
PUBLISHED VERSION 

 

Eleanor King, Yuri Levin, David Ottaway, and Peter Veitch 
Modeling thermoelastic distortion of optics using elastodynamic reciprocity 
Physical Review D - Particles, Fields, Gravitation, and Cosmology, 2015; 92(2):022005-1-
022005-8 
 
 
© 2015 American Physical Society 

Originally published by American Physical Society at:- 

http://dx.doi.org/10.1103/PhysRevD.92.022005 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
http://hdl.handle.net/2440/95192  

PERMISSIONS 

http://publish.aps.org/authors/transfer-of-copyright-agreement 

 

 

“The author(s), and in the case of a Work Made For Hire, as defined in the U.S. 
Copyright Act, 17 U.S.C. §101, the employer named [below], shall have the following 
rights (the “Author Rights”): 

3. The right to use all or part of the Article, including the APS-prepared version without 
revision or modification, on the author(s)’ web home page or employer’s website and to 
make copies of all or part of the Article, including the APS-prepared version without 
revision or modification, for the author(s)’ and/or the employer’s use for educational or 
research purposes.” 

 

 

 

20 October, 2015 

http://dx.doi.org/10.1103/PhysRevD.92.022005
http://hdl.handle.net/2440/92395
http://publish.aps.org/authors/transfer-of-copyright-agreement


Modeling thermoelastic distortion of optics using elastodynamic reciprocity

Eleanor King,1,* Yuri Levin,2 David Ottaway,1 and Peter Veitch1
1Department of Physics, The University of Adelaide, Adelaide SA 5005, Australia

2School of Physics, Monash University, Clayton VIC 2800, Australia
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Thermoelastic distortion resulting from optical absorption by transmissive and reflective optics can
cause unacceptable changes in optical systems that employ high-power beams. In advanced-generation
laser-interferometric gravitational wave detectors, for example, optical absorption is expected to result in
wavefront distortions that would compromise the sensitivity of the detector, thus necessitating the use of
adaptive thermal compensation. Unfortunately, these systems have long thermal time constants, and so
predictive feed-forward control systems could be required, but the finite-element analysis is computa-
tionally expensive. We describe here the use of the Betti-Maxwell elastodynamic reciprocity theorem to
calculate the response of linear elastic bodies (optics) to heating that has arbitrary spatial distribution. We
demonstrate, using a simple example, that it can yield accurate results in computational times that are
significantly less than those required for finite-element analyses.

DOI: 10.1103/PhysRevD.92.022005 PACS numbers: 04.80.Nn, 42.15.Fr

I. INTRODUCTION

Advanced-generation interferometric gravitational wave
detectors, such as Advanced LIGO [1], Advanced Virgo [2]
and KAGRA [3] are currently being commissioned. Their
sensitivity is expected to surpass that achieved by first-
generation instruments by almost an order of magnitude in
the high-frequency region. To achieve this, very high
circulating power levels (0.5–1 MW) will be stored within
the Fabry-Perot arm cavities. At these power levels, even
low levels of optical absorption can lead to significant
thermoelastic distortion of optical surfaces and unaccept-
able levels of wavefront distortion [4], resulting in reduced
circulating power and a reduction in the efficiency of the
detector signal readout. Thus, thermally actuated compen-
sation systems will be used to ameliorate the wavefront
distortion. However, the thermal time constants for the
absorption-induced distortion and the compensation are
long, typically 12 hours, and thus incorporating predictive
modeling in the control systems may prove essential.
The response of a linear elastic system to heating is

described by the theory of thermoelasticity, and its appli-
cations to highly symmetric, idealized systems are
described in many books (see [5] for example). It has also
been used to develop analytic expressions for less idealized
optical systems [4,6]. The expressions developed by Hello
and Vinet [6] are relevant to the work described here, but
apply only to cylindrical isotropic mirrors heated by coaxial
laser beams.
More complicated systems, which incorporate asymmet-

ric heating or anisotropic elasticity, can be investigated
using finite-element numerical models that apply the

equations of thermoelasticity on a three-dimensional spatial
mesh. For dynamic systems, the thermoelastic equations
must be solved at each epoch, requiring computational
times that can run to many days. This approach would be
untenable for use in predictive feed-forward actuation to
control systems. In such cases, the solution of the scalar
problem to determine the temperature profile throughout
the optic can be solved rapidly; the time consuming part is
solving the tensor-based elasticity problem to convert the
thermal profile into an elastic distortion.
The Betti-Maxwell theorem of elastodynamic reciprocity

[7] provides an alternative approach to using finite-element
methods (FEM) to solve the tensor part of the thermoelastic
distortion. It has previously been used to investigate the
excitation of Rayleigh-Lamb elastic waves in a metal plate
due to heating produced by a line-focused pulsed laser
beam assuming that the heating is confined to the surface of
the plate and it has infinite lateral extent [8,9]. In the
context of gravitational wave detection, it has been used to
compute the interferometer’s response to creep events in the
fibers that suspend the optics [10]. We extend its use to
predict thermoelastic distortion of an optic of finite size
with asymmetric heating.
We describe here how elastodynamic reciprocity and

FEM can be combined to provide accurate predictions of
thermoelastic surface distortion more quickly than using
FEM alone. In summary, FEM is used to determine the
response of the optic to a set of orthonormal surface
pressures, or tractions, that are applied to the surface of
interest—a computationally expensive calculation that is
performed once for an optic. Then, using reciprocity, the
distortion due to the instantaneous temperature profile in
the optic is calculated using a sum of scalar volume
integrals that incorporate these responses. The computa-
tional cost of this step is much less than that of a full
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elastostatic FEM evaluation. Additionally, it is amenable to
parallelization, which would further reduce the computa-
tional time.
The layout of the rest of the paper is as follows: in Sec. II

we introduce the Betti-Maxwell theorem of elastodynamics
and show how it can be used to determine the surface
distortion by careful choice of a suitable auxiliary elastic
system. We demonstrate its application by calculating the
distortion of the end face of a cylindrical optic that is
heated by a Gaussian heat flux that is (a) coaxial with and
(b) laterally displaced from the axis. The approach and
model are described in Secs. III and IV. Finally, the
resulting surface distortions are presented in Sec. V and
compared with the results of elastostatic FEM calculations.
Computation times for these two approaches are compared
in Sec. VI.

II. ELASTODYNAMIC RECIPROCITY AND
THERMAL DISTORTION

The Betti-Maxwell reciprocity theorem for elasto-
dynamics [7,9] specifies the relationship between the
displacement ~uð~r; tÞ that results from an applied surface
pressure or traction ~tð~r; tÞ and internal body force ~fð~r; tÞ for
two elastic states of a linear elastic body:

Z
S
ðt2i u1i − t1i u

2
i ÞdS ¼

Z
V
½ðf1i − ρü1i Þu2i − ðf2i − ρü2i Þu1i �dV

ð1Þ

where ρ is the density, ü is acceleration, the superscripts 1
and 2 represent the two states, and the Einstein summation
convention is used. If tið~r; tÞ ¼ tið~rÞeiωt and fið~r; tÞ ¼
fið~rÞeiωt then uið~r; tÞ ¼ uið~rÞeiωt, and thus Eq. (1)
becomes

Z
S
ðt2i ð~rÞu1i ð~rÞ − t1i ð~rÞu2i ð~rÞÞdS

¼
Z
V
ðf1i ð~rÞu2i ð~rÞ − f2i ð~rÞu1i ð~rÞÞdV ð2Þ

We shall use this theorem to determine the surface
displacement (distortion) due to heating of an optic by,
for example, partial absorption of an incident laser beam.
For the first state, which we shall refer to as the thermal
state and label T, we assume that the optic is free and, thus,
tTi ¼ 0, and there is a nonzero body force due to the
heating. Since we are interested in the distortion of the end
face of the optic, we choose the second state, which is often
referred to as the auxiliary state and we shall label A, to
have a traction tAz applied to the end face of the optic and
assume fAi ¼ 0. Thus, Eq. (3) becomes

Z
S
tAz ð~rÞuTz ð~rÞdS ¼

Z
V
fTi ð~rÞuAi ð~rÞdV

¼
Z
S
σTijð~rÞεAijð~rÞdV ð3Þ

where εAijð~rÞ is the internal strain produced by the traction
tAz ð~rÞ, and σTijð~rÞ is the internal stress associated with the

body force: fTi ¼ − ∂σTij
∂xj .

Consider now applying time-harmonic tractions with
amplitude tAz ð~rsÞ ¼ χnð~rsÞ n ¼ 1; 2;…. It is convenient
to choose χnð~rsÞ to be orthonormal, so thatR
χnð~rsÞχmð~rsÞdS ¼ δnm. Then, expressing the surface

displacement amplitude as:

uTz ð~rÞ ¼
X
m

amχmð~rÞ ð4Þ

transforms the left-hand term of Eq. (4) toZ
S
tAz ð~rÞuTz ð~rÞdS ¼

Z
S
χnð~rÞ

X
m

amχmð~rÞdS ¼ an: ð5Þ

Therefore

an ¼
Z
V
σTijð~rÞεAijð~rÞdV ð6Þ

That is, if the amplitude of the elastic response of the
optic, ϵAijð~rÞ, to each of the tractions χnð~rÞ is known then the
amplitude of the distortion of the end face of the optic,
uTz ð~rÞ, due to any thermal stress distribution can be
calculated using Eqs. (4) and (6).
We shall use this approach to calculate the surface

distortion due to nonuniform heating of a homogeneous
isotropic body for which

σTijð~rÞ ¼
−Eα
1 − 2ν

ΔTð~rÞδij; ð7Þ

where E is Young’s modulus, α is the coefficient of thermal
expansion, ν is Poisson’s ratio, ΔT ¼ Tð~rÞ − T0, and T0 is
the ambient temperature. Equation (6), thus, becomes

an ¼
−Eα
1 − 2ν

Z
V
ðTð~rÞ − T0ÞTrfεAð~rÞgdV: ð8Þ

III. IMPLEMENTATION

To determine the distortion of the end-face using
reciprocity, one must first characterize the response of
the elastic system, εAijð~rÞ, to a set of orthonormal basis
tractions tAz ð~r; tÞ ¼ χnð~rÞ exp ½iωt�∶ n ¼ 1;…; N using an
elastostatic FEM [11].
Zernike functions would be a tempting choice given our

cylindrical geometry, particularly as they are orthogonal to
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a uniform traction and, thus, applying the auxiliary trac-
tions should not apply net forces to the system. However, as
shown in Sec. IV, they are not well suited to describing the
surface distortion.
The orthonormal basis tractions we shall use apply a

nonzero (instantaneous) force to the optic, leading to ill-
conditioning of the FEM at very low frequencies. We, thus,
used a traction frequency of ω ¼ 1 s−1 as the response is
independent of frequency for frequencies well below the
first resonance; see [12] for example.
In all of our numerical tests, we assume a cylindrical

fused silica optic with height h ¼ 200 mm, radius
R ¼ 170 mm, E ¼ 731 MPa, ν ¼ 0.17 and α ¼ 0.55×
10−6 K−1. A radial cross section of the optic and the
meshing used for the FEM is shown in Fig. 1.
We assume heating of the top face by 1 W of power

absorbed with a Gaussian-distributed flux:

Qðx; yÞ ¼ 2

πw2
exp½−2ððx − x0Þ2 þ ðy − y0Þ2Þ=w2�

where the beam radius w ¼ 53 mm, and radiative cooling
of all surfaces of the optic to surroundings at 293 K. A
thermal FEM [11] is used to calculate the temperature
distribution, Tð~rÞ, resulting from the heating. The displace-
ment amplitude for each basis function, an, and the total
displacement, uTz ð~r; tÞ, are then calculated using Eq. (4)
and Eq. (8).

IV. CHOICE OF ORTHONORMAL
BASIS FUNCTIONS

Choosing a set of orthonormal functions χnð~rÞ that can
describe the surface distortion without requiring a large
number of functions, which would necessarily include high
spatial frequencies, is crucial as it reduces both the number
of auxiliary tractions that must be evaluated and the
requirement for using a fine mesh in the FEM.

An appropriate set of functions can be chosen by
comparing either a canonical distortion predicted by
FEM or the measured distortion with a decomposition of
that distortion in terms of the proposed functions. Here, we
describe the choice of basis functions for on-axis and
off-axis heating of the optic, and require that the sum
of the lowest order components agrees everywhere with
the canonical distortion within a few percent of the
maximum distortion (a few nm) for this proof-of-principle
demonstration.

A. Orthonormal basis for on-axis heating
ðx0 ¼ 0; y0 ¼ 0Þ

Zernike polynomials (see Appendix A) are often used to
describe cylindrically symmetric optical aberrations, as
they are orthogonal over a circular disc and can be
normalized. However, as shown in Fig. 2, these polyno-
mials are not well suited to describing the distortion.
On-axis surface distortion due to the heating can also be

described using Laguerre-Gauss (LG) functions:

LGpðrÞ ¼ Lp

�
2r2

r20

�
exp

�
−r2

r20

�

where Lp are Laguerre polynomials of order p∶ f0; 1; 2…g
(see Appendix A), r is the radial coordinate and r0 is a free
parameter. These functions are orthogonal only over the
infinite plane however.
Symmetric orthogonalization [12] is therefore used, as

outlined in Appendix B, to construct linear combinations,
χn, of LG functions that are orthonormal over the end face
for a given r0. In this type of orthogonalization, the
difference between the new and original functions is
minimized in the least-squares sense [12].

FIG. 1 (color online). A radial cross section of the cylindrical
optic, showing the mesh used for the FEM. The mesh consisted
of 32000 nodes, and is finest on the heated top surface of
the test mass.

FIG. 2 (color online). Comparison of the surface distortion
calculated using the elastodynamic FEM, uFEM, the sum of the
first six Zernike components uZ, and the sum of the first six
orthonormalized LG components uLG.
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The optimum value of r0 was chosen as described
in Appendix C, giving r0 ¼ 1.5w. The six lowest-order
orthonomalized-LG functions are defined in Appendix D.
A comparison of uFEM and the sum of these components in
Fig. 2 shows that the LG basis is much superior to the
Zernike basis.

B. Orthonormal basis for off-axis heating

The distortion due to off-axis heating can be described
using the sets of functions listed below:
(a) Hermite-Gauss (HG) functions:

HGmnðx; yÞ ¼ Hm

� ffiffiffi
2

p
x

r0x

�
exp

�
−x2

r20x

�
Hn

� ffiffiffi
2

p
y

r0y

�
exp

�
−y2

r20y

�

where Hi are the (physicists) Hermite polynomials of order
i∶ f0; 1; 2;…g (see Appendix A). These functions are
orthogonal over the interval x; y∶ ð−∞;∞Þ. We choose
r0x ¼ r0y ≡ r0 as the heat flux has a circular cross section
and we shall use x0; y0 ≪ R, and, thus,

HGmnðx; yÞ ¼ Hm

� ffiffiffi
2

p
x

r0

�
Hn

� ffiffiffi
2

p
y

r0

�
exp

�
−ðx2 þ y2Þ

r20

�
:

(b) Generalized LG functions:

LGl
pðrÞ ¼ Lp

�
2r2

r20

�
exp

�
−r2

r20

�( 1

sin lϕ
cos lϕ

;

where ϕ is the azimuthal angle, and l∶ f1; 2; 3;…g for
p > 0. We restricted the azimuthal dependence to l ¼ 1
due to the symmetry of the expected distortion.
Orthonormalized HG and generalized-LG functions

were constructed, and an optimized value of r0 ¼ 1.4w
was selected as discussed above.
HG functions up to mþ n ¼ 15 (136 functions in total)

were initially used to describe the distortion due to a
heating beam that was displaced from the center of the optic
according to ðx0; y0Þ ¼ ð0; 10 mmÞ, (10 mm, 0) and
(8.7 mm, 5 mm).
In each case, the distortion was dominated by the same

17 components, the functions for which are plotted in
Appendix E. A comparison of uFEM and the sum of the
dominant 17 components is shown in Fig. 3.
Orthonormalized generalized-LG functions up to p ¼ 5

(16 functions in total) were also generated and used to
describe the distortion due to a heat flux displaced from the
center of the optic by 10 mm, but they yielded slightly
poorer agreement with uFEM. In addition, since the lower
order orthonormalized-HG functions appear similar to
the TEM01 and TEM10 eigenmodes observed in optical
cavities, we chose to use that basis.

V. SURFACE DISTORTION CALCULATED
USING RECIPROCITY

We now show how to use the orthonormal bases
described above with reciprocity to determine the surface
distortion. In each case, the equilibrium εAijð~rÞ values were
calculated for the basis tractions and then combined with
the temperature distribution Tð~rÞ from the thermal FEM to
yield the amplitudes an.

A. On-axis heating: Zernike basis

While Zernike polynomials are not appropriate for
describing the surface distortion in the example presented
here, they can be used for a reciprocity-based calculation.
Table I shows a comparison of the reciprocity Zernike
amplitudes with those calculated by decomposing the
distortion predicted by the thermoelastostatic FEM.

B. On-axis heating: Orthonormalized-LG basis

The uFEM and uT ¼ P
5
n¼0 anχn, and the difference

between the two curves are plotted in Fig. 4. Since we
are not interested in the average displacement of the optics,
we have set uT ¼ uFEM at r ¼ 0. The asymmetry of the
difference is due to nonideal cylindrical symmetry in the
FEM meshing.

FIG. 3 (color online). Comparison of uFEM and the sum of the
17 dominant orthonormalized-HG components uT for a heat flux
offset of 10 mm.

TABLE I. Zernike amplitudes calculated using reciprocity, an,
and thermoelastostatic FEM, an;FEM, for the axisymmetric Gaus-
sian heat flux.

Zernike polynomial anðnmÞ an;FEMðnmÞ
Z02 42.6 42.9
Z04 −15.2 −15.0
Z06 6.3 5.9
Z08 −2.8 −3.6
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C. Off-axis heating: Orthonormalized-HG basis

The uFEM and uT ¼ P
17
n¼1 anχn and the difference

between the two curves are plotted in Fig. 5.
Figures 4 and 5 show that even though < 20 auxiliary

tractions were used to characterize the optic and the FEM
was restricted to only 30,000 nodes,

(i) Elastodynamic reciprocity predicts uT within <
1.5% of uFEM over the majority of the incident laser
beam

(ii) Displacing the beam by 20% of its radius does not
degrade the agreement.

Additionally, increasing the number of auxiliary tractions
further improves the agreement, particularly at large
radius.

VI. COMPARISON OF COMPUTATIONAL TIMES

We compare here the times required to calculate the
surface distortion using our hybrid FEM-reciprocity
approach and using a conventional thermoelastic FEM
analysis. The times are specific to the example of partial
absorption of a Gaussian-intensity-profile light beam by the
surface of an isotropic cylindrical optic.
In both cases we use 32,000 nodes in the FEM

calculations. We have not yet investigated how many nodes

or auxiliary tractions are required to achieve a particular
accuracy for each approach, or how this might affect the
computational times.
As discussed earlier, our hybrid FEM-reciprocity

approach consists of two parts, the first of which is done
only once for an optic:

1. (a) Calculate the elastic response of the optic to each
of the orthonormal tractions and store these
arrays in memory. Here, this consisted of a
32,000 long 6-element array in which the
three-dimensional coordinates and strains at
each node were recorded for each traction. This
part required approximately one hour per
traction.

(b) Upload 20 responses into memory in preparation
for part 2, required 20 minutes.

2. At each epoch of interest
(a) Calculate the thermal-induced stress at each

node using FEM: 90 seconds
(b) Evaluate the volume integral for each traction

component using Eq. (6): three seconds per
traction. Thus, for a serial calculation with 20
tractions, this step required 60 seconds.

A conventional thermoelastic FEM calculation for this
simple problem required about 13 minutes.

FIG. 4 (color online). (a) A plot of uFEM and uT calculated for
the on-axis heating using the six lowest-order orthonormalized-
LG functions. (b) A plot of uFEM − uT .

FIG. 5 (color online). (a) A plot of uFEM and uT calculated for
the off-axis heating using the 17 dominant orthonormalized-HG
functions. (b) A plot of uFEM − uT .
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Thus, once the response of the optic has been determined
and stored in memory, the hybrid FEM-reciprocity calcu-
lation is about 5.2 times faster compared with using a serial
calculation. A parallel calculation in which one processor
core per basis function is used to evaluate Equation (8)
would further reduce the calculation time and significantly
decrease the amount of high-speed memory required for
each processor.

VII. CONCLUSION

We have shown how Betti-Maxwell reciprocity can be
used in combination with thermal finite-element modeling
to calculate the thermoelastic distortion of a linear elastic
system. As an example, we described in detail its appli-
cation to calculating the distortion of the end face of an
isotropic cylindrical glass optic heated by an off-axis
Gaussian laser beam. Despite using less than 20 auxiliary
eigenfunction tractions to characterize the optic, the dis-
tortion calculated using reciprocity agrees to < 1.5% with
that calculated using a full thermoelastic FEM over the
majority of the incident beam.
The computational time required for the reciprocity

approach was a factor of 5–8 less than that for the full
FEM once the optic had been characterized. The advantage
of this approach will thus be most evident in cases where
the elastic distortion must be calculated frequently, such as
in feed-forward control of systems with long thermal time
constants for example. Parallelization of the reciprocity
calculation would also allow further improvements to the
accuracy by employing additional tractions but with neg-
ligible additional computational cost.
Our reciprocity approach can be applied to systems with

arbitrarily distributed heat fluxes and asymmetric aniso-
tropic elastic bodies. Furthermore, while our example
assumed a free optic, other boundary conditions could
easily be incorporated into the analysis with an appropriate
set of auxiliary eigenfunctions.
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APPENDIX A: POLYNOMIALS
USED IN THIS PAPER

See Tables II and III.

APPENDIX B: SUMMARY OF SYMMETRIC
ORTHOGONALIZATION

The linearly independent LG and HG functions, denoted
here by fkð~rÞ, were orthonormalized over the end face of
the mirror using the following process [12]:

1. Calculate the matrix of inner products of the
functions: Mkl ¼ ∬end facefkð~rÞflð~rÞdS where the
integration was evaluated for the mesh used to
export the data from the FEM. In this work, the
data was exported on a 1 mm-pitch mesh and
cropped to fit within the circular end face of
the optic.

2. Determine the eigenvalues pk and eigenvectors ~uλ of
the inner product matrix such that

P
lMklulλ ¼

pλukλ.
3. The orthonormalized functions χð~rÞ are then given

by χn ¼ 1ffiffiffiffi
pn

p
P

kuknfk

APPENDIX C: OPTIMIZATION OF r0

The optimum r0 was chosen to minimize the mean
squared difference, weighted by the amplitude of the
incident laser beam, between uFEM and the sum of the
selected orthonormalized components using

RR
end faceðuFEM −

P
5
n¼0 anχnÞ2 exp½ðx−x0Þ

2þðy−y0Þ2
w2 �dSRR

end face exp½ðx−x0Þ
2þðy−y0Þ2
w2 �dS

;

where

an ¼
ZZ

end face

uFEMχndS;

TABLE II. Zernike amplitudes calculated using reciprocity,
an, and thermoelastostatic FEM, an;FEM, for the axisymmetric
Gaussian heat flux.

Zernike polynomial
Orthogonal form
with ρ ¼ r=R)

Z02
ffiffi
3
π

q
ð2ρ2 − 1Þ

Z04
ffiffi
5
π

q
ð6ρ4 − 6ρ2 þ 1Þ

Z06
ffiffi
7
π

q
ð20ρ6 − 30ρ4 þ 12ρ2 − 1Þ

Z08
ffiffi
9
π

q
ð70ρ8 − 140ρ6 þ 90ρ4 − 20ρ2 þ 1Þ

TABLE III. Laguerre and Hermite polynomials used.

n LnðxÞ HnðxÞ
0 1 1
1 −xþ 1 2x
2 ðx2 − 4xþ 2Þ=2 4x2 − 2
3 ð−x3 þ 9x2 − 18xþ 6Þ=6 8x3 − 12x
4 ðx4 − 16x3 þ 72x2 − 96xþ 24Þ=24 16x4 − 48x2 þ 12
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and a new orthonormal set of functions χn was generated
for each value of r0. The integrations were evaluated using
a square array of pitch 1 mm within the end face.
The variation of this mean-weighted-squared difference

with r0 for the axisymmetric heating ðy0 ¼ 0Þ is plotted
in Fig. 6.
The variation of this mean-weighted-squared difference

with r0 for orthonormalized-HG functions and off-axis
heating y0 ¼ 10 mm is plotted in Fig. 7.

APPENDIX D: ORTHONORMALIZED-LG
FUNCTIONS USED IN THIS PAPER

χn ¼ c0nLG0 þ c1nLG1 þ c2nLG2

þc3nLG3 þ c4nLG4 þ c5nLG5

where the coefficients are listed in Table IV

APPENDIX E: THE 17 DOMINANT
ORTHONORMALIZED-HG FUNCTIONS

The Hermite Gauss functions up to order nþm ¼ 15
are orthogonalized using symmetric orthogonaliazation. Of
these 136 modes, the 17 modes that make the largest
contribution to describing the deformed surface were
selected. These modes are shown in Fig. 8.
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FIG. 6 (color online). Plot of the mean-weighted-squared
difference between uFEM and the sum of the first six orthonor-
malized-LG components as a function of r0.

FIG. 7 (color online). Plot of the mean-weighted-squared
difference between uFEM and the sum of the first six orthonor-
malized-HG components as a function of r0.

TABLE IV.

n c0n c1n c2n c3n c4n c5n

0 −0.97 −0.25 −0.06 −0.01 −0.001 −0.0001
1 0.24 −0.86 −0.43 −0.13 −0.028 −0.003
2 0.062 −0.42 0.69 0.55 0.20 0.039
3 0.016 −0.15 0.52 −0.53 −0.62 −0.24
4 0.005 −0.055 0.26 −0.58 0.40 0.79
5 −0.005 0.07 −0.4 1.23 −2.24 2.17

FIG. 8 (color online). The 17 dominant orthonormalized-HG
functions.
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