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ABSTRACT

One of the dominant approaches towards implementing fast and high performance computer
architectures is the Chip Multi Processor (CMP), in which the design of the memory
hierarchy has a critical effect on performance. Performance can be improved by the use of a
shared cache on the chip, but it is a matter of ongoing research as to how each processor can
gain the greatest advantage from the cache without affecting the performance of other

processors. Moreover, power is a critical issue in CMP design.

Cache replacement policies and cache partitioning schemes have been investigated and
proven able to enhance shared cache management. However, it is still desirable to have an
optimal replacement policy that can retain useful data as long as possible to minimise miss
rate and not degrade performance in a partitioned shared cache. Many of the metrics that
have led to innovations in various partitioning schemes have increased the complexity of the
partitioning strategies and the hardware overhead. There is scope for more work in
achieving the right balance between power consumption and performance improvement in

the CMP.

This thesis investigates the effects of the cache replacement policy in a partitioned
shared cache. The goal is to quantify whether a better power/performance trade-off can be
achieved by using less complex replacement strategies. A Middle Insertion 2 Positions

Promotion (MI2PP) policy is proposed to eliminate cache misses that could adversely affect

xvii



the access patterns and the throughput of the processors in the system. The insertion,
promotion and eviction strategies of the replacement policy are investigated and modified to
improve shared cache utilisation by the competing processors. The MI2PP policy employs a
static predefined insertion point, near distance promotion and the concept of ownership in
the eviction policy to avoid resource stealing among the processors. With these strategies,
the performance of the shared cache and the overall system were enhanced and the miss rate

showed significant improvement over the Least Recently Used (LRU) policy.

While existing cache partitioning schemes use a variety of performance metrics to
allocate the cache for each competing processor, most of the schemes focus only on one
metric in their partitioning algorithm. An Adaptive Cycles per Instruction (CPI)-based
Cache Partitioning (ACCP) scheme is introduced to investigate the efficiency of using two
metrics to optimise partitioning decisions and to study the trade-offs between the
complexity of using more performance metrics in partition decision-making and additional
hardware cost. The analysis performed on ACCP showed that the performance of the
processors was improved compared to the existing CPl-based partitioning scheme
introduced by Muralidhara et al. [2010], which uses only one of the performance metrics
employed in ACCP. Evaluation on a more complex scheme, namely the Utility Cache
Partitioning (UCP) scheme demonstrated that the ACCP on average achieved similar
performance although the ACCP is simpler to implement. The low hardware overhead
incurred by ACCP showed that it is superior to UCP. ACCP demonstrates that the
complexity of the partitioning mechanism and hardware cost could be reduced without

degrading the overall system performance.
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