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Abstract

Despite the wide acceptance of Failure-to-Rescue (FTR) as a patient safety indicator (defined as the deaths among surgical
patients with treatable complications), no study has explored the geographic variation of FTR in a large health jurisdiction.
Our study aimed to explore the spatiotemporal variations of FTR rates across New South Wales (NSW), Australia. We
conducted a population-based study using all admitted surgical patients in public acute hospitals during 2002–2009 in
NSW, Australia. We developed a spatiotemporal Poisson model using Integrated Nested Laplace Approximation (INLA)
methods in a Bayesian framework to obtain area-specific adjusted relative risk. Local Government Area (LGA) was chosen as
the areal unit. LGA-aggregated covariates included age, gender, socio-economic and remoteness index scores, distance
between patient residential postcode and the treating hospital, and a quadratic time trend. We studied 4,285,494 elective
surgical admissions in 82 acute public hospitals over eight years in NSW. Around 14% of patients who developed at least
one of the six FTR-related complications (58,590) died during hospitalization. Of 153 LGAs, patients who lived in 31 LGAs,
accommodating 48% of NSW patients at risk, were exposed to an excessive adjusted FTR risk (10% to 50%) compared to the
state-average. They were mostly located in state’s centre and western Sydney. Thirty LGAs with a lower adjusted FTR risk
(10% to 30%), accommodating 8% of patients at risk, were mostly found in the southern parts of NSW and Sydney east and
south. There were significant spatiotemporal variations of FTR rates across NSW over an eight-year span. Areas identified
with significantly high and low FTR risks provide potential opportunities for policy-makers, clinicians and researchers to
learn from the success or failure of adopting the best care for surgical patients and build a self-learning organisation and
health system.
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Introduction

Adverse events during hospitalisation and complications after

surgery can be quite common. In the U.S., approximately one-

fifth of patients who underwent surgery in 1997 died due to

treatable complications [1]. In Australia, between 15 to 20% of

patients experienced at least one complication after the surgery;

5% to 7% of them died prior to discharge [2–4]. Timely

recognition and effective treatment of the complication once it

occurs can prevent patient death [5]. Silber and colleagues [6]

proposed to measure Failure-to-Rescue (FTR), defined as the

proportion of deaths among surgical in-patients with treatable

complications, as a hospital quality indicator. Effective manage-

ment of treatable post-operative complications reportedly made a

larger contribution to patient survival than pre-operation patient

characteristics or operation type [7]. Since the Agency for

Healthcare Research and Quality (AHRQ) adopted FTR as one

of its patient safety indices [8], the concept has gained wide

acceptance and now used to evaluate and compare post-operative

care across hospitals [9–14]. FTR was found to have the highest

incidence rate (91.13 per 1000 cases) among all the patient safety

indicators and accounted for 6.7% of the total number of

preventable patient safety incidents in the U.S. between 2007–

2009 [15]. Two studies reported a decreased FTR rate of 2.4% to

6% within one decade [16,17].

FTR rate varies across patients and hospitals with different

characteristics. Older patients and those with higher pre-operative

comorbidities have a higher risk of complication and risk of death

after surgery [7,18,19]. Studies in both U.S. and European

hospitals revealed that patients undergoing surgery in hospitals

with a high mortality rate did not suffer from excessive

complications compared to patients in lower mortality rate

hospitals, but were less likely to survive due to lower quality of

care [20–24]. Ghaferi and colleagues [25] also showed that

patients in small hospitals which had only slightly higher

complications rates (odds ratio 1.17), were exposed to substantially

higher FTR rates compared to patients in large hospitals. They

suggested that large hospitals were more capable of effectively

rescuing patients from complications compared to their low

volume counterparts.

The success of regional policy interventions and quality

improvement programs varies, resulting in a different level of

care quality across catchment areas. There are significant

variations in post non-cardiac surgery mortality rates among 28
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European nations [26] and in complication and mortality rates

among U.S. hospitalised patients across different states during

2009–2011 [27], reflecting the potential different areal risk of FTR

and other adverse outcomes. Furthermore, a better understanding

of the spatial distributions of FTR may facilitate the design and

prioritisation of regional quality improvement interventions [26].

Accordingly, we aimed to investigate the spatiotemporal pattern

of post-surgery FTR rate for all public acute hospital patients in

New South Wales (NSW), Australia during 2002–2009, in order to

enhance our understanding of geographical variation of FTR

across NSW.

Methods

Data source and study population
We used records from the NSW Admitted Patient Data

Collection (APDC) database. The APDC is administrated by

NSW Ministry of Health including all admitted patient services

provided by NSW public and private healthcare facilities. The

APDC includes information on patient demographics, medical

conditions and procedures, hospital characteristics, and separa-

tions (discharges, transfers and deaths) from all public and private

hospitals, as well as day procedure centres in NSW. The medical

records for each episode of care in the APDC were assigned with

codes based on the International Statistical Classification of

Diseases and Related Health Problems, Tenth Revision, Austra-

lian Modification (ICD-10-AM) 4th edition [28]. Of all admissions

at 497 healthcare facilities in NSW between 1st January 2002 to

31st December 2009, we included all 82 public acute hospitals in

NSW (9,221,128 admissions; 57.4% of all admissions) in our study,

excluding community and private facilities, multipurpose and non-

acute centres, psychiatric and rehabilitation facilities, nursing

home and hospices, and two children’s hospitals and one other

hospital (data was unavailable).

Measures and covariates
Following methodology by AHRQ, we defined FTR as

mortality among surgical patients who developed at least one of

six serious treatable complications during hospitalisation; including

acute renal failure, deep vein thrombosis or pulmonary embolism,

pneumonia, sepsis, shock or cardiac arrest, gastrointestinal

haemorrhage or acute ulcer [8]. The six abovementioned

complications were identified by secondary diagnostic codes

(ICD-10-AM) that were translated from the AHRQ definition

(ICD-9-CM) by Victorian Government Health Information [29].

Applying AHRQ inclusion criteria [8], patients who had elective

surgery within two days of admission, aged between 18–90 years

(inclusive) and who were transferred to an acute care facility were

considered in the population study. 4,362,624 admissions in 82

acute hospitals were included (47.3% of all NSW public acute

hospital admissions). Ethical approval was obtained from the

University of NSW Human Research Ethics Committee (LNR/

11/CIPHS/64).

We selected NSW Local Government Areas (LGA; 153 in total)

as the spatial units through the aggregation of patient postcode

(651 in total) using appropriate concordance references [30]. NSW

is also divided into 15 Local Health Districts (LHDs) and three

hospital networks which can be categorized into two classes:

Metropolitan (eight LHDs and three networks), and Rural and

Regional NSW (seven LHDs). Aggregated age and gender of

patients and the distance between patient residential postcode and

the treating hospital in each study year at LGA level were included

in the adjustment. We also utilised a LGA-level advantage and

disadvantage index of Socio-Economic Indices for Areas (SEIFA)

as a covariate with lower values indicating more disadvantage in

the area [31]. Similarly, using Accessibility/Remoteness Index

Australia Plus (ARIA+), a remoteness score (varying between zero

to fifteen with higher values indicating more remoteness) was

obtained for each LGA and employed as a covariate [32].

Aggregated covariates was generated using mean for scale

variables (age, SEIFA, ARIA+ and distance), and percentage of

females (0–100) among all patients for gender. 77,130 admissions

(%1.7 of 4,362,624 admissions) were excluded due to either

missing items in covariates or patient’s non-NSW residential

location. We initially examined the Elixhauser and the Charlson

Index comorbidities based on the ICD-10 coding scheme [33]. We

did not include either of them in the adjustment given the recent

reports that these indices may introduce misleading results possibly

due to geographical variations and biases in the coding [34–36].

Statistical analysis
To test the presence of any geographical variations of FTR

across NSW LGAs over the study period (2002–2009), we

examined spatial autocorrelation of the outcome across LGAs.

We applied an empirical Bayes index modification of Moran’s I

[37] to evaluate the global association. Local spatial association

measures (LISA) were also used to identify clusters. A cluster of

neighbouring LGAs with high (or low) FTR rates and significant

local indicators was regarded as a hot (or cold) spot [38,39]. The

neighbourhood effect for each LGA was limited to the first order

of neighbours, LGAs with a shared common boundary, which

implies that the neighbour LGAs are more related than distant

LGAs. We then utilised spatiotemporal modelling techniques to

investigate spatial and temporal patterns of adjusted FTR rates

across LGAs during the study period. We derived areal adjusted

relative risk (compared to overall FTR rate) using a geo-additive

mixed effect model where a Poisson distribution underlies the

observed FTR count, yit, for ith LGA, i : 1, . . . ,n, at tth year,

t : 1, . . . ,T [40]. A Bayesian hierarchical model was defined to

incorporate effects of covariates and spatial and temporal structure

through random and fixed components. We followed the model

specification proposed for spatiotemporal models in Gaussian

Markov Random Field framework [41,42]. For spatial patterns,

we used two latent random effects components: a spatially

structured random effect, ui, which was modelled as a so-called

intrinsic Conditionally Autoregressive (iCAR); and a spatially

unstructured effect, vi, which was modelled as an independent

normal distribution [41,43]. The former accounts for any spatial

autocorrelation, whilst the latter captures unexplained variation

across LGAs and over dispersion. pi is the known LGA-specific

offset parameter, the number of patients who developed compli-

cations. To model temporal patterns, we extended the parametric

formulation proposed by Bernardinelli and colleagues [44]. In a

semi-parametric approach, we included two time trends, linear

and quadratic, as the fixed effect in the model (a linear, d1, and a

quadratic, d2), and then added a random effect term, Qt, to

account for any departure from the parametric fixed effects. We

set time at the centre of study period (2005.5); therefore time varies

between -3.5 and 3.5 for the linear term, and between 0.25 and

12.25 for the quadratic term. To incorporate interaction between

space (LGAs) and time (linear and quadratic), two additional

random effect terms, c1i and c2i , were incorporated into the

model. These terms are analogous to the random slope

formulation capturing model differential trends of the ith LGA,

since they can be interpreted as the amount by which the time

trends of ith LGA differ from the overall linear and quadratic time

trends [44,45]. Five year6LGA-specific covariates, xitj , compris-

ing average age, proportion of females in the population at risk,

Geographic Variation of Failure-to-Rescue
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square root of average distance between patients residential

postcode and treating hospital, SEIFA and ARIA+ were added

into the model. Covariates were set as continues variables and

assumed to have fixed effects.

yitPoisson mitð Þ

log mitð Þ~ log pitð Þzaz
Xk

j~1

bjxitjzuizvi

zd1tzd2t2zQtzc1itzc2it
2

In prior specification, we let fixed effects, a, bj , d1 and d2, follow

a zero-mean normal distribution with a very large variance of 103.

The unstructured random spatial term vi, and all random effect

terms, Qt, c1i and c2i, were set as a zero-mean normal distribution

with an unknown precision following a Gamma distribution with

shape and scale parameters of a~1 and b~2000, respectively. A

similar Gamma prior was also used for the precision parameter of

the structured spatial term, ui, in iCAR. This setting led to non-

informative priors with large variances imposing no pattern

[46,47]. To test if spatial effect is evident, we applied a

recommended posterior-based probability, p exp uizvið Þw1ð Þ,
criterion with a 10% threshold [44,48,49]. To be consistent, a

similar significance level was applied for other effects and analyses.

We employed non-informative zero-mean normal priors using

the default and recommended settings for the precision [49].

Although prior specification in Bayesian setting is arbitrary and

may lead to a different conclusion, this full Bayesian geo-additive

model was reported to be relatively insensitive to the choice of

prior [46]. In our sensitivity analysis, no deviation in results was

seen when less defuse priors including a normal distribution with a

variance of s2~5,10,100 and a Gamma with a smaller scale

parameter of b~10,100,100 were employed. The robustness of

the results was not unexpected due to the small effect sizes which

were obtained for all components including intercept,

{3:12va,bj ,ui,vi,d1,d2,Qv0:032. Moreover, use of a highly

informative prior which may affect likelihood and lead to different

results is not justifiable in the absence of any prior evidence. We

limited the neighbouring effect to the LGAs with shared borders;

other settings such as distance based configuration may be of

interest for further investigation. The model without LGA-specific

temporal patterns was preferred over the model with random

space-time interaction terms, c1i and c2i, according to the smaller

Deviance Information Criterion [50], 3064.8 vs. 3068.5, respec-

tively. We only presented results from the superior model.

The spatiotemporal model was computed using Integrated

Nested Laplace Approximation (INLA) methods. This is a

computation technique for Bayesian latent Gaussian models which

outperforms traditional Markov chain Monte Carlo (MCMC)

methods while providing very precise estimates [42,45,51]. Data

preparation was conducted in Stata 12.0 [52]. Statistical analyses

and modelling were performed using INLA package [49,53], built

on 26 May 2013 (www.rinla.org) within R environment version

3.0.0 [54].

Results

Of 4,285,494 elective surgical admissions for NSW residents

during 2002–2009, across 82 NSW public acute hospitals, 58,590

(1.3%) patients residing in NSW developed at least one of the six

complications of interest. Approximately 14% of them died prior

to discharge, equivalent to an incidence rate of 1.88 per 1000

surgical patients. Males and older patients tended to have a higher

risk of death compared to their counterparts (Table 1). Crude

FTR rate slightly varied across years. There were large variations

among LHDs (SD = 2.58%) and LGAs (SD = 4.28%). Patients

who resided in metropolitan areas had lower crude FTR rates

compared to those patients residing in non-metropolitan areas.

Patients residing in regions with the highest SEIFA score (4th

quartile) had the lowest FTR rate. The remoteness of patients’

residential locations and the distance between the residential

postcode and the treating hospital were associated with different

crude FTR rates. Patients residing in very remote areas had the

highest FTR rate.

Figure 1 shows the overall crude rate of FTR for all LGAs in

NSW within the study period (2002–2009). The most densely

populated LGAs in NSW, located within Sydney Metropolitan

LHDs are shown on the right panel of Figure 1. Wentworth LGA,

the far south west region of NSW within Far West LHD, had no

patients with a post-operative complication and, therefore, no

FTR was observed. The rate varied from less than 1% in Bombala

and Murrumbidgee LGAs both located in the two southern LHDs

of NSW, to 26.6% in Gilgandra in the centre of the state within

Western NSW LHD. A non-zero Moran I index of 0.325 (p-

value = 0.001) obtained in the preliminary spatial analysis revealed

a significant spatial autocorrelation. This positive value suggests

neighbouring LGAs tended to have similar levels of FTR. Five

main clusters each comprising of at least three highly correlated

LGAs were identified based on LISA statistics. Two clusters with

high FTR rates, H1 and H2 (hot spots), were located in the state’s

centre towards the northern part of NSW, largely within Western

NSW LHD (H1), and in the eastern coastline of NSW within

Hunter New England LHD (H2), with rate averages of 18.4% and

18.0%, respectively. Of three cold spots, clusters of LGAs with low

rates, two were found in the southern part of NSW within

Murrumbidgee (C1) and Southern NSW (C2) LHDs, and one in

South Eastern Sydney LHD (C3), with average rates of 3.3%,

6.9%, and 6.7%, respectively. Clusters are presented in Figure 1.

Smoothed relative risks of FTR after adjustment for age,

gender, time trend, distance, SEIFA and ARIA+ scores were

obtained using a spatiotemporal model. Posterior estimates of rates

are shown in Figure 2. Overall FTR rate in NSW was the

reference level in the calculation of relative risks. LGAs with

significant deviation from the state average are illustrated in

Figure 2 by light or dark grey shading.

Of the 153 LGAs, nine regions had a significantly higher risk of

FTR, with an excessive risk ranging from 30% to 50%, compared

to the state average. These regions were mostly located in the mid-

eastern coastline of NSW within Hunter New England, and

Sydney Western and South Western LHDs, accommodating 24%

of all patients at risk across NSW. Of 31 LGAs with a lower level

of excessive risk (10% to 30%), 22 LGAs significantly deviated

from the state average. They were found within Western NSW

and Sydney Metropolitan LHDs. Overall, 48% of all NSW

patients at risk resided within 31 LGAs with higher FTR rates; see

Table S1 for more details. Eight LGAs had significantly lower

FTR rate (RR ranged from 0.7 to 0.8), three in Sydney South

Eastern LHD and five in the southern NSW. We also found 18

low FTR LGAs with a smaller deviation from the state average

Geographic Variation of Failure-to-Rescue
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Table 1. Distribution and proportion of patients who developed at least one post-surgery complication (population at risk) and
died (failure-to-rescue) across patients’ and incidences’ characteristics.

Characteristics Patients at risk Patients died FTR rate

Age*

. = 18 yr&,35 yr 3602 (6.15%) 167 (2.03%) 4.64%

. = 35 yr&,55 yr 9989 (17.05%) 719 (8.73%) 7.20%

. = 55 yr&,75 yr 22564 (38.51%) 2974 (36.11%) 13.18%

. = 75 yr,90 22435 (38.29%) 4376 (53.13%) 19.51%

Mean 6 SD{ 66.23616.61 72.22613.44 -

Median 6 IQ{ 70.00623.18 75.84617.01 -

Gender*

Female 27020 (46.12%) 3490 (42.37%) 12.92%

Male 31570 (53.88%) 4746 (57.63%) 15.03%

Mean 6 SD (%Female){ 44.51%66.86% 41.46%613.60% -

Median 6 IQ (%Female){ 45.42%66.41% 42.22%614.07% -

Quartiles of distance travelled*

1st quartile (,17.6 km) 32690 (55.79%) 4551 (55.25%) 13.92%

2nd quartile (. = 17.6 km & ,71.1 km) 16418 (28.02%) 2458 (29.85%) 14.97%

3rd quartile (. = 71.1 km & ,121.7 km) 6933 (11.83%) 858 (10.42%) 12.38%

4th quartile (. = 121.7 km) 2549 (4.36%) 369 (4.48%) 14.46%

Mean 6 SD{ 88.22688.42 97.76697.44 -

Median 6 IQ{ 71.116104.04 83.106118.83 -

Year*

2002 5402 (9.23%) 680 (8.25%) 12.59%

2003 5116 (8.73%) 691 (8.39%) 13.51%

2004 6371 (10.87%) 923 (11.21%) 14.49%

2005 7085 (12.09%) 1023 (12.42%) 14.44%

2006 7447 (12.71%) 1146 (13.91%) 15.39%

2007 8560 (14.61%) 1222 (14.84%) 14.28%

2008 9090 (15.51%) 1330 (16.15%) 14.63%

2009 9519 (16.25%) 1221 (14.83%) 12.83%

Mean 6 SD1 7323.7561648.05 1029.506246.73 13.95%60.95%

Median 6 IQ1 7226.0062564.00 1085.006355.80 14.30%61.19%

Quartiles of SEIFA*

1st quartile (most disadvantaged) 7883 (13.45%) 1215 (14.82%) 15.41%

2nd quartile 13911 (23.74%) 1877 (22.90%) 13.49%

3rd quartile 20857 (35.61%) 3219 (39.26%) 15.43%

4th quartile (most advantaged) 15939 (27.20%) 1887 (23.02%) 11.84%

Categories of ARIA+*

Highly Accessible (, = 0.2) 37194 (63.48%) 5345 (64.90%) 14.37%

Accessible (.0.2 & , = 2.4) 13685 (23.36%) 1864 (22.63%) 13.62%

Moderately Accessible (.2.4 & , = 5.92) 6862 (11.71%) 904 (10.97%) 13.17%

Remote (.5.92 & , = 10.53) 607 (1.04%) 82 (1.00%) 13.53%

Very Remote (.10.53 & , = 15) 242 (0.41%) 41 (0.50%) 16.83%

Local health district*

Metropolitan 35998 (61.44%) 4949 (60.09%) 13.75%

Rural & Regional NSW 22592 (38.56%) 3287 (39.91%) 14.55%

Mean 6 SD` 3661.8562967.23 514.776482.91 13.41%62.58%

Median 6 IQ` 2724.0062395.00 410.206280.20 12.54%64.02%

Local government areas

Mean 6 SD{ 383.906545.70 53.83690.91 12.59%64.28%

Median 6 IQ{ 167.806390.65 19.91647.57 12.38%65.21%

Geographic Variation of Failure-to-Rescue
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(RR ranged from 0.8 to 0.9), mostly within Murrumbidgee,

Sydney and Sydney South Eastern LHDs. Areas with a lower risk

of FTR accommodated 8% of NSW patients at risk; see Table S2

for more details.

We found a significant linear and quadratic time effect in the

spatiotemporal model (Table 2), where the risk of FTR peaked

between 2005 and 2006, and then declined afterwards (Figure 3).

As summarised in Table 2, LGAs accommodating a greater

proportion of older patients had a higher risk of FTR compared to

regions with younger patients (RR = 1.03). LGAs with a higher

percentage of female patients had a significantly lower FTR risk

(RR = 0.97). Socio-economically advantaged LGAs exhibited a

lower risk of FTR (RR = 0.99). Remoteness of patients’ residence

area was not associated with FTR. Patients who underwent

surgery in farther hospitals experienced a higher risk of FTR

(RR = 1.021).

Discussion

We simultaneously studied spatial and temporal variation of

post-operative failure-to-rescue in 82 public acute hospitals across

NSW between 2002 and 2009. We found 8236 (14%) deaths

among patients who developed at least one complication after

surgery. Patients residing in 31 LGAs mostly located in the centre

and mid-eastern coast line of NSW were exposed to a higher risk

of FTR (varying from 10% to 50%) compared to the state average.

In contrast, within 26 LGAs, located in the southern part of NSW

and Sydney eastern regions, levels of FTR risk were 10% to 30%

lower. The yearly FTR rate was in the highest level in 2005.

Timely recognition and management of post-operative compli-

cations has been considered as a patient safety indicator [8,29,55].

Hospitals responding differently to such complications results in

the inequality of care provided and varying post-complication

death rate at the hospital level and different geographic regions.

[15,21,26,27]. Our study demonstrated such a variation across

LGAs of NSW. It showed that despite the close proximity of some

areas, in particular within Sydney LHDs where several hospitals

are accessible, patients residing in some LGAs were exposed to a

higher level of FTR risk than those residing in neighbouring

regions. Variation in the practice of quality initiatives aiming at

the effective recognition and response to surgical complications at

hospital and regional levels, as well as differences in the hospital

characteristics, may have contributed to the observed discrepan-

cies. For example, one study showed that the implementation of a

Medical Emergency Team (MET) system was associated with a

significant decrease in complication and post-operative death rates

[56,57]. It has also been shown that large hospitals have a lower

FTR rate compared to small hospitals [25]. However, our study

found that the LGAs comprising of highly populated areas within

metropolitan LHDs with large hospitals had excessive FTR risks.

Blacktown (in the western Sydney area) and Newcastle (North of

Sydney) areas, which accommodated over 10% of all patients at

risk, exhibited excessive FTR risks above 43%. Conversely,

patients from areas with a lower population density such as in

western parts of NSW, who predominantly underwent surgery in

small centres, did not experience a higher FTR rate. Further

hospital-level investigation is required to address and verify the

effect of volume, staffing and other centre-based characteristics

[14,58].

The overall FTR rate of 14% in NSW was close to the national

rates seen in the U.S.; 15.3% to 10.3% between 1998 and 2007

[16]. During 2002–2009 in NSW, the current study confirmed the

significant quadratic trend of FTR found in our previous study

using individual patient data [59]. In contrast with the consistently

Table 1. Cont.

Characteristics Patients at risk Patients died FTR rate

Total 58590 8236 14.06%

* Significant at 0.01 using x2 test.
Note: 1502 FTR cases were excluded due to non-NSW postcodes. Summary statistics were calculated over ({) LGAs, (1) years 2002–2009, and (`) LHDs.
doi:10.1371/journal.pone.0109807.t001

Figure 1. Crude FTR rate for each LGA (separated by red borders) in NSW over the study period (2002–2009). LGAs with significant
LISA index (p-value,0.1), indication of clusters, are highlighted with black borders and labelled (H: hot spot, C: cold spot). LHDs are separated by blue
borders. LGAs within Sydney metropolitan LHDs are enlarged in the right panel.
doi:10.1371/journal.pone.0109807.g001

Geographic Variation of Failure-to-Rescue

PLOS ONE | www.plosone.org 5 October 2014 | Volume 9 | Issue 10 | e109807



decreasing trend in the U.S. [16], NSW demonstrated an

increasing trend until 2005–2006, followed by a decreasing trend

to 2009. More importantly, our study showed that such a recent

decreasing FTR trend was uniform across all different LGAs. Such

trajectory in the FTR rate may be due to national and state-wide

quality and safety programs advocated by Australian Commission

on Safety and Quality in Healthcare (ACQSHC) [60] and Clinical

Excellence Commission (CEC) of NSW [61] founded in 2006 and

late 2004, respectively. CEC and ACQSHC had launched and

sustained specific programs in targeting specific complications

such as deep vein thrombosis and sepsis.

Our finding that older patients experienced a higher risk of

FTR is consistent with previous study findings [7,18]. However,

our findings that male patients had a higher rate of FTR was in

line with one study [18] but not others which reported no gender

effect on post-operative mortality [3,62,63]. Further analysis on

Figure 2. Smoothed relative risk of FTR for each LGA (separated by red borders) in NSW over the study period (2002–2009),
adjusted for age, gender, distance, SEIFA and ARIA+ scores: (a) Relative risk posterior estimates (reference level is state average),
exp uizvið Þ; (b) Posterior probability of relative risk greater than 1 (state average), p exp uizvið Þw1ð Þ. LHDs are separated by blue borders.
LGAs within Sydney metropolitan LHDs are enlarged in the right panel.
doi:10.1371/journal.pone.0109807.g002

Table 2. Relative risk posterior estimates and 90% credible intervals for temporal effect and covariates in the spatiotemporal
model of FTR across LGAs of NSW over the study period (2002–2009).

Covariates RR 90% CI

Year 0.986 0.976–0.996

Year‘2 0.987 0.982–0.991

Age 1.033 1.026–1.040

Gender (% female) 0.967 0.941–0.995

Distance travelled 1.021 1.000–1.042

SEIFA score 0.989 0.983–0.996

ARIA+ score 0.978 0.939–1.018

Note: Effects of year (linear and quadratic) were obtained where time was centred on the middle of study period (2005.5). Effect of SEIFA score was obtained for 10 unit
increments in the raw scores varying from 816 to 1155 in NSW. Effect of distance travelled was obtained for square root of the raw values. Effect of gender was obtained
for 10 unit increments in the percentage of females among all patients.
doi:10.1371/journal.pone.0109807.t002
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patient characteristics at an individual level, not LGA-aggregated,

is required for verification of gender effect or other potentially

contributing factors.

Patient safety indicators have been introduced in the U.S. and

Australia [8,29] and currently the routine measurement and

reporting of indicators have been broadly adopted [15,20,27]. To

our knowledge, the current study was the first to investigate the

geographical variation of FTR in a large health jurisdiction in

Australia. Our findings provide policy-makers with FTR risk

distribution that is not just patient or hospital based. It presents

results on a large geographical scale that may reflect the impact of

multi-factorial determinants such as local area health policy,

quality improvement initiatives, hospital culture and compliance

with best practice. It may also be related to complex patients-level

factors (i.e. age, gender, case mix, severity and comorbidity).

Moreover, other environmental factors such as transportation,

local referral system and accessibility of different health facilities

may also play a role in patient outcomes. We examined the effects

of remoteness of patients’ residence locations and distance between

patient residential address and treating hospital. We found that the

proximity to the treating hospital was associated with the reduced

FTR rate. Despite that hospital location was reported as a

contributing factor [17,64], no study directly investigated the

impact of the distance between patients residential location and

the treating hospital. Our identified hot spots provide local health

authorities and hospital networks with pre-targeted areas for in-

depth case studies on how and why this was the case and what

lessons could be learnt and shared. Equally, cold spots may

provide decision-makers, clinicians and researchers with valuable

insights into how post-surgical care could be better delivered and

avoidable deaths prevented. Although this study did not primarily

aim to directly identify and compare the best or worst performers,

it illustrates areas in which preferred practices and outcomes are

delivered. The presence of geographical variation across LGAs

and LHDs also reinforces the importance of continual monitoring

and public reporting of health system performances in order to

create a self-learning health system with a focus on patient-centred

care [65].

Finally, the current study utilised the most recent development

in computation techniques from Bayesian hierarchical modelling

framework for spatiotemporal modelling. This approach allowed

us a stable and fast estimation of the most complex spatial

regression model in comparison to the conventional MCMC

approach [42,45,51]. Our study included all NSW public acute

hospital patients spanning an eight–year period and was based on

an accepted AHRQ definition which makes cross-country

comparison possible. Our study however, had some limitations.

Firstly, our model was constructed on a LGA level which may

suffer from ecological fallacy. As a result, our model only included

limited covariates in the adjustment. We did not specifically

examine the relationship between hospital level outcome and geo-

spatial distributions. Future studies, however, should investigate

other extended models to explore the impact of patient and

hospital characteristics on the outcome. These results would help

to identify high risk patients prior to their operation and evaluate

the effects of post-operative quality improvement policies and

initiatives [20,57].

Conclusions

There were significant spatial-temporal variations of FTR

across NSW over an eight-year span. Such variations demonstrate

a significant ecological effect that cannot be explained purely by

hospital differences. Both the hot spots and cold spots identified

provide potential opportunities for policy-makers, clinicians and

researchers to learn from the success or failure of adopting the best

care for surgical patients in building a self-learning organisation

and health system.
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