concept of potential. The Lagrangian for this

system can be written as L~
1

2
m x 1ð Þ
� �2

{
1

2
k x 0ð Þ
� �2

z
j

2
c x 1=2ð Þ
� �2

.

The additional term differs from the terms for the un-damped system in
two key ways: the term is complex has an imaginary phase, of +j, and
there is a fractional derivative of the coordinate, x(1/2).
doi:10.1371/journal.pone.0077190.g003

Figure 4. Two resistors in series. The voltage source, vS places a constraint on the voltages across the two resistors, v1 and v2. Kirchhoff’s voltage
law implies that Y = v1 + v2 2 vS = 0. We can regard the function Y as a function of constraint. Kirchhoff used a function that is equivalent to the
dissipated power as a Lagrangian function. In modern notation we can write L K~P~ v1ð Þ2

.
R1z v2ð Þ2

.
R2 . In order to ensure compatibility with

other existing Lagrangian functions, we need to apply a transformation to obtain a new Lagrangian function of L~
{j

2R1
v

{1=2ð Þ
1

� �2

z
{j

2R2
v
{1=2
2

� �2

.

This Lagrangian function has been multiplied by a scalar of 2j/2 and the order of differentiation has been reduced from v(0) to v(21/2), which is
equivalent to a half-integration of the Lagrangian function, or a full integration of the resulting Euler Lagrange equation.
doi:10.1371/journal.pone.0077190.g004
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the second law of thermodynamics. This is discussed in Allison

[39].

In this paper, we consider the special case where the parameters

are lumped into two resistors in series, as shown in Figure 4. To

simplify the notation, we define a gradient operator, +, over

variations with respect to the variational operators, dv1
and dv2

,

rather than partial derivatives, L=Lv1 and L=Lv2. We can define

+L~
dv1
L

dv2
L

" #
: ð16Þ

This allows us to use the notation of the Lagrange multiplier to

write down a necessary condition for a constrained optimum. If

the independent variables, v1 and v2 are constrained by a function

of constraint

Y
v1

v2

	 
� �
~0, ð17Þ

then we can only obtain constrained stationary values of L when

+L{l+Y~0: ð18Þ

We apply this principle to the problem in the next section.

A problem with two resistors
In Figure 4(a), the voltage source, vS places a constraint on the

voltages across the two resistors, v1 and v2. We can apply

Kirchhoff’s voltage law to the single mesh in this circuit to obtain

Y~v1zv2{vS~0, where Y is a function of constraint.

Gradients of this constraint function are needed in order to

determine the constrained stationary functions of the system.

Kirchhoff noted that the voltages in a resistive circuit, such as v1

and v2, would arrange themselves in such a way as to minimise the

dissipated heat energy, given by Joule’s law. Jaynes points out that

this is equivalent to defining a ‘‘Kirchhoff’’ Lagrangian function.

For us, this takes the form LK~ power ~v1
2=R1zv2

2=R2. In

order to ensure compatibility with other existing Lagrangian

functions, we apply a Legendre transformation to obtain a new

Lagrangian function

L~
{j

2R1
v1

{1=2ð Þ
� �2

z
{j

2R2
v2

{1=2ð Þ
� �2

: ð19Þ

The resulting Lagrangian function, in Equation 19, can also be

assembled from the Euler-Lagrange terms in Table 3. It is

consistent. In Figure 4(b) we indicate that this situation is very

common since it occurs whenever a linear source is connected to a

resistive load.

We can use the principle of the Lagrange multiplier to

obtain equations for the stationary functions, subject to con-

straints. We begin by calculating the individual variations:

dv1
L~{ 1=R1ð Þv1

{1ð Þ, and dv2
L~{ 1=R2ð Þv2

({1), which leads

to the following form for the gradient, +L, as

+L~
dv1
L

dv2
L

" #
~

{ 1
R1

v1
{1ð Þ

{ 1
R2

v2
{1ð Þ

2
4

3
5: ð20Þ

The function of constraint is Y~v1zv2{vS~0, and we obtain

the gradient of this as

+Y~
dv1

Y

dv2
Y

" #
~

1

1

	 

: ð21Þ

We can apply the principle of the Lagrange-multiplier to obtain

{ 1
R1

v1
{1ð Þ

{ 1
R2

v2
{1ð Þ

2
4

3
5{l

1

1

	 

~0, ð22Þ

for some constant complex number, l[C. If we differentiate once,

with respect to time, and multiply by {1, we obtain:

i~
v1

R1
~

v2

R2
, ð23Þ

where i[C is a complex number. Since v1, R1, v2 and R2 are all

real we an infer that i is real. If we consider Ohm’s law then i is a

common current that is shared by both resistors. Equation 23 can

also be obtained by using Kirchhoff’s current law and by applying

Ohm’s law twice. Our main aims in presenting this last example

are:

N to illustrate the use of constraints, with possible time and rate

dependence,

N to demonstrate the utility of our extended Lagrange-multiplier

notation,

N to provide a historical reference to the important work of

Kirchhoff and Jaynes, and

N to resolve an apparent contradiction between the Lagrangian

analysis of purely reactive systems which only have energy

storage, and the Lagrangian analysis of purely resistive

systems, which only have power dissipation. The reactive

systems have Lagrangian terms that only depend on energy

terms. The resistive systems have Lagrangian terms that only

depend on power terms. Superficially, this appears to be a

contradiction.

Figure 5. A parallel RLC circuit, with source. We can use the
established rules to write the Lagrangian function for the circuit as:

L~z jR=2ð Þ iR
{1=2ð Þ� �2

z L=2ð Þ iL
0ð Þ� �2

{ 1= 2Cð Þð Þ iC
{1ð Þ� �2

. We also
use Kirchhoff’s current law to impose a constraint function of Y = iR

+ iL + iC 2 iS = 0, and we use the principle of the Lagrange multiplier to
obtain an ordinary differential equation to describe the dynamical
behaviour of v(t).
doi:10.1371/journal.pone.0077190.g005
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In order to examine the proper relationship between ‘‘energy’’

Lagrangian terms and ‘‘power’’ Lagrangian terms further, we next

consider a mixed example, where the system contains both

resistive and reactive elements, tied together with a constraint.

A damped electrical harmonic system
We can use the terms in Table 2 to write the Lagrangian

function for the circuit in Figure 5 as:

L~z j
2

R iR
{1=2ð Þ� �2

z 1
2

L iL
0ð Þ� �2

{ 1
2C

iC
{1ð Þ� �2

: ð24Þ

We can use Kirchhoff’s current law to impose a constraint

function of Y~iRziLziC{iS~0. We can then use the

techniques from the last section to obtain the solution to the

problem of the dynamics of this circuit. We then find a functions,

v(t), that give stationary values for the of the action, I , subject to

the constraint, Y. The principle of the Lagrange multiplier allows

us to replace the optimising principle with a new constraint,

+v J½ �{l:+v Y½ �~0: ð25Þ

We can combine this new constraint with the original

constraint, Y~0, and use algebraic techniques to obtain an

ordinary differential equation for the dynamics of the circuit.

We can use the Euler-Lagrange terms in Table 2 to write:

+L~

diR
L

diL
L

diC
L

2
64

3
75~

zRiR
{1ð Þ

zLiL
0ð Þ

z 1
C

iC
{2ð Þ

2
64

3
75: ð26Þ

The function of constraint is derived from Kirchhoff’s current

law and can be written as Y~iRziLziC{iS , and we obtain the

gradient of this as

+Y~

diR
Y

diL
Y

diC
Y

2
64

3
75~

1

1

1

2
64
3
75: ð27Þ

We can apply the principle of the Lagrange-multiplier to obtain

zR:iR
{1ð Þ

zL:iL
0ð Þ

z 1
C
:iC

{2ð Þ

2
64

3
75{l:

1

1

1

2
64
3
75~0, ð28Þ

for some constant complex number, l[C, which leads to the

result

zR:iR
{1ð Þ~zL:iL

0ð Þ~z
1

C
:iC

{2ð Þ~l: ð29Þ

If we apply the constitutive laws for the three devices, and

Kirchhoff’s voltage law, three times, then we realise that we can

interpret l as the common voltage across all three components,

l~v. Of course, we could have obtained this result using more

conventional circuit theory but the point here is that we have

arrived at differential equations for the system in Figure 5 using

purely variational techniques, and we have been able to model a

complete electrical system that includes a dissipative element, R.

A ladder filter
The use of constraints can be a powerful technique, but it does

add some extra complication to the analysis. It is often possible to

make a careful choice of generalised coordinates, and avoid the

need for constraints. We demonstrate this concept by analysing the

ladder circuit in Figure 6.

If circuits have obvious regularity or symmetry, like the ladder

circuit, then it is often possible to choose the coordinates in such a

way that constraints are automatically obeyed. For the circuit in

Figure 6, we can choose the state-variables as v1 and v3. The

conventional expression for the stored energy in the system can be

written entirely in terms of these state variables as

U~C1 v1ð Þ2=2zC2 v2ð Þ2=2. It is also possible to express all the

voltages across the resistors in terms of v1, v2 and vs, using

Kirchhoff’s voltage law. Kirchhoff’s Voltage Law (KVL) does

impose constraints on the system. We implicitly use KVL, and

apply constraints, in the definition of the Lagrangian function, L.

This means that we do not need to explicitly use a Lagrange

multiplier technique. Our decision to use the state-variables as the

independent coordinates of the system means that the Lagrangian

function in Equation 30 takes a simple form and can be written

down almost as quickly as the circuit can be drawn. Our choice

also ensures that the final Euler-Lagrange equations are closely

related to the state variable model, which could be obtained by

using conventional circuit analysis. It is also clear, from the

symmetry of ladder circuits, that we could extend this Lagrangian

technique to ladders of arbitrary length and composition, as long

as they were composed of components from Table 3.

The Lagrangian function can be written directly as:

L~{
j

2RS

v1{vSð Þ {1=2ð Þ
� �2

{
1

2
C1 v1

0ð Þ
� �2

{
j

2R2
v3{v1ð Þ {1=2ð Þ

� �2

{
1

2
C3 v3

0ð Þ
� �2

{
j

2RL

v3
{1=2ð Þ

� �2

: ð30Þ

This Lagrangian function is completely composed of terms that

can be found in Table 3. We can use the established rules to

calculate the variations of the Lagrangian:
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dv1
L~{C1v1

0ð Þ

{ 1
RS

v1
{1ð Þ{vS

{1ð Þ� �

{
1

R2
v1

{1ð Þ{v3
{1ð Þ

� �
~0 ð31Þ

and

dv3
L~{C3v3

0ð Þ

{ 1
R2

v3
{1ð Þ{v1

{1ð Þ� �

{
1

RL

v3
{1ð Þ

� �
~0: ð32Þ

We can differentiate these variations, once with respect to time

and rearrange the equations into the usual form of a state-variable

model of the form

_VV~AVzB, ð33Þ

where the time-rate of change is

_VV~
d

dt

v1

v3

	 

,

and the transition-matrix is

A~
{ 1

Rs
z 1

R2

� �
1

C1

z1
R2C1

z1
R2C3

{ 1
R2

z 1
RL

� �
: 1

C3

2
64

3
75,

and the state-vector is

V~
v1

v3

	 

,

and the source-vector is

B~
1

RsC1

0

" #
vS:

There is great advantage in noting the symmetries of any circuit

that is being analysed, and choosing the generalised coordinates in

a consistent manner. For example, we can exploit the symmetry of

ladder circuits to extend our Lagrangian technique to ladder

circuits of arbitrary length.

A electromechanical problem, the D’Arsonval
galvanometer

One of the great advantages of the Lagrangian approach is that

it can be easily used to model devices that transduce energy

between different forms. For example, an electric motor (or

generator) transduces energy between electrical energy (in electric

and magnetic forms) to, and from, mechanical energy (in kinetic

and elastic forms).

The simplest form of electric motor is a piece of wire, moving in

a magnetic field. A short element of wire, dl, moving in a magnetic

field will experience Lorenz force of dF~B:i:dl, provided that the

wire and the fields are orthogonal. The modern form of the

moving-coil current meter is the result of a long line of

development, which includes contributions from many people,

including Oersted, Schweigger, Kelvin, D’Arsonval, Weston, and

Ayrton. A typical physical meter is shown in Figure 7. The meter is

carefully designed to guarantee that the magnetic flux density, B, is

orthogonal to the moving wires. We can use the Lorenz force on

the wire and the radius of the motion of the wire, r, to calculate the

rate of energy that is transduced per unit angle of motion:

Figure 7. Physical layout of the D’Arsonval galvanometer. We
model the essential features of the D’Arsonval meter as: the rotational
moment of inertial of the coil J, the torsional spring constant, k, the
torsional damping constant, x and the maximum magnetic-flux linked
by the coil, W0. We use a linear model for the stored energy in the coil,

UM~W0ih 0ð Þ. The Lagrangian function can be written in terms of these
fundamental parameters. (Adapted from the Wikimedia commons.)

Figure 6. An electrical ladder-filter circuit. In this circuit, we make
a careful choice of generalised coordinates, which allows us to avoid the
explicit use of functions of constraint. We can use the established rules
to write down the Lagrangian function for the circuit as shown in
Equation 30. We apply the rules for the Euler-Lagrange equation to this
Lagrangian function to obtain a pair of ordinary differential equations
that describe the dynamics of this circuit.
doi:10.1371/journal.pone.0077190.g006
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dUM~ Blrð Þ:i:dh~W0
:i:dh, ð34Þ

where W0 is a parameter that represents the construction of the

meter. If we use multiple turns of wire then this simply re-scales

the parameter, W0, but does not alter the basic model. We can

integrate Equation 34 to obtain

UM~W0
:i:h, ð35Þ

which is the appropriate energy term for the Lagrangian function

of a moving, current carrying coil, in a magnetic field. We note

that the energy that can be transduced is unbounded, if the angle,

h, is allowed to increase without bound. Of course, this is normal

for a motor. In practice the angle for the meter cannot increase

outside of the range {900
vhvz900 because the meter does not

have a commutator. Forces would cease, and then change

direction at the boundaries.

The moving-coil current meter is shown in Figure 7. The

relevant parameters of this physical system are, the rotational

moment of inertial of the coil (including the needle and the

physical supports) J , the torsional spring (stiffness) constant, k, the

torsional damping constant, x and the maximum magnetic-flux

linked by the coil, W0, defined earlier. For a coil in free space the

stored energy in the coil is given by UM~W0
:i: sin h 0ð Þ

� �
, but for

the D’Arsonval and Weston style of meter the magnetic field is at

right angles to a narrow circular air-gap. This makes the magnetic

stored energy function more linear with respect to h. We can write

UM~W0
:i:h 0ð Þ, as in Equation 35. These abstract aspects of the

meter and their relationships are shown in Figure 8. There is only

one generalised coordinate for this system, h and the Lagrangian

function for the linearised system can be written as

L~
J

2
h 1ð Þ
� �2

{
k

2
h 0ð Þ
� �2

z
j

2
x h 1=2ð Þ
� �2

zW0ih 0ð Þ: ð36Þ

The last term represents the transduction of energy through the

coil.

We can apply Equation 4 to Equation 36 and obtain the

equation of motion for the D’Arsonval meter:

Jh 2ð Þzxh 1ð Þzkh 0ð Þ~W0i: ð37Þ

This example shows that it is possible to model mixed

mechanical and electrical (electromechanical) systems using

Lagrangian techniques. Further, we show that the presence of

vicious damping is no obstacle to Lagrangian analysis.

Summary and Conclusions

We have extended the range of applications of Lagrangian

analysis, to include non-conservative systems that include dissipa-

tive forces. This has been achieved, even though it contradicts

many of the accepted ideas in the current literature. We have also

provided a systematic method of applying an extended type of

Lagrangian analysis to non-conservative electromechanical sys-

tems.

The successful application of Lagrangians in dissipative, non-

conserved systems depends on the appropriate substitution of

variables, the choice of Legendre transformations and the use of

fractional calculus of variations.

Our approach motivates a number of directions for future work:

N It is possible to extend Lagrangian techniques to non-linear

dissipative systems, such as memristors or diodes, using

Taylor’s theorem, or by using repeated integration by parts.

N If we could extend fractional calculus of variations to include

generalised functions, such as white noise, then we could

develop a fractional Malliavin calculus. The greater aim is to

analyse electromechanical systems in the presence of noise. We

expect that this would lead to the solution of the apparent

paradoxes of the Penfield motor [7], and the Davis

electromechanical capacitor [43]. A complete theory should

be compatible with Fluctuation Dissipation Theorem, as

described by Weber [44], for example.

N Is a statistical hypothesis test due to Granger[45], which can be

used to determining whether one time series is useful in

forecasting another. If we had a complete theory, which could

model damping forces and fluctuations, then it would be

interesting to see whether Granger’s sense of causality could be

used to allocate a direction to the time variable.

N Extremal principles can be used to create a number of

numerical methods. A number of numerical methods have

recently been proposed in the literature, most notably in

Almeida [25] and Pooseh [46,47]. The opportunities for

numerical solution appear to be very good. The authors have

had some success using optimisation packages, such as

fincon() in Matlab, and sqp() in GNU Octave. Such methods

can be iterative, so an approximate solution can always be

improved, through further iteration

N It is possible to apply Noether’s theorem to determine the

‘‘constants of the motion’’ for quite general systems, including

systems with dissipative elements and dependent sources.

These constants of the motion will be generalised forms of

momentum and energy. This is discussed in Frederico [48,49].

the work of Kane et al. [50]is also relevant.

N For noisy electrical systems, with many degrees of freedom, it is

of great theoretical interest to write down Liouville’s theorem,

in its most general form. The greater aim here is to understand

the thermodynamics of electrical systems.

It should be possible to create a time-average Lagrangian

analysis for switched-mode systems. This would be analogous to

the time-averaged state-space models of Middlebrook and Ćuk [5].

In summary, we argue that the generalised Lagrangian

functions described in this paper are expected to have impact on

theoretical and practical applications in electrical and mechanical

engineering.
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