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Abstract

African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using
genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the
African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965
African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most
significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were
further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling
3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P,0.0071), were directionally consistent
in the Replication cohort and were associated with T2DM in subjects without nephropathy (P,0.05). Meta-analysis in all cases
and controls revealed a single SNP reaching genome-wide significance (P,2.561028). SNP rs7560163 (P = 7.061029, OR (95%
CI) = 0.75 (0.67–0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769
and rs7107217) were associated with T2DM (P,0.05) and reached more nominal levels of significance (P,2.561025) in the
overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in
the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic
architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American
population and that these loci are distinct from those identified in other ethnic populations.
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Introduction

African Americans have a disproportionately high risk for

developing type 2 diabetes (T2DM) with an estimated prevalence

twice that observed for their European-American counterparts [1].

In addition to socioeconomic and behavioral risk factors, genetic

factors are likely contributors to the disproportionate risk ob-

served in this population. Genome-Wide Association Studies

(GWAS) have been used extensively with great success to identify

common genetic variants associated with T2DM in primarily
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European-derived populations [2,3,4]. Until recently, comparable

studies have been difficult to perform in African Americans due to

the greater complexity of their African-derived genome compound-

ed by recent admixture of European-derived genes. With the

development of high density SNP arrays that give reasonable

coverage of the African-American genome and methods to account

for admixture in this population, it has become possible to perform

informative GWAS in the African-American population. The aim

of this study was to identify loci that contribute to T2DM by GWAS

and replication in multiple African-American samples.

Results

Clinical characteristics of the study samples
The clinical characteristics of the study samples used in the

GWAS, Replication and Validation phases are shown in Table 1.

The GWAS and Replication populations were similar. In both

groups, the age at enrollment for the T2DM-ESRD subjects was

older than for the control groups. However, the mean age at

enrollment for the control groups in the GWAS and Replication

phases was older than the mean age of T2DM diagnosis in the

T2DM-ESRD and T2DM subjects. Notably, the use of population-

based controls has not precluded the identification of bona fide

associations in other efforts (e.g., [2]). All of the case groups with

T2DM (T2DM-ESRD and T2DM) had a higher proportion of

females; possibly reflecting the increased prevalence of T2DM

among African-American women [5], participation bias and/or

survival. On average, all of the groups were overweight or obese at

the time of enrollment. Among case subjects, those with T2DM-

ESRD had the lowest average body mass index (BMI; 29.7 kg/m2,

Table 1), and the T2DM subjects without nephropathy (T2DM)

had the highest average BMI (33.5 kg/m2, Table 1).

GWAS
After the application of SNP and sample quality control metrics,

832,357 directly-genotyped, autosomal SNPs were analyzed in 965

African-American T2DM-ESRD case subjects and 1,029 African-

American controls lacking T2DM and ESRD. Given the modest

increase of the inflation factor with inclusion of related individuals

(1.04 versus 1.06) cryptic first degree relatives were retained in

the analysis. A summary of the association results is shown in

Figure 1 and Figure S1. The top hit was rs5750250 located on

chromosome 22 in the MYH9 (non-muscle myosin heavy chain 9)

gene (P-value = 3.061027, Figure 1). This gene has been previously

associated with non-diabetic and diabetic forms of ESRD [6,7,8,9].

In total, there were 126 SNPs with P-values,1.061024 (Figure 1).

In addition, we also evaluated previously identified T2DM index

variants and their corresponding CEU LD blocks for association

with T2DM in the African-American population (Table S1).

Among the 37 T2DM index variants [3,10,11,12,13,14,15,16,17,18,

19,20,21,22,23,24,25,26,27] identified to date from candidate gene

studies, large scale association studies and GWAS, 35 were directly-

genotyped or imputed. Among these, 20 SNPs showed consistency

with the Caucasian-defined risk allele, although most were non-

significant. Only rs11634397 and rs7903146 were nominally

associated (P = 0.016 and 4.9E-05, respectively) although the

direction of effect was inconsistent for rs11634397 with previous

studies (OR = 0.86 with respect to the Caucasian risk allele G).

Notably, additional signals of association were observed in CEU LD

blocks containing the index SNP. After correction for multiple

comparisons, only SNP rs4506565 in TCF7L2 remained significant

(Bonferroni-corrected P = 0.027; n = 18 SNPs (10 effective tests)

contained in the CEU LD block and genotyped in the African-

American GWAS). The flow of the study through the GWAS,

Replication and Validation phases is outlined in Table 2.

Replication and GWAS + Replication Analysis of T2DM-
ESRD cases and controls lacking both T2DM and ESRD

In an effort to replicate the GWAS results, the most significant

712 SNPs (n = 550 independent loci) were successfully genotyped in

an additional sample of 709 African-American T2DM-ESRD cases

and 690 African-American controls lacking both T2DM and ESRD

(Table 2). In this replication analysis, 70 of the 712 SNPs (9.8%)

showed nominal evidence of replication: a P-value,0.05 under an

additive genetic model with association in the same direction. Al-

though no SNP reached genome-wide significance (P-value#

2.561028), P-values ranged from 7.661024 to 6.561027 (GWAS

+ Replication). The top hit from the GWAS, rs5750250, did not

reach nominal significance in the replication cohort (P-value = 0.054).

Validation of T2DM loci
A total of 122 SNPs were genotyped in three independent

cohorts comprising a total of 1,458 African-American T2DM

cases and 1,598 controls lacking both T2DM and ESRD

(Table 2). These included 56 of the 70 SNPs with evidence of

Table 1. Clinical Characteristics of Study Samples.

GWAS Replication Validation

T2DM Case-Control IRAS IRASFS

T2DM-ESRD Control T2DM-ESRD Control T2DM Control T2DM Control T2DM Control

n 965 1029 709 690 1246 927 115 164 97 507

Female (%) 61.2% 57.3% 55.7% 51.3% 64.0% 58.0% 53.9% 61.0% 70.1% 58.0%

Age at Enrollment (years) 61.6610.5 49.0611.9 60.2610.4 48.5612.8 57.2611.7 46.6613.1 56.868.0 54.568.4 53.9611.2 40.8613.5

Age at T2DM diagnosis
(years)

41.6612.4 _ 39.4612.5 _ 46.1612.6 51.1610.7 _ 51.2611.9 _

Age at ESRD diagnosis
(years)

58.0610.9 _ 56.7610.9 _ _ _ _ _ _ _

T2DM to ESRD duration
(years)

16.2610.9 _ 20.4610.5 _ _ _ _ _ _ _

BMI (kg/m2) 29.767.0 30.067.0 29.866.9 29.467.6 33.567.6 30.067.7 32.166.0 29.365.8 34.166.8 29.266.5

Values are presented as trait mean and standard deviation.
doi:10.1371/journal.pone.0029202.t001

Type 2 Diabetes GWAS in African Americans
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replication and 66 SNPs with more nominal evidence of significance

in the combined analysis (Table S2). These samples allowed

differentiation between association with T2DM or T2DM-ESRD

while increasing power of detection for suspected T2DM loci

through meta-analysis. Meta-analysis of the five putative T2DM

SNPs in Validation samples, revealed association signals with

P-values ranging from 0.011–1.861026 (Table S3, Table 3). The

most significant SNP was rs7560163 (P = 1.861026, odds ratio

(OR) (95% confidence interval (95%CI) = 0.74 (0.63–0.87)) located

intergenically between RND3 (Ras homolog gene family, member E)

and RBM43 (RNA binding motif protein 43).

Meta-analysis of all African-American study samples
The association results of all 122 SNPs successfully genotyped in

all five cohorts (GWAS, Replication, T2DM, IRAS and IRASFS)

were used in a meta-analysis to compute an overall test of

association (Table 3). This analysis combined results from cases

(T2DM-ESRD and T2DM; n = 3,132) and controls (lacking both

T2DM and ESRD; n = 3,317) for a sample size of 6,449 individuals.

As a result of this analysis, one SNP reached genome-wide

significance (P-value#2.561028; Table 3 and Figure S2). SNP

rs7560163 (P = 7.061029, OR (95% CI) = 0.75 (0.67–0.84)) is

located intergenically between RND3 and RBM43. This SNP

was tested for association with T2DM, in silico, by the Diabetes

Genetics Replication and Meta-analysis (DIAGRAM) Consort-

ium [3] however failed quality control filters and was not in-

cluded in analysis likely due to being monomorphic as seen in a

representative Caucasian population from the HapMap project

(Table S4).

Quantitative Trait Analysis
Exploration of putative T2DM variants with quantitative

glycemic traits in a subset of African-American samples (n = 671

from the IRAS and IRASFS control samples, Table S5) revealed

Table 2. Study Design.

Stage
SNPs
(Independent Loci) Cases Control Admixture Adjustment

GWAS 832,357 T2DM-ESRD Cases (n = 965) Population-based Controls (n = 1029) Principal Component 1 (PC1)

Replication 712
(550)

T2DM-ESRD Cases (n = 709) Population-based Controls (n = 690) FRAPPE (70 AIMs)

GWAS + Replication 712
(550)

T2DM-ESRD Cases (n = 1,674) Population-based Controls (n = 1,719)

Validation 122
(98)

T2DM Cases (n = 1,246) Controls (n = 927) FRAPPE (76 AIMs)

122
(98)

IRAS T2DM Cases (n = 115) IRAS Controls (n = 164) FRAPPE (70 AIMs)

122
(98)

IRASFS T2DM Cases (n = 97) IRASFS Controls (n = 507) FRAPPE (70 AIMs)

Validation Meta-analysis 122
(98)

T2DM Cases (n = 1,458) Controls (n = 1,598)

Overall Meta-analysis
(All 5 cohorts)

122
(98)

T2DM Cases (n = 3,132) Controls (n = 3,317)

doi:10.1371/journal.pone.0029202.t002

Figure 1. Genome-Wide Association Study Results. Results are adjusted for admixture using PC1 as a covariate in the analysis. P-values are
shown under the additive model. The blue line at -log10(P-value) = 3 represents an additive P-value = 0.001 and the red line at -log10(P-value) = 5
represents a P-value = 1.061025.
doi:10.1371/journal.pone.0029202.g001

Type 2 Diabetes GWAS in African Americans
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limited insight into the biological mechanism associated with

T2DM risk. In addition, the five putative African-American

T2DM susceptibility loci were tested for association with

quantitative measures of glucose homeostasis in the European

Caucasian population, in silico, by the Meta-Analyses of Glucose

and Insulin-related traits Consortium (MAGIC; [16]). These

results did not provide further insight into the probable role these

variants may have in disease susceptibility (Table S6). The most

significantly associated SNP in African Americans, rs7560163,

failed quality controls filters and was not included in analysis likely

due to being monomorphic as seen in a representative Caucasian

population from the HapMap project (Table S4).

Exploration of eQTLs for T2DM loci
Evaluation of three of the five putative African-American

T2DM susceptibility loci for association with altered expression

levels of neighboring genes revealed no strong evidence of

association. However, SNP rs7542900 trended toward association

with CNN3 (b= 0.20+/20.12, P = 0.095). Lack of association

could be due to the small sample size (n = 90), ethnic differences

(African vs. African American) or lack of identification of the

causal variant. SNPs rs4659485 and rs2722769 were not evaluated

as they are monomorphic in the YRI population.

Discussion

We performed a high-density genome-wide association study to

investigate the genetic determinants of T2DM in the African-

American population. Meta-analysis of five study cohorts revealed

a single SNP, rs7560163, near RND3 that contributes to T2DM in

the African-American population. It is noteworthy that this locus

and more nominally associated loci are distinct from those

implicated in previous GWAS of T2DM in primarily European-

derived populations. These results are consistent with our prior

observations [28,29] that ‘‘European’’ genes appear to make only

modest contributions to inter-individual risk of T2DM in the

African-American population.

Although the associations observed reside intergenically, several

neighboring genes could be implicated and have characteristics

relevant to the pathophysiology of T2DM. The nearest annotated

gene to SNP rs7560163, the only SNP identified to reach stringent

levels of genome-wide significance in the Overall analysis

(P = 7.061029, OR = 0.75 (0.67–0.84); Table 3), is RND3. This

gene encodes the Rho family GTPase 3 which is ubiquitously

expressed and has been implicated as a regulator of actin cytoskeleton

organization in response to extracellular growth factors [30,31].

Additional SNPs that reached nominal significance in the Validation

samples but failed to reach stringent criteria for genome-wide

significance in the Overall analysis included SNP rs7542900 located

upstream of coagulation factor III precursor (F3). Higher expression

levels of F3 have been measured in monocytes from patients with

T2DM [32] although this association could be related to unmeasured

vascular complications [33,34]. In addition, SNP rs4659485 is

located intergenically between the cardiac muscle ryanodine receptor

(RYR2) and 5-methyltetrahydrofolate-homocysteine (MTR) genes

however, a biological relationship with T2DM is not clearly evident.

SNP rs2722769 resides ,64 kb upstream of UDP-N-acetyl-alpha-D-

galactosamine polypeptide (GALNTL4). GALNTL4 is a member of the

large subfamily of glycosyltransferases and although little is known

about its biological function, GALNTL2 has been implicated in

cholesterol metabolism in a large GWAS meta-analysis [35]. Among

other top hits, rs7107217 is located downstream of BarH-like

homeobox 2 (BARX2), a transcription factor expressed in smooth and

skeletal muscle and involved in muscle differentiation [36,37,38].

Exploration of putative T2DM variants with quantitative

glycemic traits in a subset of the samples (n = 671, Table S5)

revealed limited insight into the biological mechanism associated

with T2DM risk. Notably among the SNPs and traits examined,

only SNP rs7107217 was nominally associated with fasting insulin

(P = 0.011). Exploration of these variants in European Caucasian

populations represented by the DIAGRAM Consortium [3] and

MAGIC [16] revealed only nominal evidence of association with

T2DM (rs7107217 P = 0.086, located intergenically between

BARX2 and NFRKB; Table S4) and did not provide further insight

into the probable role of these variants in disease susceptibility

through examination of quantitative measures of glucose homeo-

stasis (Table S6), respectively.

To put these findings into context, the association of TCF7L2

with T2DM has been widely replicated across multiple ethnicities

(reviewed in [39] including prior analysis of African-American

samples included in this study [28,40]). SNP rs7903146 has been

the most strongly associated variant within this locus with one of

the largest allelic odds ratio (OR) for a common variant, i.e. OR

,1.35 [3]. Although rs7903146 is not typed on the Affymetrix 6.0

array and given that the genomic interval is not tagged well (max

r2 = 0.45), only nominal evidence of association was observed in

our African-American GWAS (P = 0.0015, rs4506565; Table S1).

Direct genotyping of rs7903146 in the GWAS + Replication

(n = 1,674 T2DM-ESRD cases and 1,719 controls lacking both

T2DM and ESRD) resulted in the most strongly associated signal

observed (P = 2.4661028) with an odds ratio (OR = 1.33, 95%

CI = 1.19–1.48). This odds ratio is in the range of other signals

which were observed (Table 3).

A notable observation common to all putative T2DM loci

(Table 3) is the association of ‘‘protection’’, i.e. and odds ratio less

than 1.0, with the minor allele. Comparison with data from the

International HapMap Consortium [41] confirms that the major

allele in all instances is more common in the representative African

samples (YRI) from Ibadan, Nigeria. This could suggest that

selection for diabetogenic traits is occurring and that the more

common, African-derived allele is deleterious in a more western-

ized environment. This is consistent with a trend we observed in

prior tests of ‘‘European’’ T2DM associated variants in African

Americans (20).

Since obesity is known to be a significant risk factor for the

development of T2DM we explored the potential influence using a

surrogate measure of adiposity, body mass index (BMI). As seen in

Table 1, BMI differs significantly in the validation cohorts

(P,0.0001). Given this significant difference, association analyses

were repeated with inclusion of BMI as a covariate in the analysis.

Adjustment for BMI did not substantially affect the strength of the

associations observed. For example, the most significant hit from

the validation analysis, rs7560163, was significantly associated

with T2DM in the Validation cohorts (n = 1,149 T2DM cases and

919 controls with BMI data; P = 3.5961026) and remained

the most interesting observation after adjusting for BMI (P =

2.8361026; data not shown). Additionally, all the case groups with

T2DM (T2DM-ESRD and T2DM) had a higher proportion of

females (Table 1); possibly reflecting the increased prevalence of

disease in women [5]. Gender stratified analyses revealed seven of

the ten most strongly associated loci were more significant in

women (P = 0.0010-3.2E-07; Table S7) although nine of the loci

remained significantly associated in men (P = 0.028-3.9E-06;

Table S7). Notably, the power to detect association is diminished

when the sample size is reduced (n = 2648 men and 3781 women).

This study has similar limitations to other GWAS conducted in

minority populations. Although the current study has a modest

sample size for the GWAS discovery phase compared to large-scale
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meta-analyses in European-derived populations, power calculations

(Tables S8 and S9) show that this study has greater than 80%

statistical power to detect effects for common variants (MAF = 0.20)

consistent with published effect sizes (OR = 1.28) for T2DM (e.g.

transcription factor 7-like 2 (TCF7L2) and potassium voltage-gated

channel, KQT-like subfamily, member 1 (KCNQ1) with ORs 1.3–

1.4; reviewed by [4]) and more modest power (,70%) to detect

effects for less common variants (MAF = 0.10). The power to detect

and replicate moderate level contributions to T2DM susceptibility

should increase with meta-analysis of this GWAS data and other

GWAS currently being conducted in African-American popula-

tions. In addition this study reports results from only directly

genotyped SNPs. Effective imputation of additional SNPs would

undoubtedly improve coverage of the African-American genome.

While recent imputation methods development [42] show encour-

aging progress, rigorous empirical testing continues. A potential bias

of the current study design may be that the GWAS was conducted

in an African-American population of individuals with type 2

diabetes with nephropathy however; there is no specific reason why

this African-American population should differ substantially from

African Americans with T2DM without ESRD. For example,

TCF7L2 is strongly associated in our studies of African-American

T2DM-ESRD subjects [28,40]. In addition it should be noted that

although every precaution was taken to account for population

structure, as with any GWAS or candidate gene study, there may be

residual population substructure. The major strength of this study is

the genotyping and replication in four additional populations, thus

providing support for the evidence of association observed. In

addition, the study design which includes individuals with T2DM

and ESRD allows for the identification of ESRD loci which are

distinct from those presented herein (Table S10; [43]).

In conclusion, we have performed a GWAS for T2DM-ESRD in

an African-American population from the southeastern United

States. These results were then replicated in an additional sample

recruited under identical ascertainment criteria. As a second stage

of replication, a Validation study was carried out in three in-

dependent cohorts to confirm the association of suspected loci with

T2DM. As a result, we have identified SNP rs7560163 that reached

stringent levels of genome-wide significance and four additional loci

with more nominal evidence of association. These findings require

further replication in independent African-American populations as

well as in additional ethnicities to confirm these findings and aid in

the identification of the causal variant(s).

Materials and Methods

Ethics Statement
Recruitment and sample collection procedures were approved

by the Institutional Review Board at Wake Forest University

(GWAS, Replication, T2DM, IRAS and IRASFS samples) and

Howard University (HUFS samples). Written informed consent

was obtained from all study participants.

Subjects
Genome-Wide Association Study (GWAS) samples and

clinical characteristics. Recruitment and sample collection

procedures were approved by the Institutional Review Board at

Wake Forest University and informed consent was obtained from

all study participants. Patients with T2DM-ESRD were recruited

from dialysis facilities. T2DM was diagnosed in African Americans

who reported developing T2DM after the age of 25 and who did

not receive only insulin therapy since diagnosis. In addition, cases

had to have at least one of the following three criteria for inclu-

sion: a) T2DM diagnosed at least 5 years before initiating renal

replacement therapy, b) background or greater diabetic retinopathy

and/or c) $100 mg/dl proteinuria on urinalysis in the absence of

other causes of nephropathy (T2DM-ESRD cases). Unrelated

African-American controls without a current diagnosis of diabetes

or renal disease were recruited from the community and internal

medicine clinics (controls). All T2DM-ESRD cases and controls

lacking T2DM and ESRD were born in North Carolina, South

Carolina, Georgia, Tennessee or Virginia. DNA extraction was

performed using the PureGene system (Gentra Systems;

Minneapolis, MN).

Replication study samples and clinical charac-

teristics. African-American T2DM-ESRD cases and controls

lacking T2DM and ESRD were recruited using the same criteria

as the case and control subjects that were used in the GWAS.

Validation study samples and clinical charac-

teristics. T2DM Cases. Subjects with T2DM without evidence

of nephropathy were recruited from medical clinics, churches,

health fairs and community resources. Individuals were unrelated

and self-described African Americans. All subjects were born in

North Carolina, South Carolina, Georgia, Virginia or Tennessee.

The PureGene system (Gentra Systems; Minneapolis, MN) was

used for DNA extraction. Controls. The Howard University Family

Study (HUFS) is a population-based study of African-American

families enrolled from the Washington, D.C. metropolitan area.

Families were not ascertained based on a given phenotype. In a

second phase of recruitment, additional unrelated individuals

from the same geographic area were enrolled to facilitate a nested

case-control study design. A total of 1,976 samples remained after

data cleaning. Diagnosis of T2DM was based on the criteria

established by the American Diabetes Association Expert

Committee: a fasting plasma glucose concentration $126 mg/

dL (7.0 mmol/l) or a 2-h postload value in the oral glucose

tolerance test $200 mg/dL (11.1 mmol/l) on more than one

occasion or receiving medication for T2DM. From this sample, a

subset of 927 unrelated control individuals was used for analysis.

IRAS. The Insulin Resistance Atherosclerosis Study (IRAS) is a

multicenter population-based cohort study that recruited men and

women from 40 to 69 years of age living in four U.S. communities

from 1992 to 1993 [44]. The study recruited approximately equal

numbers of persons with normal glucose tolerance, impaired

glucose tolerance and T2DM. Diabetes was defined by self-report

or a fasting glucose measures .126 mg/dL at baseline or follow-

up visits. The IRAS protocol was approved by local institutional

review committees and all participants gave informed consent.

IRASFS. Study design, recruitment and phenotyping for the IRAS

Family Study (IRASFS) have been described [45]. Briefly, the

IRASFS is a multicenter study designed to identify the genetic

determinants of quantitative measures of glucose homeostasis.

Members of large families of self-reported African Americans

(n = 581 individuals in 42 pedigrees from Los Angeles, California)

were recruited. Diabetes was defined by self-report, use of diabetes

medications or fasting glucose measures .126 mg/dL at baseline

or follow-up visits. The IRASFS protocol was approved by local

institutional review committees and all participants gave informed

consent.

Genotyping and Quality Control
GWAS. Genotyping was performed at the Center for

Inherited Disease Research (CIDR) using 1 mg of genomic DNA

(diluted in 16 TE buffer and at 50 ng/ml) on the Affymetrix

Genome-wide Human SNP array 6.0. DNA from cases and

controls were equally interleaved on 96-well master plates to

ensure technical uniformity during sample processing. To confirm

sample identity, a SNP barcode (96 SNPs) was generated prior to
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genotyping on the Affymetrix arrays and confirmed on

downstream released genotyping data. Genotypes were called

using Birdseed version 2; APT 1.10.0 by grouping samples by

DNA plate to determine the genotype cluster boundaries. All

autosomal SNPs (n = 868,157) were included in analysis but

classified on data quality with primary inference drawn from SNPs

(n = 832,357) which had less than 5% missing data, Hardy-

Weinberg P-values in cases greater than 0.0001 and in controls

greater than 0.01, no significant difference in missing data rate

between cases and controls and were polymorphic. The average

sample call rate was 99.16% for all autosomal SNPs. Forty-six

blind duplicates were included in genotyping and had a

concordance rate of 99.59%. In addition, individuals whose

gender call from X chromosome genotype data was discordant

with the gender obtained from patient interviews were excluded

from the analysis (n = 1). Cryptic relatedness was estimated by

pairwise identity-by-descent (IBD) analysis implemented in the

PLINK analysis software package (http://pngu.mgh.harvard.edu/

purcell/plink/). Two duplicate samples were identified, and one

sample in each duplicate pair was removed. In addition, 104

individuals were identified as cryptic first degree relatives. We also

assessed heterozygosity by estimating the inbreeding coefficient

using PLINK. One subject had an F value .4 standard deviations;

this excess of homozygosity would suggest population substructure

and this subject was removed. Our final dataset consisted of 1994

individuals in which we performed the association analysis.

Replication. The replication sample consisted of a

population recruited under identical ascertainment criteria to

that of the GWAS. A total of 749 SNPs (including 272 SNPs

captured in 104 linkage disequilibrium (LD) blocks defined by an

r2.0.50 at consecutive loci as assessed in 988 unrelated GWAS

control subjects; 581 independent loci) were selected for

genotyping on the Sequenom MassArray platform (Sequenom;

San Diego, CA). Case and control samples were genotyped and

analyzed together to avoid sample-dependent SNP calling bias.

SNPs were included in analysis if genotyping was greater than

90% efficient, had a Hardy-Weinberg P-value$0.001 in the

replication cohort and were polymorphic (n = 712 SNPs, including

264 SNPs captured in 102 LD blocks defined by an r2.0.50 at

consecutive loci as assessed in 988 unrelated GWAS control

subjects; 550 independent loci). Forty five blind duplicate samples

included in genotyping had a concordance rate of .99.9%.

Validation. Among the 712 SNPs genotyped during the

replication phase, 122 (including 41 SNPs captured in 17 linkage

disequilibrium (LD) blocks defined by an r2.0.50 at consecutive

loci as assessed in 690 unrelated Replication control subjects; 98

independent loci) were genotyped using the iPLEXTM Sequenom

MassARRAY platform (T2DM, IRAS and IRASFS) or on the

Affymetrix Genome-wide Human SNP array 6.0 (Controls) for the

validation phase. Genotyping was greater than 90% efficient and

the 50 blind duplicate samples included in genotyping had a

concordance rate of 100%.

Analysis
GWAS. To address the effect of admixture in this African-

American dataset we performed a Principal Components Analysis

(PCA) which utilized all high quality data from the GWAS

excluding regions of high LD and inversions. This approach was

an iterative process whereby all high quality autosomal SNPs were

used to calculate the top 50 principal components. Once

calculated, the principal components were examined to

determine if they were tied to regions of the genome. If so, those

SNPs were excluded and the analysis repeated. The first principal

component (PC1) explained the largest proportion of variation at

22% and was used as a covariate in all analyses. A direct

comparison of the PCA with FRAPPE [46] analysis of 70 ancestry

informative markers (AIMs; [47]) resulted in a high correlation

between PC1 and the AIMs ancestry estimates, r2 = 0.87. The

mean (SD) African ancestry proportion in 965 T2DM-ESRD cases

and 1,029 controls was 0.8060.11 and 0.7860.11, respectively, as

estimated by FRAPPE analysis. Other principal components were

associated with regions of the genome, representing another

unclassified source of variance. To test for association with

T2DM-ESRD, genotypic tests of association were performed on

each SNP individually using SNPGWA (www.phs.wfubmc.edu;

[48]), an analytic package which includes the capability to perform

association calculations adjusting for covariates. The primary

inference was based on the additive genetic model; with note when

there is strong evidence of a departure from additivity. The

inflation factor was calculated as the observed mean of the chi

squared statistic and compared to its theoretical expectation of 1

under the null hypothesis.

Imputation was performed for autosomes using MACH (version

1.0.16, http://www.sph.umich.edu/csg/abecasis/MaCH/) to ob-

tain missing genotypes for previously identified T2DM index

variants and to provide support for regions associated with T2DM

in the African American dataset. SNPs with minor allele frequency

$1%, call rate $95% and Hardy–Weinberg P-value $1024 were

used for imputation. A 1:1 mixture of the HapMap II release 22

(NCBI build 36) CEU:YRI consensus haplotypes (http://math-

gen.stats.ox.ac.uk/impute/) were used as a reference panel.

Imputation was performed in two steps. For the first step, 484

unrelated African-American samples were randomly selected to

calculate recombination and error rate estimates. In the second

step, these rates were used to impute all samples across the SNPs in

the entire reference panel. Imputation results were filtered at an

rsq threshold of $0.3 and a minor allele frequency $0.05.

We examined previously identified T2DM loci for association

with T2DM in the African American GWAS dataset. For SNPs

not available on the Affymetrix 6.0 array or from direct

genotyping (n = 10), genotypes were determined from imputation.

In addition to the index variant, we identified the corresponding

LD block using the HapMap phase II CEU data as defined by

Gabriel et al. [49] and implemented in Haploview. These intervals

were then extracted from the African-American GWAS and the

most significant SNP identified. These results were corrected for

the effective number of SNPs (independent SNPs) in each locus

counted using the Li and Ji method implemented in SOLAR [50].

The empirical locus-specific P-values were adjusted for multiple

comparisons by Bonferroni correction for the effective number of

SNPs (Table S1).

Replication in T2DM-ESRD cases and controls lacking

T2DM and ESRD. To account for admixture in the replication

cohort, ancestral allele proportions were estimated by comparing

allele frequencies to 70 AIMs [47] genotyped in 44 Yoruba

Nigerians and 39 European Americans. Individual ancestral

proportions were generated for each subject using FRAPPE

[46], an EM algorithm-based approach, under a two-population

model and used as covariates in all analyses. The mean (SD)

African ancestry proportion in 709 T2DM-ESRD cases and 690

controls was 0.8060.12 and 0.7660.13, respectively. Association

analysis was performed as described for the GWAS.

Validation in T2DM, non-nephropathy cases and controls

lacking T2DM and ESRD. In order to discriminate between

association with T2DM and T2DM-ESRD, meta-analysis of three

additional association analyses was performed. For the T2DM

population, individual admixture proportions were estimated by

comparing allele frequencies from 76 AIMs genotyped on the

Type 2 Diabetes GWAS in African Americans
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Sequenom MassArray (T2DM cases) or Affymetrix 6.0 array

(controls) to frequencies reported in the HapMap CEU and YRI

populations (unrelated samples only). Individual ancestral

proportions were generated for each subject using FRAPPE [46]

under a two-population model and used as covariates in all

analyses. The mean (SD) African ancestry proportion in T2DM

cases and controls was 0.7860.11 and 0.7660.12, respectively.

Association analysis was performed as described for the GWAS.

For the IRAS and IRASFS cohorts, ancestral allele frequencies

were estimated using 70 AIMs genotyped in 44 Yoruba Nigerians

and 39 European Americans. Individual ancestral proportions

were generated for each subject using FRAPPE [46] under a two-

population model and used as covariates in all analyses. For the

IRASFS cohort, each SNP was examined for Mendelian

inconsistencies using PedCheck [51]. Genotypes inconsistent

with Mendelian inheritance were converted to missing.

Maximum likelihood estimates of allele frequencies were

computed using the largest set of unrelated African-American

individuals (n = 58), and then genotypes were tested for departures

from Hardy-Weinberg proportions. For the IRAS (unrelated

individuals) and IRASFS (related individuals) cohorts, data was

analyzed using a variance component measured genotype model

[50]. To model T2DM as the outcome, a threshold model of the

variance component measured genotype model was used.

Likelihood ratio tests were computed for the tests of association

with the individual SNP, modeling the correlation structure

suggested by the familial relationships as appropriate, i.e. IRASFS.

The family data has already been examined in detail and familial

relationships corrected based on a linkage panel. P-values were

calculated from the threshold model while the odds ratios were

calculated from a logistic regression model.

Meta-Analyses. In order to perform GWAS + Replication,

Validation (T2DM, IRAS and IRASFS) and Overall (GWAS +
Replication + Validation) analyses a meta-analysis approach was

taken. Meta-analysis was performed using the weighted Z-method

implemented in METAL (www.sph.umich.edu/csg/abecasis/

metal). This approach allows P-values and direction of effect to

be combined independent of b-estimates, allowing for

incompatibility between phenotype units as in the Fisher method

[52], but with improved power and precision over Fisher’s test

[53]. The Z-statistic was derived from the sample-specific P-values

and directionality of effect which were then summed with weights

proportional to the square root of the sample size for each sub-

study.

Quantitative Trait Analysis. To test for association

between individual SNPs and quantitative measures of glucose

homeostasis in the IRAS and IRASFS cohorts, differences in trait

values by genotype were tested using the variance components

model that explicitly models the correlation among related

individuals as implemented in SOLAR (12). For statistical

testing, trait values were transformed to best approximate the

distributional assumptions of the test and to minimize

heterogeneity of the variance. The primary statistical inference

was the additive genetic model. All tests were computed after

adjustment for age, gender, BMI and admixture adjustment.

Exploration of eQTLS for T2DM loci
To identify potential T2DM-susceptibility genes we explored

association of the putative African-American T2DM loci with

transcript levels for flanking genes using gene expression profiles

from the publically available HapMap Yoruba (YRI) dataset [54].

Coupling the YRI expression dataset with genotypes from the

most associated loci we explored the association of SNPs with

flanking genes using the variance components model and

accounting for correlation among related individuals as imple-

mented in SOLAR (12).

Supporting Information

Figure S1 Quartile-Quartile plot of the genome-wide
association study results.

(DOC)

Figure S2 African-American T2DM candidate regions.
A) rs7542900 region. B) rs4659485 region. C) rs7560163 region.

D) rs2722769 region. E) rs7107217 region. 2log10 additive P-value

from the GWAS are plotted versus position (NCBI Build 36.1,

hg18). The large red diamond indicates the additive P-value from

the GWAS of the marker(s) displayed. The large blue diamond

and corresponding P-value indicates the additive P-values from

the Overall analysis of the marker(s) displayed. r2 based on the

control samples is color-coded with respect to the most significant

SNP: red (0.8–1.0), orange (0.5–0.8), yellow (0.2–0.5) and white

(,0.2). Gene annotations were obtained from UCSC Genome

Browser (RefSeq Genes, b36). Arrows represent direction of

transcription.

(DOC)

Table S1 GWAS P-values for previously associated
T2DM loci. Loci are ordered by chromosome and position

(NCBI Build 36.1, hg18) and referenced (Ref) by the initial

publication. The African American major/minor alleles are

presented on the positive strand with the Caucasian risk allele

underlined. For each T2DM Index SNP, results from the African

American GWAS (the minor allele frequency (MAF) for the

T2DM-ESRD and control populations or combined for imputed

SNPs with the corresponding additive P-value and odds ratio (OR)

with associated 95% confidence interval (CI)) are presented with

respect to the published risk allele (underlined). In addition,

association results (additive P-value and odds ratio (OR) with

associated 95% confidence interval (CI)) from recent Caucasian

large-scale meta-analyses with associated references (Ref) are listed

for comparison. For each index SNP, the corresponding LD block

was identified using the HapMap phase II CEU data as defined by

Gabriel et al. and implemented in Haploview. These intervals were

then extracted from the African-American GWAS and the most

significant SNP listed. From the GWAS, the minor allele

frequency (MAF) for the T2DM-ESRD and control populations

are listed with the corresponding additive P-value (nominal and

corrected for the effective number of tests at the locus (number of

SNPs genotyped in the GWAS and effective number of SNPs

determined from the Li and Ji method and implemented in

SOLAR)) and odds ratio (OR) with associated 95% confidence

interval (CI) with respect to the African-American minor allele.

(DOC)

Table S2 GWAS, Replication, T2DM, IRAS and IRASFS
P-values for 122 GWAS SNPs genotyped on replication
and validation samples. SNPs are ordered by chromosome

and position (NCBI Build 36.1) with the major/minor alleles

(positive strand). For each cohort, minor allele frequency (MAF)

for case and control populations are listed with the reference allele

(minor allele) and corresponding additive P-value and odds ratio

(OR) with associated 95% confidence interval (CI) with respect to

the minor allele. Note: For IRAS-FS MAFs are derived from the

overall sample including relatives. In addition, allele frequencies

has been extracted from HapMap Yoruba (YRI) and CEPH

(CEU) samples for comparison. Rows in red type represent the five

loci which are the focus of the manuscript.

(XLS)
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Table S3 Validation P-values for T2DM loci across the
genome. SNPs are ordered by chromosome and position (NCBI

Build 36.1, hg18) with the major/minor alleles (positive strand)

and corresponding gene (underlined) or nearest annotated gene.

For the T2DM, IRAS and IRASFS analyses, the minor allele

frequency (MAF) for T2DM and control populations are listed

with the corresponding additive P-value. Note: For IRASFS MAFs

are derived from the overall sample including relatives. For the

Validation meta-analysis the additive P-value and odds ratio (OR)

with associated 95% confidence interval (CI) are presented with

respect to the minor allele.

(DOC)

Table S4 Association results for African-American
T2DM loci in the Diabetes Genetics Replication and
Meta-analysis (DIAGRAM) Consortium. SNPs are ordered

by chromosome and position (NCBI Build 36.1, hg18) and the

nearest annotated gene is listed. For each SNP the major/minor

alleles identified in the Overall African-American meta-analysis

are indexed on the forward strand. Results from the association

analysis in the Overall African-American cohort and DIAGRAM

Consortium include the allele frequency (AF), odds ratio (OR) with

associated 95% confidence interval (CI) and P-value with respect to

the minor allele identified in the African-American population.

SNP rs7560163 did not pass quality control filters in the

DIAGRAM Consortium and was not included in analysis.

(DOC)

Table S5 Quantitative trait meta-analysis for African-
American T2DM loci across the genome. SNPs are ordered

by chromosome and position (NCBI Build 36.1, hg18) with the

major/minor alleles (positive strand) and the nearest annotated

gene is listed. For the IRAS and IRASFS samples, the b coefficient

with respect to the minor allele is listed with the corresponding

additive P-value. For the meta-analysis, the z-statistics is listed with

the corresponding additive P-value.

(DOC)

Table S6 Association results for African-American
T2DM loci in the Meta-Analyses of Glucose and
Insulin-related traits Consortium (MAGIC). SNPs are

ordered by chromosome and position (NCBI Build 36.1, hg18)

with the alleles on the positive strand (African American risk alleles

are underlined) and the nearest annotated gene is listed. For each

SNP and trait combination, the effect size and standard error are

listed with the corresponding P-value.

(DOC)

Table S7 Gender stratified association analysis with
T2DM. SNPs are ordered by chromosome and position (NCBI

Build 36.1, hg18) with the major/minor alleles (positive strand)

and corresponding gene (underlined) or nearest annotated genes

(+/2500 kb). For males and females, the additive P-value and

odds ratio (OR) with associated 95% confidence interval (CI) with

respect to the minor allele and heterozygosity P-value are listed.

(DOC)

Table S8 Power Calculations. Table S8a. Genome-wide

association study power analysis for causal variant in complete and

incomplete linkage disequilibrium with a typed variant given

minor allele frequency (p) in 965 cases and 1029 controls. Table

S8b. Replication power analysis for causal variant in complete and

incomplete linkage disequilibrium with a typed variant given

minor allele frequency (p) in 709 cases and 690 controls. Table

S8c. GWAS + Replication sample power analysis for causal

variant in complete and incomplete linkage disequilibrium with a

typed variant given minor allele frequency (p) in 1674 cases and

1719 controls. Table S8d. T2DM power analysis for causal variant

in complete and incomplete linkage disequilibrium with a typed

variant given minor allele frequency (p) in 1246 cases and 927

controls. Table S8e. IRAS power analysis for causal variant in

complete and incomplete linkage disequilibrium with a typed

variant given minor allele frequency (p) in 115 cases and 164

controls. Table S8f. IRASFS power analysis for causal variant in

complete and incomplete linkage disequilibrium with a typed

variant given minor allele frequency (p) in 97 cases and 507

controls. Table S8g. Validation meta-analysis power analysis for

causal variant in complete and incomplete linkage disequilibrium

with a typed variant given minor allele frequency (p) in 1458 cases

and 1598 controls. Table S8h. Overall power analysis for causal

variant in complete and incomplete linkage disequilibrium with a

typed variant given minor allele frequency (p) in 3132 cases and

3317 controls.

(DOC)

Table S9 IRAS and IRASFS power analysis to detect a
causal variant with the effect size observed in the T2DM
cohort.

(DOC)

Table S10 P-values for putative ESRD loci across the
genome. SNPs selected from the GWAS (P,0.001) and

associated in the Replication cohort (P,0.05 and directionally

consistent) but which were not associated in the Validation cohort

(P.0.05) and could represent putative ESRD loci. SNPs are

ordered by chromosome and position (NCBI Build 36.1) with the

major/minor alleles (positive strand) and corresponding gene

(underlined) or nearest annotated gene. For each phase of the

study, GWAS + Replication, Validation and Overall analyses, the

additive P-value and odds ratio (OR) with associated 95%

confidence interval (CI) with respect to the minor allele is listed.

(DOC)
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Paris, 75870 Paris Cedex 18, France
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