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Abstract

Accurate and timely performance data are of vital importance for network administra-

tion. However, modern networks are so large and transmit such enormous quantities

of data that collecting the complete measurements can be wildly impractical. Network

tomography uses the measurements that are available to infer underlying performance

statistics. In this thesis we consider estimating average packet loss rates on links from

more easily collected path measurements. Most such work has concentrated on tree-

networks, but here we consider the problem on a general network where the problem

is typically underconstrained. In that context we need some criteria to select a so-

lution from the infinite set of possibilities. Here we exploit the compressive sensing

assumption of sparsity. However, although the assumption of sparsity makes a great

deal of sense in this context, the standard conditions required for results in compressive

sensing theorems do not hold for realistic routing matrices. We show that despite this,

the underlying techniques can still provide useful answers. What’s more, we show that

the apparently inconvenient structure of routing matrices can actually help in solving

the problem efficiently. We provide CTD, a new algorithm for finding sparsest solu-

tions that is orders of magnitude faster than one of the standard compressive sensing

algorithms, and which provides more certainty. We also provide a version of CTD for

working with a limited number of measurements, CTDn.

The success of a tomography algorithm often depends upon the underlying network

topology. To test CTD we use two sources of topologies: the Internet Topology Zoo

and synthetically generated topologies. We propose a new method for topology syn-

thesis, Combined Optimisation and Layered Design (COLD), that mirrors the real-life

design process of a data network. Since real data networks are designed, they are in

some sense optimized to fulfil a function. However, strict mathematical optimisation

is rarely performed at the router lever; rather the PoP-level is typically the one being

optimized, because it is both more stable and less intricate. Once the PoP-level network

is determined, the router-level network can be created using a templated design pro-

cess, increasing regularity and aiding management and debugging. COLD mirrors this

process by having two layers: PoP-level optimisation of realistic economic constraints

subject to demand; and then router level synthesis with a templated design process
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using graph products. We show COLD produces sensible, varied yet controllable output

with a clear relationship to the relatively few input parameters.

We test CTD and CTDn with both Topology Zoo topologies and COLD-generated

topologies. Because the COLD process can be controlled to generate a wide variety

of topologies this allowed us to test the sensitivity of CTD and CTDn to the form of

the underlying topology. We show that CTD and CTDn perform well across a wide

variety of topological structures and forms of measurement, while relying on less detailed

information than previous approaches.
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