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Abstract

Precision measurements offer important, low-energy tests of the Standard
Model. The Qweak and (proposed) MOLLER experiments at Jefferson Lab
are two such measurements. Since the interpretation of the experimental re-
sults depends on the precision of the theory prediction, radiative corrections
need to be properly accounted for. In this thesis we examine the γZ box correc-
tion to the weak charge of the proton. Previously poorly understood, by using
phenomenological information to constrain the input structure functions, we
determine this important correction at Qweak kinematics to a precision more
than twice that of the previous best estimate. The γZ box is also evaluated
at energies relevant to the MOLLER experiment for the first time.

The constructed Adelaide-Jefferson Lab-Manitoba model structure func-
tions may also be used to study other low-energy phenomena. The electromag-
netic parametrisations of the cross sections are utilised in the context of the
generalised Baldin sum rule to investigate the momentum transfer dependence
of the electric and magnetic polarisabilities. Additionally, both the electromag-
netic and interference structure functions’ moments were calculated in order
to determine the higher-twist contributions to the structure functions. These
results serve to increase our understanding of the internal structure of the
nucleon.
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1

Introduction

The Standard Model (SM) of particle physics currently provides the best ac-
count of the properties and interactions of the elementary particles which make
up matter. It combines quantum chromodynamics (QCD), which governs the
strong force between quarks and gluons inside the nucleon, with electroweak
theory—the unified theory of weak and electromagnetic interactions. Since
its inception, the SM has enjoyed an exceptional degree of success, accurately
explaining and predicting a wide range of experimental phenomena. Never-
theless, a growing body of evidence suggests that it is in fact, a low-energy,
effective theory of a deeper, underlying description.

Because of the fundamental importance of the SM, new experiments
are continually being designed which extend current empirical limits—with
respect to either the energy scale, the precision level, or both—in order to test
further the agreement between theory and nature. Experiments such as those
being performed at the Large Hadron Collider (LHC) in CERN study particle
collisions at energies never previously achieved, whereas parity-violating (PV)
measurements like Qweak provide precision checks of SM observables. In this
thesis we are specifically interested in low-energy precision tests of the SM.

In 2012, the Qweak collaboration completed the data collection stage
of their PV experiment measuring the weak charge of the proton—the weak
force’s analogue of the electric charge. An early analysis that included four
percent of the total data revealed good agreement with the SM prediction.
Results for the full data set are expected later this year. The aim, ultimately,
is to determine the proton’s weak charge, Qp

W , to a precision of 4%. This is
equivalent to measuring the weak mixing angle, sin2 θW , to 0.3% and would give
the most precise determination of sin2 θW away from the Z-pole. To achieve
such a goal, radiative corrections to the theory value of Qp

W must be reliably
estimated and their uncertainties fully understood.

Although most of the radiative corrections to the proton’s weak charge
are indeed well understood, the γZ ‘box’ diagram, arising from the interference
between the photon and Z-boson exchanges, remains subject to considerable
debate. Much of this controversy stems from a lack of empirical data on the
interference structure functions—used as inputs in the dispersion calculation.
An accurate experimental knowledge of the interference structure functions

1



2 1. Introduction

would remove any significant doubt in the γZ box determination. However,
as it currently stands, various models of the structure functions are employed.
It is therefore necessary to quantify and minimise of the uncertainties result-
ing from these models. In constructing the Adelaide-Jefferson Lab-Manitoba
(AJM) model—presented in this work—we make use of the excellent under-
standing of parton distribution functions (PDFs) to constrain the input γZ
structure functions. This is the first time this has been done in the litera-
ture, all previous work having relied primarily on the accuracy of the models
themselves to obtain a good estimate of the uncertainty.

Since this work is done in the context of the SM, in Chapter 2 we begin
with a brief overview of the theory. An introduction to electroweak theory and
a more detailed discussion of PV in the SM will also be included in this chapter.
As one of the principal aims of the Qweak experiment is to search for physics
beyond the Standard Model (BSM), in Section 2.3 we present some of the main
reasons why many physicists expect that there may be a more fundamental
theory. This is followed by a listing of some of the leading candidates for new
physics (NP).

Most of the results based on the AJM model apply directly to the
Qweak experiment. There are, however, a number of other relevant low-energy
measurements. The E08-011 experiment—another PV experiment at Jefferson
Lab—measured the asymmetry which arises in electron–deuteron scattering
and its results will be used as an important check of the AJM model method-
ology. Additionally, the proposed MOLLER experiment contains backgrounds
which we may estimate using the AJM structure functions. The details of
these experiments are included in Section 3.2, where we have also included
a discussion on past measurements and planned, future experiments. Follow-
ing this, Section 3.3 examines the radiative corrections to Qp

W , while the final
section of Chapter 3 looks specifically at the �γZ correction. The dispersion
formalism needed for the calculation will be introduced here.

It will become evident that the most important inputs in the �γZ cal-
culation are the interference structure functions and as a result, the entire
Chapter 4 is devoted to these objects. Here we investigate the models of the
electromagnetic and γZ structure functions that have been used in the liter-
ature. Since we are not only interested in the central values of the γZ box
obtained by the different groups but would also like to know how the uncertain-
ties arise, we will include brief error analyses of the various models. Additional
attention will be given to the model which has the largest errors.

Having completed the review of earlier work, the next chapter presents
the Adelaide-Jefferson Lab-Manitoba model. The construction of the inter-
ference structure functions begins with the electromagnetic parametrisations,
which we introduce in Section 5.1. A description of the γZ structure function
follows, along with a detail explanation of the method used to constrain the
structure functions. Although the constraints provided by the parton distri-
butions should suffice, it would be useful to check our approach empirically.
As mentioned previously, this is possible using the data from the E08-011 ex-
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periment and therefore, in the last part of Chapter 5, we test the AJM model
asymmetry predictions against these experimental results.

The determination of the vector hadron part of the �γZ correction using
the AJM model is laid out in Chapter 6. Since the hadronic axial-vector con-
tribution has been calculated to sufficient precision previously, we concentrate
largely on the �VγZ term. A small exception to this occurs in the results on
the MOLLER backgrounds where the �AγZ value must be included in the total
γZ box correction. Section 6.1 gives the results for the �VγZ term relevant for
Qweak energies, while Section 6.3 examines the contribution at the higher en-
ergies associated with the MOLLER experiment. In between, we make further
comparisons of the AJM model asymmetry predictions with those values re-
cently released by the E08-011 experiment. These new results differ from the
previous ones in that the kinematics they examine are no longer in the nucleon
resonance region, but the deep inelastic scattering (DIS) region. An evaluation
of the inelastic proton asymmetry—one of the significant backgrounds in the
MOLLER experiment—concludes this chapter.

Although the primary motivation for the AJM model comes from the
need to accurately determine the �VγZ contribution, the uses for these structure
functions are much more wide-reaching. In the rest of this thesis we address
some of these additional applications.

In Chapter 7 we utilise the F1 electromagnetic structure function to cal-
culate the momentum transfer (Q2) dependence of the proton’s electric and
magnetic polarisabilities. Following a brief discussion of earlier work, the gen-
eralised Baldin sum rule is used to show the Q2-evolution of the polarisabilites
down to much lower momentum than previously attained. Several experimen-
tal efforts have been involved in studying these observables and a compari-
son (Section 7.2) between the data and the AJM parametrisation shows good
agreement between the two, re-emphasising the reliability of our construction.

Quark-hadron duality is the observation that the averaged resonance re-
gion structure functions closely resemble those given by partonic description.
Although intuitive to some degree, the level of agreement and the kinematic
range over which it occurs is surprising. Furthermore, the theoretical frame-
work used to describe this phenomena, the operator product expansion (OPE),
fails to explain physically how the transition from resonances to scaling takes
place. One of the principal ways of studying duality is through the structure
function moments. In Chapter 8 we include a summary of the OPE and the
necessary formalism before considering the moments of the electromagnetic
and interference F2 structure functions.

Our motivation for studying duality is twofold: firstly, a comparison of
the total structure function moments with the leading-twist moments allows
one to extract the higher-twist contributions to the structure functions. Sec-
ondly, should we observe duality in the γZ structure functions moments, it
will help confirm the estimates of the �VγZ correction obtained earlier. Sec-
tion 8.3 includes AJM model results for the M2 moment, where we also show
the calculations of the neutron moments. Although these incorporate larger
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errors, they are important when considering higher-twist contributions to the
electron–deuteron asymmetries.

The final chapter of this thesis summarises the discussion of the pre-
ceding chapters, while also revisiting some of the main conclusions. Further
avenues for extending the work presented here are also included.
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The Standard Model and
beyond

The Qweak experiment is a precision test of the Standard Model. In this chapter
we give an introduction to the SM, concentrating particularly on electroweak
theory. Problems with the SM are reviewed, which leads naturally into a
discussion on possible BSM physics and their experimental searches.

2.1 The Standard Model

Based on the SU(3)c × SU(2)L × U(1)Y gauge group, the SM successfully
predicts the behaviour of three out of the four observed forces. The only one
not included in this description is gravity. The strong interactions are a result
of SU(3) colour (hence ‘c’) symmetry, whereas the unified electromagnetic
and weak interactions are accounted for by the SU(2)L × U(1)Y factor. The
subscript L refers to the fact that the SU(2) part acts only on left-handed
fermions, while the Y factor is the weak hypercharge.

Interactions between the leptons and quarks which make up nuclear
matter occur via the exchange of vector bosons. In the case of QCD, mass-
less gluons are responsible for the strong force experienced by quarks, while
the weak force is mediated by the massive W± and Z0 bosons. The photon
completes the force-carrier sector and mediates the familiar electromagnetic
interactions.

Both leptons and quarks may be divided into three generations according
to their mass and electric charge (cf. Table 2.1). Quarks, under the influence of
the strong force, combine to form mesons (quark-antiquark pairs) and baryons
(three quark systems). These hadrons in turn, form multiplets, whose struc-
ture is largely—since SU(3) flavour is not exact—governed by the irreducible
representations of SU(3). The leptons on the other hand, experience only the
weak and electromagnetic interactions. Completing the particle content of the
SM is the recently discovered [1, 2] Higgs boson associated with the Higgs field,
responsible for generating mass in the SM.

From these fundamental building blocks the rest of nuclear matter in

5



6 2. The Standard Model and beyond

Table 2.1: Properties of the three generations of SM matter particles. The
data is taken from the Particle Data Group [3].

Gen. Quark Charge Mass (MeV) Lepton Charge Mass (MeV)
I u 2/3 1.8− 3.0 e −1 0.511

d −1/3 4.5− 5.3 νe 0 < 2× 10−6

II s −1/3 90− 100 µ −1 106
c 2/3 1.28× 103 νµ 0 < 0.19

III t 2/3 1.73× 105 τ −1 1.78× 103

b −1/3 4.18× 103 ντ 0 < 18.2

the universe is presently understood to be constructed.

2.2 Electroweak theory

The theoretical footings for the unification of the SM electroweak theory were
first introduced by Glashow [4] in 1961. The massless vector bosons associated
with this SU(2) × U(1) gauge symmetry are W i

µ (where i = 1, 2, 3) and Bµ,
whilst the couplings are g and g′. These gauge bosons are included in the SM
in the kinetic terms of the Lagrangian,

L = −1

4
W i
µνW

µνi − 1

4
BµνB

µν , (2.1)

where the field strength tensors are,

W i
µν = ∂µW

i
ν − ∂νW i

µ − gεijkW j
µW

k
ν , i, j, k = 1, 2, 3 ;

Bµν = ∂µBν − ∂νBµ. (2.2)

Under SU(2) ‘weak isospin’ the left-handed fermions transform as dou-
blets. The U(1) gauge group acts on both left- and right-handed components
of the fermion fields and is associated with a phase symmetry [5]. In order to
generate the masses of the physical particles, the SU(2) × U(1) symmetry is
spontaneously broken [6, 7] when minimising a potential,

V (φ) = µ2φ†φ+
λ2

2
(φ†φ)2 ,

involving a complex scalar doublet,

φ =

(
φ+

φ0

)
. (2.3)

This is known as the Higgs mechanism [8, 9, 10, 11].
After spontaneous symmetry breaking, the U(1)Q group is the only re-

maining unbroken symmetry. Additionally, the weak mediators end up ac-
quiring mass leaving the photon as the sole massless vector boson. Quantum
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electrodynamics (QED) is based on this U(1)Q group. Proof of the renormal-
isability of such spontaneously broken gauge theories by t’Hooft and Veltman
[12, 13, 14] in the early 1970s completed the theoretical development of elec-
troweak theory. Experimentally, however, there still remained some puzzling
issues.

Parity violation in EW theory

In 1956 Lee and Yang [15] put forward the idea of parity non-conservation in
weak interactions. An exceptionally radical thought at the time, this was soon
verified experimentally by Wu et al. [16] and confirmed by a group lead by
Lederman [17]. Both of these experiments involved charged current reactions;
however, Glashow’s theory also predicted a small amount of parity violation
through the neutral current (NC) interaction term

Jµint =
g

2 cos θW
JµNC(x)Zµ(x) , (2.4)

where,

JµNC(x) =
∑
i

ψi(x)γµ(giV − giAγ5)ψi(x) , (2.5)

and Zµ(x) is the Z0-boson field. The fermion (anti-fermion) fields are given
by ψi (ψi), and the vector and axial-vector couplings,

giV ≡ ti3L − 2qi sin
2 θW , (2.6)

giA ≡ ti3L , (2.7)

where ti3L is the weak isospin of the fermion i and qi the charge.

After several conflicting experimental results [18, 19, 20], PV in neutral
currents was finally confirmed by Prescott et al. [21] in 1978 using electron–
deuterium scattering and reaffirmed by a second experiment the following year
[22]. The measured asymmetries are shown in Fig. 2.1. Together with the indi-
rect [23, 24, 25] and direct [26, 27] observations of the Z0-boson at CERN, these
results firmly established the SU(2)×U(1) theory as the principal description
of the unified weak and electromagnetic interactions.

Since then the theory has proven to be extremely robust, successfully
predicting the values of physical observables to unprecedented levels of preci-
sion. Advancements in technologies has meant that it is now possible to search
for deviation between experiments and theory at the parts per billion (ppb)
level. In Sections 3.1 and 3.2 we will discuss these developments in more detail.
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Figure 2.1: Parity violation in e–d scattering as observed by Prescott et al.
[21, 22]. On the left-hand plot, the dashed line represents the same ‘Hybrid’
model shown in the right-hand figure. Both asymmetries (A) are normalised
by the momentum transfer (Q2) and plotted against the fraction of energy lost
by the incoming electron (y).

The weak mixing angle

Mixing of the four vector fields, W i
µ and Bµ, gives,

W±
µ =

1√
2

(
W 1
µ ∓W 2

µ

)
,

Zµ =
1√

g2 + g′2

(
gW 3

µ − g′Bµ

)
,

Aµ =
1√

g2 + g′2

(
g′W 3

µ + gBµ

)
, (2.8)

where the W±
µ and Zµ are the mediator fields of the weak interactions and Aµ

is the photon field of the electromagnetic force.
Alternatively, one can define the weak mixing angle (also referred to as

the Weinberg angle) in terms of the coupling constants,

sin θW =
g′√

g2 + g′2
, cos θW =

g√
g2 + g′2

, (2.9)

such that,

Zµ = cos θWW
3
µ − sin θWBµ ,

Aµ = sin θWW
3
µ + cos θWBµ . (2.10)
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In order to verify experimentally, a renormalised definition of sin2 θW is
required. At lowest order in perturbation theory,

sin2 θW = 1− M2
W

M2
Z

, (2.11)

and this expression was used extensively earlier on. However, it also induced
misleading radiative corrections involving the top quark mass which meant
that an alternative definition was needed [28].

Today, the most commonly used definition of the weak mixing angle
comes from the modified minimal subtraction (MS) renormalisation scheme
where,

sin2 θW (µ)MS = e2(µ)MS/g
2(µ)MS , (2.12)

with µ representing the sliding energy scale. Theoretically motivated, this
definition is, however, unphysical and requires global fits to data in order to
obtain an experimental value [5].

The running of sin2 θW with respect to the energy, allows for straight-
forward testing of the SM. By measuring the weak mixing angle at different
energies, one directly examines the accuracy of the SM’s predictions. In Fig. 2.2
we show a number of past, present and future low-energy experiments, whose
aim is to check the running of sin2 θW .1 (Note that in this case sin2 θW is shown
as a function of the momentum transfer Q as opposed to µ.)

2.3 Beyond the SM

Perhaps one of the most famous examples of agreement between the SM and
experiment is the anomalous magnetic moment of the electron,

ae(Exp) = 11596521807.6± 2.7× 10−13 ,

ae(SM) = 11596521817.8± 7.7× 10−13 .

where the ae(SM) [35] is the theory prediction. We, however, are primarily
interested in those observables which relate to PV in the SM. In Table. 2.2 we
show the current state-of-the-art for a number of these measurements, where
C1i and C2i are defined in terms of the effective four-point interactions,

LeqNC = −GF√
2

∑
i=u,d

[
C1i ēγµγ

5e q̄iγ
µqi + C2i ēγµe q̄iγ

µγ5qi
]
. (2.13)

At tree level,

C1i = 2geAg
i
V , C2i = 2geV g

i
A , (2.14)

1The final value for sin2 θW extracted from the NuTeV experiment [29] is the subject of
considerable debate [30, 31, 32, 33]. Despite being shown to lie significantly above the SM
prediction in Fig. 2.2, additional corrections such as sea-quark effects result in agreement
with theory [28].
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Figure 2.2: The running of sin2 θW and the current experimental status [28].
Black data points represent published results, while the blue and red points are
projections for future experiments. The uncertainty on the theory prediction
is of order the thickness of the curve, where at low energies this corresponds
to ±7× 10−5 [3, 34].

where geA = −1/2 and geV = −(1− 4 sin2 θW )/2. The quark couplings,

guV =
1

2
− 4

3
sin2 θW , guA =

1

2
,

gdV = −1

2
+

2

3
sin2 θW , gdA = −1

2
,

are the same as those in Eq. (2.7).

In spite of the SM’s many achievements it seen as incomplete. A number
of subatomic and astrophysical observables have lead to the notion that there
is a deeper, more fundamental theory, of which the SM is but a low-energy
effective theory. Neutrino masses, the rotational speed of galaxies, and the
inexplicably low mass of the Higgs boson are all problematic in the SM, and
give strength to this understanding. In the following section we expand on
some of these difficulties.

Motivating new physics

Although the list below is by no means complete, it contains many of the most
important motivating factors of searches for NP. For a more comprehensive
set, see for example, Refs. [5, 36, 37].
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Table 2.2: Standard Model parity-violating parameters compared with their
experimental values [3]. Qe

W is the weak charge of the electron.

Observable Experimental value SM prediction
C1u + C1d 0.1537± 0.0011 0.1530(1)
C1u − C1d −0.516± 0.014 −0.5300(3)
C2u + C2d −0.21± 0.57 −0.0089
C2u − C2d −0.077± 0.044 −0.0627(5)

Qe
W −0.0403± 0.0053 −0.0474(5)

Gravity

Unlike the strong, weak and electromagnetic forces that can all be described
at the quantum level, gravity is currently only successfully realised classically.
Attempts to quantise general relativity run into the problem that the result-
ing theory is non-renormalisable. Furthermore, while it may be possible to
combine general relativity to the SM by hand, gravity does not unify with the
other three interactions at a fundamental level. It is expected that a more
complete theory would include the correct quantum description of gravity as
well as unifying it with the SM forces.

Hierarchy problem

The mass-generating Higgs mechanism results in a neutral scalar boson of spin
0. Experimental results from the LHC give the mass of the Higgs boson to
be ∼ 125 GeV [1, 2]. Theoretically, however, such a light mass can only be
obtained by an artificially large amount of fine tuning.

We may write the Higgs mass as,

m2
H = m2

H,bare +O(λ, g2, h2)Λ2 , (2.15)

where λ is Higgs self-coupling and g and h are the couplings to the gauge
bosons and fermions. The bare Higgs mass receives corrections from higher
order loop diagrams some of which are shown in Fig. 2.3. These diagrams
are proportional to Λ—the scale at which the ultraviolet divergences are cut
off—and are quadratically divergent. Should there be no physics between the
electroweak scale (Λ ∼ 103 GeV) and the Planck scale (Λ ∼ 1019 GeV), the
cancellation required to get a Higgs mass of 125 GeV must occur to 30 decimal
places [5]. Such fine tuning is seen as highly unnatural and any BSM physics
which might provide a solution to this problem is considered to be worth
examining.

Neutrino masses

At the time when the SM was originally formulated there was no empirical
evidence for massive neutrinos. They were therefore incorporated in the SM as
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Figure 2.3: Examples of one loop corrections to the physical Higgs mass.

massless particles. Since then however, experimental data [38, 39, 40] indicates
that neutrinos oscillate, i.e. they change flavour as they propagate. This means
that in fact the neutrinos must have some mass, albeit very small. Although
masses for neutrinos may be incorporated into the SM by either adding extra
right-handed states, or by the ‘seesaw mechanism’ [41, 42, 43], there is still
no experimental evidence to decide between the two scenarios. Since these
additions are not a part of the original SM, NP is still needed to offer a more
satisfactory solution.

Another question which the SM fails to answer is whether neutrinos are
Dirac or Majorana particles.

Gauge coupling unification

In the SM, the effective gauge couplings—corresponding to the strength of
the forces—may be written as functions of the energy scale. If the running of
couplings are plotted together as shown in Fig. 2.4, it is clear that they do not
meet at a single point. The failure of the coupling constants to unify is seen
as a drawback of the SM and NP is required to obtain such unification.

Dark matter

Gravitational lensing, star velocities in spiral galaxies and large-scale cosmo-
logical structure all suggest that the universe contains additional non-nuclear
matter. Invisible electromagnetically, thus ‘dark’, it is thought to make up ∼
22% of the total energy content of the universe [5]. Although its presence is
currently inferred only from gravitational interactions, it is also possible that
dark matter (DM) interacts weakly.

While there have been several SM based explanations for dark matter,
such as neutrinos, or ‘MACHOs’, (Massive Compact Halo Objects) most of
these candidates fail to explain the full range of current observations. In the
case of neutrinos, their masses are too light to give the correct relic density
and their velocities too high to allow for formation of the observed large scale
structures. MACHOs on the other hand, lack a credible mechanism for creating
the amount of objects needed to account for the masses of the galaxies.

The failure of the SM to offer a suitable solution for DM, has left physi-
cists little option but to look outside the SM. A number of candidates e.g.
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Figure 2.4: Non-unification of the gauge couplings in the SM [44]. The cou-
plings are defined as α1 ≡ 5/3 [g′2/(4π)], α2 ≡ g2/(4π) and α3 ≡ g2

s/(4π).

axions, gravitinos, even non-Newtonian gravity have all at various points been
considered as possible explanations. The leading candidate, however, remains
weakly interacting massive particles (WIMPs) and to be given serious attention
most BSM theories require such a particle.

Candidates for BSM physics

Given the range of issues with the SM, it is perhaps not surprising that there is
no shortage of contenders for alternative physics models. Although there is yet
to be any experimental verification of any of these theories—either via direct
or indirect detection—there remains a large body of work devoted to studying
their implications. This next section looks at some of the more prominent
BSM theories.

Supersymmetry

One of the best theoretically motivated extensions of the SM is supersymme-
try (SUSY). Originally introduced by Wess and Zumino [45], SUSY works by
extending the Poincaré algebra [46] to include spinor generators. This success-
fully negotiates the Coleman-Mandula No-go theorem [47], which states that
the most general symmetry group of the S-Matrix is the cross product of the
spacetime transformations and an internal symmetry (such as a gauge theory).

The spinor generators Qα act on fermions (bosons) transforming them
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to bosons (fermions),

Qα|f〉 = |b〉 ,
Qα|b〉 = |f〉 .

This means that each particle acquires an additional superpartner—the fermions
a bosonic partner, and the bosons a fermionic partner. The Higgs sector is,
moreover, extended to two doublets.

One of the most attractive properties of SUSY is that it provides a nat-
ural DM particle. WIMPs are considered prime candidates for dark matter
because they are both heavy enough (∼ 102–103 GeV [5]), to allow for the ob-
served rotation speeds of the stars and only weakly interacting, accounting for
inability to detect it through the electromagnetic spectrum. With the addition
of so-called R-parity—necessary for proton stability—the lightest supersym-
metric particle (LSP) becomes stable making it an ideal DM possibility.

SUSY theories may also help solve the hierarchy problem. The Higgs
self-energy loops containing additional supersymmetric particles cancel out
those that appear in the SM (cf. Fig. 2.3), removing the need for artificial fine
tuning. In combination with grand unified theories, SUSY also allows for the
unification of the coupling constants. Another attractive quality of SUSY is
that it opens up the possibility of a quantum description of gravity.

Because SUSY provides solutions to many of the SM’s problems, it is
one of the most extensively studied BSM theories. Experimentally, there are
a considerable number of searches under way at the LHC. In detectors such as
ATLAS and CMS, the LSP may be inferred from missing energy signatures.
Other astrophysical experiments hope to see signs of SUSY particles indirectly
by measuring self-annihilation products such as gamma rays.

Extra dimensions

The LHC currently looks for signs of extra spatial dimensions also. The sim-
plest extension to the standard four-dimensional spacetime involves a fifth,
circular spatial dimension [48, 49]. Given that this additional dimension has
not yet been observed, its radius should be small. This extra dimension then
results in a tower of massive states called a Kaluza-Klein tower. These mo-
mentum states may be searched for in modern detectors.

Theoretical motivation for extra dimensions comes from both string the-
ory and the ability to incorporate gravity with the three other forces. As of
today, there is yet to be any experimental evidence for extra dimensions.

Technicolour

Finally, we mention technicolour. In these types of theories electroweak sym-
metry is broken by an additional non-abelian gauge interaction removing the
need for a scalar (Higgs) field and the associated hierarchy problem. This is
attractive since it removes the fine tuning that might otherwise appear.
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Experimental searches

The LHC is just one of a multitude of experiments currently under way, whose
goal is to discover new physics. These searches are often divided into three
‘frontiers’—the Energy, Intensity, and Cosmic frontiers. Although they incor-
porate more than just BSM experiments these divisions are still useful classi-
fication tools. In this section we give a broad overview of these NP searches,
for a more complete review see Refs. [5, 28].

Energy frontier

This category is dominated by the Large Hadron Collider. With four detectors
(ATLAS, CMS, ALICE and LHCb) and an anticipated final centre-of-mass
energy of 14 TeV, the LHC is the largest and most powerful particle accelerator
yet created. Its range of NP searches includes all those previously discussed
i.e. supersymmetry [50], extra dimensions [51] and technicolour [52], as well
as others like microscopic black holes [53]. Although they have yet to observe
any of these phenomena, these experiments have placed new constraints on the
energy scales of BSM physics. With the upgrade of the LHC almost complete, a
new range of experiments will begin which will continue to increase these limits.
Other planned experiments at the energy frontier include the International
Linear Collider and the Future Circular Collider.

Unfortunately, the nature of the LHC experiments means that it would
be difficult to discover the precise properties of any NP observed. To do this
requires experiments at the intensity frontier.

Intensity frontier

This technique provides an alternative approach to the ‘brute-force’ method
discussed above. In these types of experiments, beams of high intensity are
focused on a target resulting in measurements which are repeated many times
over. By building up the statistics and ensuring that the systematic errors are
under control, these experiments make precision measurements of SM observ-
ables with hope of detecting ‘smoking-gun’ signals of new physics.

The previously mentioned Qweak experiment [54], MOLLER [55] and the
E08-011 experiment [56], all fall under this category. Further examples include
the proposed 11 GeV PVDIS [57] experiment, the measurement of the proton
radius [58] and those involving the neutrino mixing parameters such as in
Ref. [59].

Another important field of research which falls within this grouping is
the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [60, 61]. One
of the main aims of flavour physics is to precisely determine the CKM matrix
elements. Experiments such as those at Belle [62], BaBar [63] and LHCb [64]
all play significant roles in this area.
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Cosmic frontier

In this category, observations are done on the cosmos. Optical, radio and
even ‘neutrino’ telescopes such as ICECUBE are used to provide a better
picture of the Universe. Techniques such as gravitational lensing have delivered
key evidence [65] for dark matter and further observations may well answer
remaining questions on the nature of DM. Additionally, studies of cosmic rays
[66, 67] provide windows into particle collisions at energies many orders of
magnitude greater than those currently available at modern accelerators.



3

Precision tests of the SM

While in some sense any experiment performed is a test of the Standard Model,
precision tests refers specifically to those whose uncertainties are significantly
smaller than previous measurements in the field. It is of course, also necessary
that the theory prediction be known very precisely. Several examples have
already been mentioned in the previous two chapters and although the range
of experiments which fall under this category is too large to fully account for
in this chapter, here we briefly point out some of the key findings.

Following the establishment of the basic structure of the SM in the 1980s,
the next decade saw precision measurements involving Z physics at the Large
Electron-Position Collider (LEP) and Stanford Linear Collider (SLC). These
experiments confirmed the validity of the SM to the one-loop level [68]. The
2000s saw precision measurements of the top quark mass [69], the W -boson
mass [70], as well as the muon anomalous magnetic moment [71] and the Fermi
constant [72]. More recently, the mass generating mechanism in the SM has
been confirmed with the discovery of the Higgs boson [1, 2].

In the next two sections we present additional details on the precision ex-
periments relevant to calculations performed later on in this thesis. For further
information on electroweak tests, the reviews [28, 73, 74, 75] are particularly
helpful.

3.1 Atomic parity violation

Neutral current PV experiments may be separated into a number of categories.
Atomic parity violation (APV), parity-violating electron scattering (PVES)
and neutrino scattering measurements are three of the main kinds of experi-
ments used in this field. For the purposes of this thesis we concentrate on the
former two. In APV, electron–nucleus interactions mediated by the Z-boson
result in PV transitions between energy states of the atom. By measuring the
amplitude for this transition, one is sensitive to the value of the weak charge,

QW (Z,N) = Z(1− 4 sin2 θW )−N , (3.1)

where Z is the number of protons and N , neutrons. One of the benefits of
APV measurements is that they avoid the difficulty scattering experiments

17
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face where the need for high statistics is hindered by the target over heating.
While the required atomic theory calculations are still technically challenging,
experimentally, this makes it more straightforward to determine sin2 θW at
lower energies in APV.

The earliest efforts to observe PV in neutral currents attempted to mea-
sure APV in bismuth-209 [18, 20] and although these experiments failed to
give a definitive answer, since then, PV has been observed in 209Bi and other
nuclei at the expected level [19, 76, 77, 78]. The most precise measurement of
APV to date, however, comes from the highly forbidden 6S → 7S transition
in cesium-133 [79, 80, 81], where they determined,

QW = −72.06(28)exp(34)theor , (3.2)

a value more than two standard deviations away from the SM prediction at
the time. Since then, the extracted value of the weak mixing angle has shifted
as new corrections [2, 82, 83] have been taken into account and it is currently
considered to be

sin2 θW = 0.2212(19) , (3.3)

which sits 1.5σ away from the SM value (shown in Fig. 2.2).

3.2 Parity-violating electron scattering

Parity-violating scattering experiments, involve a beam of polarised leptons
(usually electrons) on some stationary, nuclear target. The cross sections for
the left- and right-handed polarised leptons are measured and the difference—
normalised by the total—gives an asymmetry which is sensitive to sin2 θW .
The advantage of these experiments is that the ambiguities surrounding atomic
theory corrections in APV measurements are no longer present. Following the
original work of Prescott et al. [21, 22], there have been many further PVES
experiments [54, 84, 85, 86, 87, 88]. Of these, the Møller scattering E158 ex-
periment [84] at the Stanford Linear Accelerator Center (SLAC), provides the
best measurement of sin2 θW away from the Z-pole. Many of the other experi-
mental results will be useful, in conjunction with Qweak , in further constraining
the proton’s weak charge.

Qweak

Precision measurements of Qp
W are particularly well suited to searches for NP

since ad hoc cancellations suppress the weak charge’s value in the SM [89].
Furthermore, previous PVES experiments [54, 85, 86, 87, 88] may be used to
reduce remaining hadronic uncertainties which might otherwise be difficult to
estimate theoretically.

Of principal interest to this work is the Qweak experiment [54] at JLab.
Like those mentioned above, it is a PVES experiment and has recently com-
pleted the data taking stage. Longitudinally polarised electrons with energy
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E = 1.165 GeV are elastically scattered off a fixed proton (liquid hydrogen)
target. The resulting four-momentum transfer is Q2 = 0.025 GeV2.

The difference in the helicity-dependent cross sections is measured by
the asymmetry,

APV =
σ+ − σ−

σ+ + σ−
(3.4)

where σλ is the cross section for a right-hand (λ = +1) or left-hand ( λ = −1)
electron. With its aim of measuring proton’s weak charge to 4%, Qweak would
determine sin2 θW to ∼ 0.3%, a precision approaching those of the Z-pole
measurements (0.1%). Should Qweak reach this goal, it would supplant the
E158 experiment as the most precise value of the weak mixing angle at Q2 �
m2
Z .

Qweak recently released a value of Qp
W following an analysis of 4% of

the data. Using results from presented in this thesis [90], they found Qp
W =

0.0710 ± 0.0007 [91]. The analysis of the full data set is expected to be com-
pleted by late 2014. Should this value agree with SM prediction, it will con-
strain new physics at the 1–5 TeV scale [92]. In Sections 3.3 and 3.4 we
will look more closely at how higher order radiative corrections, especially
the �γZ correction, effects the SM prediction of Qp

W . We will find that when
trying to place constraints on NP, the magnitude of the uncertainty of the
�γZ correction is particularly important.

PVDIS at 6 GeV

This is an e–d scattering experiment similar to the Prescott’s earlier set up
[21, 22]. In fact, it is the first experiment since then to measure the inelastic
asymmetry in the DIS region. Using JLab’s 6 GeV beam it measured APV over
a range of kinematics with the primary aim of determining the poorly known
axial-vector quark couplings which were defined in Section 2.2. Later on, we
will use the results from this experiment [56, 93] to test the consistency of the
AJM model.

MOLLER

Of a similar nature to the E158 experiment, MOLLER [55] aims to measure
the electron’s weak charge to 2.3%—equivalent to measuring sin2 θW to ≈ 0.1
%—placing it on par with the two measurements done by LEP at the Z-pole.
In order to reach this precision, it will need to be able to detect scattered
electrons at very forward angles, as well as ensuring high enough statistics.

As in the SLAC measurement, longitudinally polarised electrons will
scatter off the atomic electrons in hydrogen. One additional benefit is that
it will include, in its backgrounds, a 4% measurement of the proton’s weak
charge [94]. MOLLER will also measure the proton’s inelastic asymmetry at
low momentum transfer [95], which will provide additional constraints on the
proton’s interference structure functions.
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Further measurements

In addition to those above, there are several other planned experiments which
aim to measure the weak mixing angle to even higher levels of precision. SoLID
[57] is a proposed update of the 6 GeV PVDIS experiment which will run after
the completion of the 12 GeV energy upgrade to JLab’s Continuous Electron
Accelerator Facility (CEBAF). Improving on the earlier experiment, it will
included a larger number of APV values as well as increasing the precision
to 0.5–1% with the goal of more precisely determining the neutral current
vector and axial-vector quark couplings [28]. As in previous cases, this will
also provide an independent low-energy measurement of sin2 θW .

Another proposed experiment is the P2 at the Mainz Energy-recovering
Superconducting Accelerator (MESA) facility. P2 hopes to measure the pro-
ton’s weak charge using a beam energy of ∼ 0.2 GeV which would reduce
theoretical controversies regarding hadronic box corrections such as �γZ . Per-
haps even more optimistically, as a part of the proposed Electron-Ion Collider
(EIC) plans, sin2 θW could be measured at several values of Q with the possible
(red) data points shown in Fig. 2.2. This would clearly be an extremely good
test of the slope of the curve of sin2 θW .

* * * *

Having presented an overview of PV experiments in the above sec-
tion, the rest of the chapter focuses solely on the theoretical aspects of the
Qweak experiment. Since we are specifically interested in the �γZ radiative
correction to the proton’s weak charge, the next two sections are dedicated to
introducing this topic. In Section 3.3 general radiative corrections to Qp

W are
discussed, while in Section 3.4 we look exclusively at the �γZ contribution. It is
important to remember, however, that a number of the experiments mentioned
above will play an important role in any future determination of Qp

W .

3.3 Radiative corrections to Qp
W

Many of the radiative corrections discussed in this section were originally cal-
culated in the context of APV experiments. The work of Marciano and Sir-
lin [96, 97] provides the basis for the more modern calculations [98] which
look specifically at PV in electron scattering. Indeed, part of the recent con-
fusion surrounding the �γZ diagram stemmed from the fact that APV and
PVES experiments are characterised by different energies. As the individual
components of the �γZ diagram each exhibit distinct energy dependence, it is
imperative to ensure that this is correctly determined.

Beginning again with the asymmetry in Eq. (3.4), Qweak measures the
difference between the left- and right-handed electron cross sections. Given
that these cross sections are proportional to the square of the amplitude, |M|2,
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where,

|M|2 = |Mγ +MZ |2

= |Mγ|2 + 2Re
(
M∗

γMZ

)
+ |MZ |2 , (3.5)

and Mγ is the electromagnetic Born amplitude, while MZ is the Born Z ex-
change amplitude, it is clear that the PV part comes predominantly from the
2Re

(
M∗

γMZ

)
term. This is because the |Mγ|2 will cancel in the numera-

tor of Eq. (3.4) while |MZ |2 is negligible at the kinematics of Qweak. The
denominator on the other hand will be dominated by the |Mγ|2 piece.

In the case where the momentum transfer squared t, is small, APV is
related to the proton’s weak charge by [73]

APV =
GF

4πα
√

2
tQp

W , (3.6)

where α is the fine structure constant and GF is the Fermi constant. Fur-
ther, the weak charge and the Weinberg angle are related at tree level by the
expression,

Qp
W = 1− 4 sin2 θW . (3.7)

At the level of precision required by Qweak, however, radiative corrections must
also be included, giving [98],

Qp
W = (1 + ∆ρ+ ∆e)

(
1− 4 sin2 θW (0) + ∆

′

e

)
+�WW +�ZZ +�γZ(0),

(3.8)

where sin2 θW (0) is the weak mixing angle at zero momentum and �γZ(0) is
the γZ box diagram at E = 0. Almost all the additional corrective terms have
been calculated to the levels of precision necessary for Qweak. The only term
currently subject to debate is the �γZ box diagram.

Looking at the individual corrections in Eq. (3.8), the ∆ρ term gives the
correction to the relative normalisation of the neutral and charged current am-
plitudes. Both higher order QCD corrections and the electroweak equivalents
have been included in its evaluation. Marciano and Sirlin give ∆e = −α/2π,
while the electron’s anapole moment ∆

′
e is,

∆
′

e = − α

3π
(1− 4s2

W )

[
ln

(
M2

Z

m2
e

)
+

1

6

]
, (3.9)

where s2
W = sin2 θW [96, 97]. These are relatively small corrections to the

axial-vector Zee and γee couplings [98].
The electroweak box diagrams �WW and �ZZ have been computed by

the authors of Refs. [96, 97, 99] who found,

�WW =
7α

4πs2
W

, (3.10)
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Figure 3.1: Interference γZ box (left) and crossed box (right) diagrams. The
wavy and dashed lines represent the exchanged γ and Z bosons, with the
hadron, electron and virtual photon momenta labelled by p, k, and q, respec-
tively.

and

�ZZ =
α

4πs2
W c

2
W

(
9

4
− 5s2

W

)
(1− 4s2

W + 8s2
W ) , (3.11)

where c2
W = cos2 θW and here, both α and θW take their Z-pole values and

have been renormalised in the modified minimal subtraction scheme. Given
that the �WW diagram contributes ∼ 26% to Qp

W , it is particularly important
that this contribution be well understood. The �ZZ diagram on the other
hand accounts for a much smaller ∼ 3%.

In both the �WW and �ZZ diagrams, the majority of the contribution
comes from the DIS region [98] where perturbation theory may be used. For
lower kinematics where this is no longer the case, the diagrams carry suppres-
sion factors involving (p/MW,Z)2 (where p is the incoming momentum) and
may thus be neglected [98]. This combination of factors results in values for
�WW and �ZZ which are well within Qweak uncertainty limits.

3.4 The �γZ correction

Until more recently, the interference γZ contribution shown in Fig. 3.1 was also
thought to be known within the required precision of the Qweak experiment.
In terms of the electroweak amplitudes, it is defined as [100]

�γZ(0) = Qp
W

<e
(
M∗

γM
(PV)
γZ

)
<e
(
M∗

γM
(PV)
Z

) , (3.12)

whereM(PV)
Z andM(PV)

γZ are the parity-violating parts of the Z and γZ inter-
ference amplitudes.

The �γZ diagram may be decomposed into two separate pieces,

�γZ(E) = �AγZ(E) + �VγZ(E), (3.13)

with �AγZ coming from the vector electron, axial-vector hadron coupling to the
Z boson and �VγZ from the axial-vector electron, vector hadron coupling to the
Z.
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At typical APV energies O(MeV), the hadronic axial-vector correction
dominates, since �VγZ→ 0 as the energy decreases and is therefore negligible
in such experiments. For Qweak on the other hand, E = 1.165 GeV which is
approximately three orders of magnitude larger. At these energies �VγZ is no
longer negligible, thus both terms need to be taken into account. Although
the majority of our analysis will focus on the vector hadron correction, in
the next few paragraphs we give a brief summary of the current state of the
�AγZ contribution.

Marciano and Sirlin’s (MS) original calculations separated �AγZ into a
high and low energy part [96, 97, 98],

�AγZ =
5α

2π
(1− 4s2

W )

[
ln
M2

Z

λ2
+ CγZ(λ)

]
. (3.14)

The parameter λ ∼ 1 GeV represents the scale of separation, CγZ gives the
low-energy contribution and the log factor, the high-energy contribution. MS
estimated the low-energy contribution using the Born term for the γZ interfer-
ence diagram that is, instead of including all the states represented in Fig. 3.1,
they only calculated the contribution from the diagram with the proton as
the intermediate state. For the short distance contribution, the quark parton
model was used.

Blunden et al. (BMT) [101, 102] have recently updated this calculation
using the dispersion formalism. While (slightly) improving the precision , they
found that the central values remained in good agreement with the Refs. [96,
97]:

�AγZ = 0.0052(5); MS

�AγZ = 0.0044(4); BMT

where the above values are being compared at E = 0.
There is little argument over the axial-vector hadron contribution at

Qweak energies—mostly because the majority of the contribution comes from
the DIS region where perturbative QCD can still be used. This is in contrast
to the �VγZ term, where the long distance physics plays a much more important
role. Finally, the �AγZ correction has now been calculated [103, 104] up to the
MOLLER experiment’s energy of 11 GeV and its uncertainty remains well
within the error budget of both Qweak and MOLLER.

Aside from including the dispersion expressions for the �AγZ for complete-
ness’ sake, the rest of this analysis will now focus on the�VγZ contribution whose
uncertainty has been subject to much wider debate. Note that since the elastic
contribution has already been evaluated previously Refs. [96, 97, 105, 106] we
will not spend any more time on it here. Additionally since it is suppressed by
an extra Qp

W factor, the elastic part is significantly smaller than the inelastic
�VγZ values determined here.

Gorchtein and Horowitz [107] first applied the dispersion framework to
the �γZ term and showed that because of its strong energy dependence, its
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Figure 3.2: Optical theorem which states that the imaginary part of the for-
ward amplitude is equal to the sum of all possible intermediate states [111].

contribution at Qweak energies was much larger than previously thought [98].
Moreover, they found that the uncertainty on this term was much larger than
Marciano and Sirlin’s earlier estimate. Since this would affect the precision
aims of Qweak it resulted in considerable concern.

A follow-up calculation by Sibirtsev et al. [108] agreed within errors with
the central value, but showed that Ref. [107] suffered from a number of mistakes
including a missing factor of two. The authors of Ref. [108] also argued that
the errors had been overestimated and that it was more reasonable to assume
smaller uncertainties. Rislow and Carlson (in Ref. [109]) again confirmed the
magnitude of the overall value of Gorchtein and Horowitz, but agreed with the
smaller values of uncertainty of Ref. [108].

Since then, Gorchtein et al. [110] revisited their earlier calculation, in-
cluding a more robust discussion of the role of model dependence in �γZ . They
also corrected the errors in their previous work. However, in regards to the
uncertainty they maintained that this was still more than twice that of those
found in Refs. [108] and [109]. As a result of this wide range of uncertainty
values, a detailed analysis of the evaluations was needed in order to move past
the confusion. Before moving on to discuss the different models that have been
used in the literature, the rest of this chapter will be used to introduce the
dispersion formalism.

At forward angles, the real part of the �V,AγZ corrections can be calculated
from their imaginary part using the dispersion relations,

<e�VγZ(E) =
2E

π
P
∫ ∞

0

dE ′
1

E ′2 − E2
=m�VγZ(E ′), (3.15)

<e�AγZ(E) =
2

π
P
∫ ∞

0

dE ′
E ′

E ′2 − E2
=m�AγZ(E ′), (3.16)

where P refers to the Cauchy principal value integral and the crossed terms
are included in the above integrals. Note also that from Eq. (3.15) it is clear
why this contribution vanishes as E → 0 and conversely why the axial hadron
term remains finite at zero energy thus dominating the APV calculations.

From the optical theorem—illustrated diagrammatically in Fig. 3.2—the
imaginary part of the interference amplitude may be written in terms of the
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leptonic (Lµν) and hadronic (Wµν) tensor [100, 107, 108],

2=mM(PV)
γZ = −4

√
2πMGF

∫
d3k′

(2π)32Ek′

(
4πα

Q2

)
1

1 +Q2/M2
Z

LγZµν W
µν
γZ ,

(3.17)

where k′ = k − q is the outgoing electron momentum. The γZ lepton tensor
is defined to be,

LγZµν = ū(k, λ) (geV γµ − geAγµγ5) 6k′ γν u(k, λ), (3.18)

and we remind the reader that geV = −(1 − 4 sin2 θW )/2 (at tree level) and
geA = −1/2 are the vector and axial-vector couplings of the electron to the
weak current, while λ is the lepton helicity. The nucleon initial state hadronic
tensor is

MW µν
γZ = −gµνF γZ

1 +
pµpν

p · q
F γZ

2 − iεµνλρ pλqρ
2p · q

F γZ
3 , (3.19)

where the F γZ
i are the interference structure functions and εµνλρ is the totally

antisymmetric tensor. These structure functions are analogues of the better
experimentally determined electromagnetic structure functions.

Equations (3.18) and (3.19) can be combined to give the imaginary parts
of the hadron vector and axial-vector amplitudes in terms of the γZ structure
functions [100, 107, 108],

=m�VγZ(E) =
1

(s−M2)2

∫ s

W 2
π

dW 2

∫ Q2
max

0

dQ2 α(Q2)

1 +Q2/M2
Z

×
[
F γZ

1 +
s (Q2

max −Q2)

Q2 (W 2 −M2 +Q2)
F γZ

2

]
, (3.20)

and [100, 101, 102],

=m�AγZ(E) =
1

(s−M2)2

∫ s

W 2
π

dW 2

∫ Q2
max

0

dQ2 ve(Q
2)α(Q2)

1 +Q2/M2
Z

×
[

2ME

W 2 −M2 +Q2
− 1

2

]
F γZ

3 , (3.21)

where ve(Q
2) = 1− 4s2

W (Q2), the square of the total centre-of-mass energy is
s = M2 + 2ME, W 2

π = (M + mπ)2 is the invariant mass at pion-production
threshold and Q2

max = 2ME(1 −W 2/s). As in Ref. [101] we include the Q2-
dependence of the fine structure constant α(Q2).

As it turns out, the most important aspect of the �VγZ calculation re-
volves around the γZ structure function inputs. A complete knowledge of
these structure functions would allow for a precise determination of the correc-
tion leaving little room for debate. This is not the case, however, for although
the electromagnetic structure functions have been determined accurately in
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the crucial low-Q2, low-W 2 regions by experiments like E94-110 [112, 113] at
JLab, there is no such data for the γZ structure functions. There have been
extractions of F γZ

2 and xF γZ
3 at much larger values of Q2 and W 2 by the H1

collaboration [114], but this region contributes only a small amount to the total
box correction. Given the lack of empirical data, one must instead used mod-
els of these structure functions as inputs into the expression for �VγZ . As it is
difficult to distinguish between models, the debate surrounding this correction
is perhaps not surprising.

In the next chapter we will review the current set of structure function
models used to determine the �VγZ correction. Included in this analysis will be
a discussion of the uncertainties which arise, particular attention will be paid
to the models used by Gorchtein et al. in Ref. [110] since this is where the
largest quoted uncertainty comes from. Following this we present the AJM
model and the method used to construct these structure functions.

The aim ultimately will be to understand why the uncertainties are as
large or as small as they are given and to use phenomenological information
such as parton distribution functions—which are well understood—to con-
strain these uncertainties. Furthermore, as there is new data on PV electron–
deuteron scattering, we will be able to test the reliability of those constrained
structure functions. By using a consistent approach to the construction of the
interference structure functions we hope to minimise any model dependence
which may affect the final value of �VγZ . This work also provides motiva-
tion for further experimental efforts in studying these important phenomena.
Should the structure functions be measured, a much more precise value of the
�γZ correction would be possible, improving the theoretical determination of
sin2 θW and therefore providing even more stringent tests of the SM.
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Structure functions

Quantum chromodynamics is responsible for some of the most complex and
interesting phenomena observed in nuclear physics. Twoof which stand out
in particular are confinement and asymptotic freedom. The structure of the
colour SU(3) gauge group means that as the energy scale increases, the quark-
gluon coupling vanishes. This is asymptotic freedom and it results in hadrons
appearing to consist of essentially free, point-like particles at large momenta.
At the other end of the scale, confinement occurs. The quark-gluon coupling
grows with decreasing energy—equivalent to large distances—causing the po-
tential between quarks to increase. At large separation, the energy required
to break the bond between quarks is sufficient to create a qq̄ pair out of the
vacuum. Consequently, quarks and gluons cannot be observed in isolation,
but only in the form of bound, ‘colour-singlet’ states. Figure 4.1 illustrates
the behaviour of the strong coupling constant, αs, as a function of momentum
transfer.

A result of these properties of αs, is that it is difficult to study the
internal structure of hadrons since perturbation theory can only be used at
large energies. Below these, the series fails to converge.1 One particularly use-
ful tool for understanding the structure of the nucleon which spans both the
perturbative and nonperturbative regimes are structure functions. First mea-
sured [115, 116] in the late 1960s, these functions generalise the form factors
found from elastic scattering. In fact, the results from these SLAC experi-
ments were essential in the modern acceptance of QCD as they showed the
structure functions’ independence of momentum transfer Q2 for large Q2—a
direct manifestation of asymptotic freedom.

In this chapter we introduce the formalism of structure functions and
their related phenomena. Following a discussion of the deep inelastic scat-
tering region, we describe the parton model before looking at some general
parametrisations used in the Regge region. For the purposes of this thesis,
a robust description of both the electromagnetic (γγ) and interference (γZ)
structure functions is needed over all kinematic regions. Having reviewed those

1The boundary between the perturbative and nonperturbative regions is somewhat
loosely defined and later discussions in Chapter 8 on the moments of structure function
will touch on this issue.

27
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Figure 4.1: The strong coupling, αs, as a function of momentum transfer [117].
The plotted points includes data with next-to-leading order (NLO) and next-
to-next-to-leading (NNLO) theoretical corrections. The three curves represent
alternative choices of the QCD scale parameter Λ.
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models previously used in literature we proceed with an account of the con-
strained Adelaide-Jefferson Lab-Manitoba model in Chapter 5.

4.1 Deep inelastic scattering

The physical process we are concerned with here is shown in Fig. 4.2. In
inclusive scattering, a lepton (for example) with four-momentum k scatters off
a nucleon target. It transfers momentum q, before entering the experiment’s
detectors. The resulting hadronic products, denoted X, are left unidentified.
(Exclusive scattering occurs when all the final products are known, while in
semi-exclusive scattering some are and some are not.) In such an event there
are a number of frequently used kinematic quantities which we list together
here. Unless otherwise stated, we will be working in the target reference frame:

θ: scattering angle of the lepton relative to the incoming beam.

M : mass of the proton.

E: energy of the incoming lepton.

E ′: energy of the outgoing lepton.

ν = p·q
M

= E − E ′: energy transfer of the electron to the target.

Q2 = −q2: momentum transfer of the electron.

W 2 = M2 + 2p · q −Q2: invariant mass squared of the final system.

x = Q2

2Mν
: fraction of the nucleon’s momentum carried by the parton.

y = p·q
p·k = ν

E
: fraction of the energy lost by the lepton.

For the deep inelastic scattering event of Fig. 4.2 the cross section is
given by,

d2σ

dΩdE ′
=
α2

Q4

E ′

E

∑
j

ηjL
µν
j W

j
µν (4.1)

where Ω is the solid angle, α is the fine structure constant, Lµν is leptonic
tensor, and W µν the hadronic analogue. Note that we have already seen these
two tensors in the specific case where γ–Z interference arises (cf. Eqs. (3.17–
3.19) and the surrounding discussion). Although we are primarily interested in
neutral current processes in this thesis, for completeness, we also included the
charge current term for interactions involving the W±. The sum in Eq. (4.1)
is thus over j = γ,W,Z and γZ where the coefficients ηj are,

ηγ = 1 , ηγZ =

(
GFM

2
Z

2
√

2πα

)(
Q2

Q2 +M2
Z

)
,

ηZ = η2
γZ , ηW =

1

2

(
GFM

2
W

4πα

Q2

Q2 +M2
W

)2

. (4.2)
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Figure 4.2: Deep inelastic lN → l′X scattering process.

Depending on the mediating boson(s) involved, the leptonic tensor is
given by,

Lγµν = 2(kµk
′

ν − k · k
′
gµν − iλεµναβkαk

′β) ,

LγZµν = (geV + eλgeA)Lγµν ,

LZµν = (geV + eλgeA)2Lγµν ,

LWµν = (1 + eλ)2Lγµν , (4.3)

where geV and geA are the vector and axial-vector couplings from earlier. We
note that here and elsewhere we follow the Particle Data Group (PDG) [3]
conventions.

The hadronic tensor may be written as,

W µν
j (p, q) =

1

2M

∑
X

〈N(p)|Jµj (0)|X(pX)〉〈X(pX)|Jνj (0)|N(p)〉

×(2π)3δ(4)(q + p− pX), (4.4)

where,

Jµj=γ =
2

3
ūγµu− 1

3
(d̄γµd+ s̄γµs) (4.5)

is the electromagnetic quark current,

Jµj=Z = ūγµ
(

1

2
− 4

3
sin2 θW −

1

2
γ5

)
u

+ d̄γµ
(
−1

2
+

2

3
sin2 θW +

1

2
γ5

)
d+ (d→ s) (4.6)

the weak quark current and we have dropped the larger mass quarks c, b and t.
Equation (4.6) is in fact equivalent to Eq. (2.5), only here the quark fields have
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been included explicitly. Using completeness (ΣX |X〉〈X| = 1) the hadronic
tensor becomes,

W µν
j (p, q) =

1

4πM

∫
d4zeiq·z〈N(p)|Jµj (z)Jνj (0)|N(p)〉

=
1

4πM

∫
d4zeiq·z〈N(p)|

[
Jµj (z), Jνj (0)

]
|N(p)〉 . (4.7)

The constraints of Lorentz and gauge invariance require that the hadronic
tensor be proportional to gµν , pµ and qµ, thus in general,

Wµν =

(
−gµν +

qµqν
q2

)
F1(x,Q2)

+
1

p · q

(
pµ −

p · q
q2

qµ

)(
pν −

p · q
q2

qν

)
F2(x,Q2)

− iεµνλρ
qλpρ
2p · q

F3(x,Q2)

+ iεµνλρ
qλ
p · q

(
Sρ g1(x,Q2) +

p · q Sρ − S · q pρ
p · q

g2(x,Q2)

)
(4.8)

where gµν is the spacetime metric, εµνλρ is the anti-symmetric tensor and gi the
polarised structure functions. The unpolarised structure functions are denoted
Fi. There is no F3(x,Q2) for the electromagnetic case as the photon has only
a vector coupling to the electron. Since the Bjorken scaling variable, x, can be
written,

x =
Q2

2Mν
=

Q2

2p · q

=
Q2

W 2 −M2 +Q2
, (4.9)

the structure functions may alternatively be written as a function of W 2 and
Q2.

For later reference it will be useful to write the structure functions Fi in
terms of the transverse (σT ) and longitudinal (σL) cross sections:

F1(W 2, Q2) =

(
W 2 −M2

8π2α

)
σT (W 2, Q2), (4.10)

F2(W 2, Q2) =

(
W 2 −M2

8π2α

)
ν

M(1 + ν2/Q2)

[
σT (W 2, Q2) + σL(W 2, Q2)

]
.

(4.11)

These relations hold for both the electromagnetic and interference structure
functions. Additionally, one may also define the longitudinal structure function
as the combination of F1 and F2 structure functions,

FL =

(
1 +

Q2

ν2

)
F2 − 2xF1 ,

=

(
1 +

4x2M2

Q2

)
F2 − 2xF1 . (4.12)
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Figure 4.3: Deep inelastic scattering in the quark-parton model.

Thus Eq. (4.1) may be written in terms of structure functions as,

d2σ

dΩdE ′
=

α2

4E2 sin4 θ
2

(
2

M
sin2 θ

2
F1(W 2, Q2) +

1

ν
cos2 θ

2
F2(W 2, Q2)

)
, (4.13)

where, θ is the laboratory scattering angle.
The physical interpretation of the structure functions depend on the

kinematic region in which the scattering event is taking place. In the DIS
region where the strong coupling constant is small, the quark-parton model
may be used. This is not the case for the lower Q2 region, however, where
large αs prevents cross sections from being calculated using perturbation the-
ory. Instead, phenomenological models are employed. Given that resonance
structure is present at low Q2, these parametrisations must necessarily include
such structure also.

4.2 Quark-parton model

At large momentum transfer and invariant mass (DIS region), the nucleon
may be modelled as a collection of quasi-free, point-like quarks and gluons—
generically referred to as partons [118]. In this picture, when an electron col-
lides with a proton, the virtual photon interacts with the partons individually.
In order to calculate the total cross section for the electron–proton scattering
process, one must sum over the cross section for each parton. Moreover, since
the density of partons in the proton differs according to their flavour, and each
parton carries distinct fractions of the total momentum, the cross sections
for the quarks and gluons will be a function of both their flavour and their
momentum fraction x. In Fig. 4.3 we show what takes place diagrammatically.

The structure functions Fi can be expressed in terms of these number
densities, or ‘parton distribution functions’. For the neutral current structure
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functions relevant to this work, we have,[
F γγ

2 , F γZ
2

]
= x

∑
q

[
e2
q , 2eq g

q
V

]
· q(x,Q2),[

F γγ
3 , F γZ

3

]
= x

∑
q

[0, 2eq g
q
A] · q(x,Q2), (4.14)

where q = u, d, s, c, b, t are the quark distribution functions. Because the cross
section for the longitudinally polarized photon, σL, disappears at high ener-
gies, from Eqs. (4.10) and (4.11) it is clear that the F1 and F2 are now both
proportional simply to the cross section of the transverse photon. Thus,

F2(x) = 2xF1(x) (4.15)

and by substituting Eq. (4.14), into Eq. (4.15) we see that the F i
1 are given as,[

F γγ
1 , F γZ

1

]
=

1

2

∑
q

[
e2
q , 2eq g

q
V

]
· q(x,Q2). (4.16)

Equation (4.15) is known as the Callan-Gross relation [119].
In Fig. 4.4 we show an example of the parton densities for the quarks,

antiquarks and gluons in the proton at a particular Q2.

4.3 Modelling structure functions

While the quark-parton model works well in the DIS region, for low momentum
transfer (Q2 . 2.5 GeV2) alternative models are needed. In fact, the low-Q2

region may itself be divided further into a resonance and Regge part. The
rest of this section will describe some of the more commonly used models
for the electromagnetic structure functions. These form the basis of later
constructions of the interference structure functions.

Christy-Bosted parametrisation

In the resonance region, Christy and Bosted (CB) have parametrised the pre-
cision electromagnetic inclusive cross section data from Jefferson Lab’s E94-
110 experiment [113]. For the proton this is described in Ref. [121], and the
deuteron, Ref. [122]. When modelling the structure functions, the transverse
and longitudinal cross sections may be separated into a resonance piece and a
smooth, underlying nonresonance background,

σT,L = σ
(res)
T,L + σ

(bgd)
T,L . (4.17)

The σ
(res)
T,L term involves a sum over the seven dominant resonances:

P33(1232), P11(1440), D13(1520), S11(1535), S15(1650), F15(1680) and an ad-
ditional l = 3 state with mass 1934 MeV. The shape of the background piece
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Figure 4.4: Parton distribution functions of the proton at Q2 = 10 GeV2 [120].

was found by fitting to the scattering data. It is important to point out that
this separation into a resonance and nonresonant part is inherently model de-
pendent since experiments are only able to determine the total cross section.

The Christy-Bosted proton structure functions are in good agreement
with the data, with almost all the experimental points differing from the fit
by less than 5% [121]. Although the deuteron and neutron structure functions
are not quite so precise, still less than 4% of the points deviate by more than
10% [122]. Kinematically, the proton fit is valid for 0 ≤ Q2 < 8 GeV2 and
1.1 < W < 3.1 GeV, with similar bounds for the deuteron. Since this covers a
significant portion of the DIS region, it allows for valuable comparisons between
the PDFs and CB’s parametrisation.

As a result of its accuracy, the CB fit has been used as the basis for
most of the other models utilised. In their construction of the γZ structure
functions, Gorchtein et al. (GHRM) use CB’s resonance cross section in both
their ‘Model I’ and ‘Model II’. (Some modifications to the parameters were
needed to better match their background, however [110].) Carlson and Rislow
(CR) on the other hand, use the complete cross section for their low Q2, low
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Figure 4.5: The interaction of a virtual photon with a proton in the CDP
model.

W 2 region [109, 123]. In contrast Sibirtsev et al. (SBMT) perform their own fit
of the data, incorporating the four resonances P33(1232), D13(1520), F15(1680)
and F37(1950) [108]. They also obtain a good description of the data.

Colour dipole model

Initially formulated [124, 125, 126] in the 1990s, the dipole picture provides a
valid description of γp scattering ranging from Q2 ≈ 0.25 GeV2 all the way up
to Q2 of order hundreds of GeV2 [127]. The W 2 region extends even further,
reaching as high as ∼ 60 000 GeV2 [127]. Scattering in the colour dipole
(CDP) model may be thought of as taking place in three distinct stages; first,
the virtual photon fluctuates into a qq̄ pair, then the quark-antiquark dipole
interacts with the proton, before finally it reforms into a virtual photon again.
This process is illustrated in Fig. 4.5.

The cross section for the γ∗p interaction may be written as [128],

σT,Lγ∗p =

∫
dz

∫
d2r|ψT,Lγ

(
r, z,Q2

)
|2σ(qq̄)p (r, s) , (4.18)

where ψT,Lγ (r, z,Q2) is the transition amplitude for γ∗ → qq̄ for transversely
and longitudinally polarised photons. (The asterisk in γ∗ refers to the fact
that we are considering only virtual photons.) The forward direction is given
by z, while r is the transverse distance between the qq̄ pair and σ(qq̄)p (r, s) is
the cross section for the interaction between the dipole and the proton. Note
that as the transverse spacing between quarks goes to zero, so does the cross
section for the (qq̄)p reaction [127].

GHRM [110] used a hybrid model of the CDP with the generalised vector
dominance model [127, 129] for the background part of the Model I electro-
magnetic cross section. This was then combined with the resonance piece using
Eq. (4.17) to obtain the total cross section.
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Figure 4.6: A Regge fit to pp and p̄p cross sections from Ref. [132].

Regge models

With decreasing energies, the increasing size of the strong coupling, αs, pre-
vents perturbation theory from being a viable technique for describing strong
interactions. Historically, phenomenological models such as Regge theory or
S-matrix theory were used as an alternative way of gaining physical insight
into the reactions that took place. Provided one remained in the appropriate
kinematic region, these models gave a good description of the data. As Regge
parametrisations underlie a number of the models discussed in this work, we
give a brief description of the relevant features here. For more complete ac-
counts we refer the reader to Refs. [130, 131].

In Regge theory the cross sections are given generally as [132],

σtot = Asε +Bs−η (4.19)

where σtot is the total cross section and s centre-of-mass energy squared. The
first term on the right-hand side originates from pomeron exchange, while
the second comes from exchanging the ρ, ω and f mesons. The rest of the
parameters, A, B, ε and η are all found by fitting to data. (Note that although
the values for ε and η are given here as constants in actual fact they will vary
slowly with s [132].) An example of a Regge fit to data from Ref. [132] is
shown in Fig.4.6 giving a good description of data over a large range of

√
s.

The authors of Ref. [110] use a similar Regge parametrisation, in combi-
nation with the vector meson dominance model, to give the background part
of their electromagnetic cross section of Model II. This combination is also
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used in our model. Sibirtsev et al. on the other hand, base their background
piece on the Regge parametrisation of Ref. [133].

Vector meson dominance model

Strongly related to the dipole model discussed previously, the vector meson
dominance model (VMD) approximates the photon state as the sum of vector
mesons which carry the same quantum numbers,

|γ〉 = C0|γ0〉+
∑
V

e

fV
|V 〉 , (4.20)

where fV are the decay constants and the sum is over the ρ, ω and φ mesons.
The |γ0〉 term represents the electromagnetic part of the photon, while hadronic
interactions are given by the e

fV
|V 〉 terms. This model leads to an expression

for the virtual transverse cross section of the form [134, 135],

σT =
∑
V

4πα

f 2
V

(
m2
V

Q2 +m2
V

)2

σV p , (4.21)

where mV is the mass of the vector meson V and σV p is the cross section for
the V p interaction.

However, there is an issue since the above expression accounts for only
80% of the experimental cross section. Because of this, another ‘continuum’
piece,

σCT (W 2, Q2) =

∫
m2

0

dm2dm′2
ρ̃T,L(W 2,m2,m′2)m2m′2

(m2 +Q2)(m′2 +Q2)
, (4.22)

is added to form the so-called generalised vector meson dominance model. This
extra factor accounts for the higher mass hadronic contributions to the photon.
In practice, the off-diagonal m 6= m′ terms are dropped leaving,

σCT (W 2, Q2) =

∫
m2

0

dm2 ρ̃T,L(W 2,m2)m4

(m2 +Q2)2
. (4.23)

The full expressions for the transverse and longitudinal cross sections then
become [134, 135],

σVMD
T = σγN

[∑
V

rV
1

(1 +Q2/m2
V )2

+ rC
1

1 +Q2/m2
0

]
, (4.24)

σVMD
L = σγN

[∑
V

rV ξV
Q2/m2

V

(1 +Q2/m2
V )2

+ rC ξC

(
m2

0

Q2
ln(1 +Q2/m2

0)− 1

1 +Q2/m2
0

)]
, (4.25)
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Table 4.1: Summary of the vector hadron correction results presented in the
literature and the models on which they are based.

Authors <e�VγZ (×10−3) Models Ref.

GHRM 5.46± 2.0 CB, Colour dipole, VMD [110]
SBMT 4.7 +1.1

−0.4 Capella, Regge [108]
CR 5.7± 0.9 CB, Capella, PDFs [109]

where rV ∼ 1/f 2
V gives the fractional contribution from each meson2 and

rC = 1−
∑
V

rV . (4.26)

The cross section σγN is for the γ–N interaction and takes the Regge form
of Eq. (4.19) i.e. it is proportional to Asε + Bs−η, while ξV and ξC account
for any difference in the transverse and longitudinal components of the vector
mesons. In most cases, however, these are simply taken to be equal, ξV = ξC .

In constructing the interference structure functions the continuum piece
in Eqs. (4.24) and (4.25) plays a critical role in quantifying the size of the cross
sections’ uncertainties. The VMD model is used for the background term in
both Model II of Ref. [110] and in our model. (Strictly speaking, this should
be referred to as the generalised vector meson dominance model, however, in
order to avoid confusion, we follow the convention of Gorchtein et al. and
simply refer to it as the vector meson dominance model, or ‘VMD’.)

4.4 γZ interference structure functions

In general, constructing the γZ structure functions from their electromagnetic
counterparts involves first transforming the resonance piece, followed by a sep-
arate modification to the background part. In the next section we discuss the
interference structure functions models which have been used and the uncer-
tainties they generate. A summary of the results for the �VγZ correction found
using these parametrisations is given in Table. 4.1.

Gorchtein, Horowitz and Ramsey-Musolf

Each resonance in the CB parametrisation is modified by a ratio that incorpo-
rates the differences between the electromagnetic and weak neutral amplitudes.
Beginning with the matrix elements of the proton, isospin symmetry allows the
vector part of the Z current to be written in terms of the electromagnetic cur-
rent as follows,

〈R|JµZ |p〉 = (1− 4 sin2 θW )〈R|Jµγ |p〉 − 〈R|Jµγ |n〉 , (4.27)

2Although there appears to be a 1/Q2 dependence in the second term of Eq. (4.25), by
expanding out the logarithm one can check that the cross section vanishes as Q2 → 0.
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with R referring to the specific resonance. Although there is also a contribution
from the strange quarks, for most purposes considered here, it is negligible.
Since the cross sections are proportional to the square of the amplitudes, the
transverse γγ/γZ ratio may be defined as [110],

ξR ≡
σγZT,R
σγγT,R

= (1− 4 sin2 θW )− yR, (4.28)

where

yR =
Ap
R, 1

2

An
∗

R, 1
2

+ Ap
R, 3

2

An
∗

R, 3
2∣∣Ap

R, 1
2

∣∣2 +
∣∣Ap

R, 3
2

∣∣2 , (4.29)

and ANR,λ is the transition amplitude from the proton or neutron to a resonance

with helicity λ = 1
2

or 3
2
. The uncertainties for the yR ratios given by the PDG

[136] and shown in Chapter 5, are considered by GHRM to be large enough
to account for any Q2 dependence which is therefore set to zero. GHRM also
take the longitudinal and transverse ratios to be equal for both Models I and
II.

The construction of the γZ background follows in a similar manner to
the resonance section. As before, the electromagnetic part needs to be modified
by the ratio σγZT,L/σ

γγ
T,L. In Model II of Ref. [110] the denominator is given by

the VMD, while for the numerator, each term is scaled by the ratio κV of weak
and electric charges,

σ
γZ(V )
T,L = κV σ

γγ(V )
T,L , (4.30)

where

κρ = 2− 4 sin2 θW , (4.31a)

κω = −4 sin2 θW , (4.31b)

κφ = 3− 4 sin2 θW . (4.31c)

From Eqs. (4.30) and (4.31) the total ratio of the γZ and γγ cross
sections may be written,

σγZT,L
σγγT,L

=
κρ + κω R

T,L
ω (Q2) + κφR

T,L
φ (Q2) + κT,LC RT,L

C (Q2)

1 +RT,L
ω (Q2) +RT,L

φ (Q2) +RT,L
C (Q2)

, (4.32)

where RT,L
V is the vector meson cross sections normalised by the ρ meson cross

section,

RT,L
V ≡

σ
γγ(V )
T,L

σ
γγ(ρ)
T,L

=
f 2
ρ

f 2
V

(
1 +Q2/m2

ρ

1 +Q2/m2
V

)2

, (4.33)
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and the analogous ratios for the continuum pieces are,

RT
C =

rC
rρ

(
1 +Q2/m2

ρ

1 +Q2/m2
0

)2

, (4.34)

RL
C =

rC
rρ

[
m2

0

Q2
ln(1 +Q2/m2

0) − 1

1 +Q2/m2
0

]/[ Q2/m2
ρ

(1 +Q2/m2
ρ)

2

]
,

(4.35)

with the mass parameter m0 set to 1.5 GeV [110].
The ratios of the γZ and γγ continuum contributions are represented by

the κT,LC parameters for which there is no straightforward method of prescribing
values to these numbers—unlike the discrete meson ratios. As a result, GHRM
equate the electromagnetic and interference continuum term and assign a 100%
uncertainty to this contribution.

Modification of the background in Model I of Ref. [110] again uses the
general form of Eq. (4.32), however here, the RT,L

V are no longer functions of
Q2 and are instead given by the squares of the quark electric charges. The
continuum piece is approximated by the J/ψ meson [110],

{ρ : ω : φ : J/ψ} = {1 : 1/9 : 2/9 : 8/9} . (4.36)

In a similar manner to before, the J/ψ piece is assigned a 100% uncertainty.
Although Gorchtein et al. use two different parametrisations to examine

the model dependence of the �γZ contribution, the final quoted value is an
average of the two [110]. The uncertainty is dominated by the background error
which accounts for about 90% of the total uncertainty.3 Model dependence
makes up for ∼ 2% of the total uncertainty, while the remainder (∼ 8%)
comes from the resonances.

Sibirtsev, Blunden, Melnitchouk and Thomas

To transform the resonances, SBMT use the SU(6) quark model wave func-
tions to obtain an estimate for the ratio of the couplings of the isospin-1/2
resonances. Given the similarity between the weak and electromagnetic cou-
plings, these ratios are set to one. The 3/2 resonances’ ratios on the other
hand, are approximated as (1 +Qp

W ) ≈ (2− 4 sin2 θW ) using isospin symmetry
and conservation of vector current.

Based on the approximate flavour independence of the sea quark distri-
butions and the fact that the ratio of the sum of the electroweak couplings are
almost equal [107],(∑

q

eq g
q
V

)
/

(∑
q

e2
q

)
= 2− 4 sin2 θW

≈ 1 (4.37)

3In their analysis, GHRM take the background uncertainty from the model which gives
the largest error i.e., Model II.
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at low x, Sibirtsev et al. assume the electromagnetic and γZ structure func-
tions to be equal in this region. For larger x where this approximation no
longer holds, they use the ratio,

F γZ
i =

(
F γZ
i

F γγ
i

)LT

F γγ
i , (4.38)

where LT refers to the leading twist structure functions—given, in this case,
by the MRST parton distribution functions [137]. Since the electromagnetic
structure functions are ∼ 40% larger than the interference function, the F γγ

i

may be considered an upper limit on F γZ
i .

The estimated errors on the �γZ correction by SBMT, arising from the
uncertainties in the fit parameters [108], are significantly smaller than GHRM’s
[110]. Averaging the upper and lower errors in Table. 4.1 results in an error
more than two and half times less than those in Ref. [110].

Carlson and Rislow

Resonances in Carlson and Rislow’s structure functions are modified by a sim-
ilar relation to Eq. (4.28). However, their ratio (labelled CR) improves upon
the above two models by including an additional Q2 dependence which is in-
corporated using the MAID model of Ref. [138]. The transition amplitudes in
Eq. (4.29) are calculated using the constituent quark model [109, 123].

For the background, Carlson and Rislow scale CB’s background cross
section by the ratio F γZ

i /F γγ
i averaged over the high energy limit where

F γZ
i /F γγ

i = 2− 4 sin2 θW (4.39)

and the SU(6) quark limit where,

F γZ
i /F γγ

i = 5/3− 4 sin2 θW . (4.40)

In the Regge region, CR use Eq. (4.38) to modify a background given by
Capella et al. [133], while the DIS region structure functions are given by the
PDFs of Ref. [139].

In low-Q2, low-W 2 region, CR assign a conservative 10% error to allow
for the (small) error in CB’s fit and the modifications of the resonances. The
error for the background is given by the extremes of the high energy and the
SU(6) quark limits. Once more the uncertainties are substantially lower than
GHRM’s. Although marginally larger than those found by Sibirtsev et al.,
CR’s errors remain less than half of the estimates of Gorchtein et al.
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Before proceeding with the �VγZ evaluation, we present the details of the AJM
model. By combining the strongest features of previous work with the con-
straints available from parton distributions, we are able to construct γZ struc-
ture functions with significantly reduced uncertainties. Since none of the prior
models employed this method, we argue that the AJM uncertainties most re-
alistically reflect the currently available knowledge on the F γZ

i . Further tests
provided by e–d PVDIS data confirm the robustness of this model.

As for earlier γZ models, the AJM structure functions may be developed
in two steps: the first deals with the foundational electromagnetic structure
functions, and the second, with the transformation into the interference cross
sections. In Section 5.1 we describe the γγ structure functions used for the
entire Q2–W 2 plane. This is followed by a section on the γZ construction. The
rest of the chapter is devoted to an account of the procedure used to constrain
the cross sections and will involve constraints from PDFs and PVES data, as
well as a comparison of the two.

5.1 Electromagnetic parametrisation

In the AJM model, the parametrisation of the electromagnetic structure func-
tions used depends on the kinematic region being studied. For the purposes of
our work we follow Carlson and Rislow [109, 123, 140] and divide the Q2–W 2

plane into separate kinematic areas.1 The regions are shown diagrammatically
in Fig. 5.1:

Region I: Identified by the blue shading, this area is dominated by the
resonance region—roughly given by the bounds Q2 < 2 GeV2 and
W 2 < 4 GeV2. (While there remains some resonance structure out-
side of this region, their contributions become increasingly modest.)

1Note that these divisions differ from CR whose resonance region is given by W < 2.5
GeV, the Regge region by, Q2 < 5 GeV2 and W > 2.5 GeV and the DIS by Q2 > 5 GeV2

and W > 2.5 GeV [109].

43
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The outer boundaries of this region overlap with both the Regge
and DIS regimes.

Region II: This red shaded area is best described using Regge theory.

Region III: The structure functions at kinematics within this green area
are given by the parton distribution functions discussed in the pre-
vious section. Although the outer boundaries of this region are
infinite, in practice, we are constrained by the energy limits of the
PDF parametrisations.

In addition to the above named regions, Fig. 5.1 also contains unlabelled
grey (Q2 > 0 GeV2, M2 < W 2 < (M +mπ)2 GeV2) and white (Q2 > 10 GeV2,
(M + mπ)2 < W 2 < 4 GeV2) sections. (M is the mass of the proton, and
mπ the pion mass.) The former represents the elastic region, while the latter
strictly speaking, is the resonance regime. However, since the resonances die off
as a factor of 1/Q4, the white region’s contribution to the structure functions is
negligible. The background piece in this section is also negligible. Although the
various kinematic regimes have been given well defined boundaries, physically,
there is clearly overlap between regions. It will be necessary later to show
that the calculation of the �VγZ correction is not dependent upon these ‘hard’
boundaries.

For the low-Q2, low-W 2 region (Region I), we use Christy and Bosted’s
parametrisation of the electromagnetic structure functions described in Sec-
tion 4.3. The limits of their parametrisation extend from Q2 = 0 up to 10
GeV2 and for W 2, between (M +mπ)2 and 9 GeV2. For larger W 2, the back-
ground quickly dies off and the parametrisation is no longer a good description
of the data. Although for our model we do not directly use the Q2 > 2.5 GeV2,
W 2 > 4 GeV2 section of the parametrisation—instead incorporating it into the
DIS region—the fact that multiple models are valid in the same region allows
for useful comparisons. Indeed, this is what allows the resonance region of
the γZ structure functions to be constrained by the PDFs. Even though the
resonances contribute to the entire Region I, in practice, the resonance form
factors are strongly suppressed as Q2 increases. Thus beyond Q2 ≈ 2 GeV2

these contributions are negligible.

Regge theory is valid for moderate Q2 and up to large W 2, and thus
most applicable to Region II. For this region, the VMD+Regge description
of Alwall and Ingelman [134] is combined with the resonance part of CB to
give the full cross section over Q2 < 2.5 GeV2 and W 2 > 9 GeV2. Note also
that the resonance parameters of CB have been slightly adjusted in order to
better match the background of Ref. [134]. (The modified values are given in
Table II of Ref. [110].) As in the large-Q2 area above Region I, however, the
contribution from the resonances will be small. In addition, we point out that
this VMD+Regge parametrisation is the Model II used by GHRM, although
in their case, it was extended to incorporate the entire kinematic region of the
dispersion integral.
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Figure 5.1: Separation of the Q2–W 2 plane into the resonance, Regge and DIS
regions [90].

In the top half of Fig. 5.2 we show the matching at the boundaries be-
tween Regions I and II, of the CB and VMD+Regge parametrisations for sev-
eral values of Q2. It is clear from these plots that there is excellent agreement
between the CB and VMD+Regge parametrisations. We follow CB in assign-
ing a 5% error to the Region I electromagnetic structure functions. Comparing
the VMD+Regge parametrisation with data reveals that a 5% error on these
structure functions is sufficient to account for any variation between model
and experiment.

Structure functions in the remaining large-Q2, large-W 2 region (Re-
gion III) are computed from PDFs given by Alekhin et al. (ABM11) [141].
These global fits are calculated up to next-to-next-to-leading order and in-
clude both leading-twist and twist-4 contributions. Target mass corrections
were also accounted for in their constructions. In Chapter 8 we will more
closely examine the size of higher-twist contributions to the moments of the
structure functions, here however, we employ the full structure functions in
the �VγZ expression. Although the range of these PDFs extends further down
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Figure 5.2: Proton F γγ
2 structure function versus W 2 at various fixed Q2 values

for the low-W CB fit [121] (blue solid), the high-W VMD+Regge [134] (red
dashed) and ABM11 [141] (green dotted) parametrisations. The boundaries
between the Regions I, II and III are indicated by the vertical lines at W 2 = 4
and 9 GeV2.
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Figure 5.3: As in Fig. 5.2 but with the proton F γγ
2 structure functions held

fixed at W 2 = 4, 6, 9 and 12 GeV2 and plotted against Q2.

in Q2 and W 2 than shown here, the lack of resonance structure means that
the parametrisation of CB more accurately exhibits the physics behind these
functions. Of course, alternative PDF fits such as those used in Refs. [142,
143, 144, 145, 120] could also be used instead. (An evaluation of �γZ using the
structure functions from Ref. [120] yielded similar results.)

Just as it was important that the CB and VMD+Regge parametrisations
matched at their boundaries, so is the case with the DIS structure functions. In
the bottom half of Fig. 5.2 we plot the DIS F γγ

2 structure function along with
the CB and VMD+Regge parametrisations.2 As before, the overlap between
the different regions is very good.

In addition to plotting F γγ
2 as a function ofW 2—while holdingQ2 fixed—

it is helpful to see the transition between regions as Q2 varies. Figure 5.3
illustrates this for several values of W 2 and shows that along this section of
the Q2–W 2 plane, the structure functions of Alekhin et al. and CB match
exceptionally well. In the low W 2 region where all three are valid there is also
good agreement. However, at higher W 2 (W 2 & 10 GeV2), the VMD+Regge
model deviates from the DIS structure functions at the boundary between
Regions II and III. Nevertheless since the contribution to the �VγZ correction
at these W 2 values is small, the effect is negligible.

2We may include the VMD+Regge structure function at Q2 = 2.5 GeV2 since it is still
valid at this momentum.
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5.2 AJM γZ interference structure functions

The next step in the procedure involves modifying the above model structure
functions to obtain expressions for their interference analogues. In this section
we begin by transforming the CB parametrisation, before following with the
construction of the VMD+Regge model interference structure functions. Hav-
ing laid out these details we discuss the PDFs used in the DIS region of the
dispersion integral.

For the resonance part, σ
(res)
T,L , of Regions I and II, the total cross section

[121],

σT,L = σ
(res)
T,L +σ

(bgd)
T,L , (4.17)

we use the ratio ξR given by Eq. (4.28) and yR defined in terms of the nucleon
transition amplitudes (as in Eq. (4.29)), to modify each of the seven resonances
present in the fit. Although this method follows that of GHRM [110], the as-
signment of uncertainties to ξR for each of these resonances differs significantly.
In Ref. [110] the errors on the yR parameters are found by taking the extremal
values of the helicity amplitudes ANR,λ. This assumes that the distribution is
uniform which is in marked contrast to the more conventional Gaussian distri-
bution. By adding the uncertainties linearly, GHRM overestimate the errors
on ξR and thus for the AJM model, we use the standard Gaussian approach,
adding the errors in quadrature. Note, however, that when GHRM combine
the overall errors from different segments for the final <e�VγZ value, they add
them in quadrature.

A comparison between the two methods for adding the total helicity
amplitude errors is shown in Table 5.1. In this table we present the calculated
yR for the proton, neutron and deuteron. (Only the errors added in quadrature
are shown for the latter two.) Although it is just the proton’s yR values which
are needed in the �VγZ calculation, for the evaluation of the PVDIS asymmetry,
the deuteron’s will also be required. While the PDG [3] assigns zero uncertainty
to the (isospin-3

2
) P33(1232) and F37(1950) resonances’ helicity amplitudes, in

order to be conservative we follow GHRM [110] in placing a 10% error on the
P33(1232) amplitude and a 100% error on the F37(1950) resonance.

In the course of this work the determinations of the helicity amplitudes
in the PDG were updated, which allowed us to use these latest values in our
numerical calculations. To compare with GHRM, however, we also computed
yR and its uncertainties using the earlier 2010 PDG values [136]. Since the
only resonances whose values differ across the two versions are the D13(1520)
and P11(1440) resonances the overall effect is minimal. In order to be complete
we include the earlier values in parentheses in Table 5.1 where the errors have
again been added in quadrature.

For the background piece in Eq. (4.17) the electromagnetic cross sec-
tions are transformed to their γZ analogues via the ratio in Eq. (4.32)—as in
Model II of Ref. [110]. This ratio is used for both the kinematic region where
the CB background is valid, and the VMD+Regge region. The distinction
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Table 5.1: Electromagnetic to γZ resonance cross section transformation ratios
yR from Eq. (4.29) for the proton, neutron and deuteron in the AJM model,
compared with the proton ratio in the GHRM model [110]. The AJM model
values in parentheses use helicity amplitudes from the earlier 2010 PDG [136],
as utilized by GHRM. The errors labeled with the asterisks (∗) are values
corrected [146] from those in Ref. [110].

P33(1232) P11(1440) D13(1520)
p (AJM) −1.0± 0.1 −0.67± 0.17 −0.84± 0.17

(−0.62± 0.16) (−0.77± 0.08)
p (GHRM) −1.0± 0.1 −0.62+0.19

−0.20 −0.77+0.122
−0.125

(∗)

n (AJM) −1.0± 0.1 −1.50± 0.39 −0.85± 0.15
d (AJM) −1.0± 0.1 −0.92± 0.27 −0.85± 0.14

S11(1535) S11(1665) F15(1680) F37(1950)
−0.51± 0.35 −0.28± 0.41 −0.27± 0.08 −1± 1

−0.51+0.35
−0.71 −0.28+0.45

−0.69
(∗) −0.27+0.10

−0.12 −1± 1
−1.96± 1.32 −3.53± 5.06 −2.50± 1.01 −1± 1
−0.81± 0.64 −0.52± 0.78 −0.49± 0.14 −1± 1

between the AJM description and Models I and II lies in the fact that here,
instead of assuming the κT,LC parameters to be the same for the γγ and γZ con-
tinuum pieces, we determine κT,LC by insisting that the γZ structure functions
match at the borders between the different regions. As illustrated in Fig. 5.1,
these boundaries occur at Q2 = 2.5 GeV2 and W 2 = 9 GeV2. By making this
assumption, we will see that strong constraints are placed on κT,LC and results
in the uncertainties of the background contribution being much smaller than
those determined previously.

To complete the AJM model we use the PDF structure functions of
Alekhin et al. [141, 147] in the region where Q2 > 2.5 GeV2 and W 2 >
4 GeV2. At the parton level, the modification to the γZ case is much more
straightforward and is implemented by replacing the quark electric charges, eq
(present in the PDF expressions of the F γγ

i ), by the weak vector charges, gqV
i.e. e2

q → 2eq g
q
V as in Eq. (4.14).3 Since there is no data for the interference

structure functions at low Q2, the values for the higher-twist contributions to
F γZ
i were taken to be the same as those in F γγ

i [147]. In order to account for
this lack of empirical knowledge, we assign a 5% uncertainty to the F γZ

i in
the DIS region. Note, however, that because of the nature of the longitudinal
structure function which is expressed as a difference between the F γZ

2 and F γZ
1

3The additional factor of 2 takes into account the definitions of the gqV used here.
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structure functions, the F γZ
L relative uncertainties will necessarily be larger.

5.3 Phenomenological constraints

In Section 4.4 we pointed out that the central value of <e�VγZ quoted in
Ref. [110] is given by averaging Models I and II. With regards to the uncer-
tainty, the background error is taken from the model with the larger of the two
errors—in this case Model II. Since the background uncertainty is almost four
times larger than the resonances uncertainty and dominates GHRM’s final er-
ror, any reduction here would significantly lower the total <e�VγZ uncertainty
value. In order to do so, we examine background errors in Ref. [110] more
closely.

Gorchtein et al. transform their nonresonant background by multiplying
the VMD+Regge background with a γγ/γZ cross section ratio,

σ
γZ(bgd)
T,L =

(
σγZT,L
σγγT,L

)
σVMD
T,L , (5.1)

where σVMD
T,L has been previously defined in Eqs. (4.24) and (4.25). The ratio

(σγZT,L/σ
γγ
T,L) used to rescale the electromagnetic cross section was defined in

Eq. (4.32), with the uncertainties for κV (V = ω and φ), estimated by com-
paring the ratios RT,L

V with the values obtained using HERA’s data on vector
meson electroproduction [148]. The difference between the two was taken as
the uncertainty. Since, as shown in Fig. 13 of Ref. [110], there is good agree-
ment between the data and the VMD ratios, these uncertainties are small.

The final contribution to the background error comes from the contin-
uum parameters κT,LC in Eq. (4.32). Because the VMD model provides no
method for estimating κT,LC as it did for the κT,LV values, GHRM equate the
γZ and γγ parameters before assigning a 100% uncertainty to γZ continuum
parameters. In Fig. 5.4 we compare the resulting F γZ

2 structure functions with
those given by the ABM11 parton distribution functions [141]. It is clear that
the uncertainty on GHRM’s structure function is significantly overestimated
when compared with the global fits. Indeed, in Fig. 5.4 we have only included
the uncertainty which comes from the κT,LC values, should the full set of uncer-
tainties be incorporated, this difference would be even greater. In the region
where both GHRM’s model and the PDF parametrisation are valid, one would
not expect such a difference in magnitude between the two uncertainties. Ad-
ditionally, the central curves for the model lie significantly above those given
by Alekhin et al.

In spite of the fact that the VMD description offers no insight into the
true values of κT,LC , we will see how parton distribution functions may be used
to constrain the continuum term. Furthermore, the recent PV data from the
Jefferson Lab E08-011 electron–deuteron scattering experiment [56, 93] will
be used to provide additional checks on these constraints. By the end of this
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Figure 5.4: Comparison of the proton F γZ
2 structure function in the

VMD+Regge model (Model II) of GHRM [110] (red dashed) with the ABM11
global parametrisation [141] (green dotted), for fixed Q2 (top panels) and fixed
W 2 (bottom panels). Note that the VMD+Regge model only includes un-
certainties from the continuum part of the background, while the ABM11
parametrisation includes an overall 5% error.

analysis we will show that these constraints help to significantly reduce the
uncertainty on the F γZ

i structure functions.

Constraints from PDFs

At high Q2 and W 2 DIS structure functions are well described by the leading-
twist PDFs. Additional corrections such as those coming from the target
mass or higher twists can also be included to account for any remaining 1/Q2-
suppressed effects. However, as one moves into the low-Q2, low-W 2 region
nonperturbative physics begins to take over and the parton description breaks
down. Nevertheless there remains a region in the Q2–W 2 plane where the CB
fit to data overlaps with global PDFs [120, 141, 142, 143, 144, 145]. It is in
this region where, by demanding that the CB-based parametrisation and the
PDFs match, we may constrain the background contribution to the interference
structure functions.

The AJM values for κT,LC are calculated by equating the cross section
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ratios σγZT,L/σ
γγ
T,L in Eq. (4.32) with those given by the DIS structure functions,

σγZT
σγγT

=
F γZ

1

F γγ
1

∣∣∣∣∣
DIS

,
σγZL
σγγL

=
F γZ
L

F γγ
L

∣∣∣∣∣
DIS

, (5.2)

where we use the ABM11 parametrisation [141] for the PDF structure func-
tions. (From Eqs. (4.10), (4.11) and the expression for the longitudinal struc-
ture function in terms of F1 and F2, it is relatively straightforward to show
that left- and right-hand sides of the above equations are equivalent.) The
uncertainties assigned to the PDFs are, 5% uncertainty for the F γZ

1 and 40%
uncertainty for F γZ

L , where as explained earlier, the larger error in the longi-
tudinal structure function comes from that fact that it involves a difference
between the F γZ

1 and F γZ
2 . To be conservative these errors were chosen in

spite of the fact that they are larger than those quoted by Alekhin et al. in
Ref. [141].

Fitting for the continuum values required taking the minimum χ2 over
a number of kinematic points in the Q2–W 2 region where the descriptions
overlapped. In order to check any dependence of the fitted κT,LC parameters on
Q2 and W 2, we held the momentum transfer fixed at Q2 = 2.5, 6 and 10 GeV2

and considered several values of W 2 ranging from 4 GeV2 to 13 GeV2 for each
Q2 value. As can be seen from Fig. 5.5, although there is some dependence
on the kinematics it is relatively small and for κTC decreases significantly with
larger Q2. The longitudinal piece on the other hand has, as might be expected,
larger dependence on W 2 as Q2 is increased.

The quoted values of the κT,LC parameters were determined by taking
the average over the complete set of Q2 and W 2 points, with the final value
shown by the black horizontal line in Fig. 5.5. The error bars were calculated
by combining uncertainties of the parton distributions with those coming from
the W 2 dependence of κT,LC . As the continuum parameters are correlated for
each set of Q2 values, a conventional χ2 fit would underestimate the errors.
Instead we add in quadrature the values coming from the above mentioned
uncertainties.

To estimate the W 2 dependence, we averaged the difference of the max-
imum and minimum κTC central values for the Q2 set which showed the largest
variation over W 2. For the transverse case this was Q2 = 2.5 GeV2, while for
κLC the largest variation occurred at Q2 = 10 GeV2. The second set of errors
comes from the PDFs and is given by the ‘data’ point which had the largest
uncertainties. For both κTC and κLC this occurred at Q2 = 2.5 GeV2.

Using this method for constraining the continuum parameters we found,

κTC = 0.65± 0.14 , κLC = −1.3± 1.7 . (5.3)

Comparing with those from Gorchtein et al., our uncertainty on κTC is approxi-
mately 5 times smaller. Interestingly, the κLC parameter is larger than GHRM’s
by ∼ 160%. However, because the longitudinal part of the structure function
only contributes a small amount to the final <e�VγZ correction, this large error
does not have an adverse effect on the final <e�VγZ uncertainty.
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Figure 5.5: Continuum parameters κTC (top) and κLC (bottom) fitted to the DIS
data, parametrised by the ABM11 global QCD fit [141], as a function of W 2

for fixed Q2 = 2.5 GeV2 (red triangles), 6 GeV2 (blue squares), and 10 GeV2

(green circles). The average values 〈κT,LC 〉 are indicated by the solid lines, with
the shaded band giving their uncertainty. Note that some of the points have
been slightly offset for clarity.
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Figure 5.6: Proton F γZ
2 structure function versus W 2 at various fixed Q2 values

for the low-W CB fit [121] (blue solid), the high-W VMD+Regge [134] (red
dashed) and ABM11 [141] (green dotted) parametrisations. The boundaries
between the Regions I, II and III are indicated by the vertical lines at W 2 = 4
and 9 GeV2.
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Figure 5.7: Proton F γZ
2 structure function versus Q2 at fixed W 2 = 4, 6, 9 and

12 GeV2 for the CB fit [121] (blue solid), the ABM11 PDF parametrisation
[141] (green dotted), and the VMD+Regge model [134] (red dashed), with the
boundaries between Regions I, II and III indicated by the vertical lines at fixed
Q2.

In Fig. 5.6 we plot the F γZ
2 structure function which results from con-

straining the κTC and κLC for Q2 values ranging from Q2 = 0.05 GeV2 to
10 GeV2. As can be seen, the descriptions for the three regions agree re-
markably well over the entire Q2 range. Not only is there good overlap of the
uncertainties, but the central values themselves show excellent matching at
the boundaries. As in Fig. 5.4, the uncertainties shown here are only those
which stem from the continuum parameters. This is so that we may compare
directly with those errors estimated by GHRM. It is evident from Figs. 5.4 and
5.6 that the constraints placed on the continuum parameters have significantly
reduced the uncertainty on the resulting γZ structure functions. This is also
seen in Fig. 5.7 where we hold W 2 fixed and plot the structure functions as a
function of Q2.

For the total background uncertainty the errors coming from the vec-
tor meson ratios, RT,L

ω and RT,L
φ , in Eq. (4.32) must also be included. As

in Ref. [110] we determine the uncertainties for these values by taking the
difference between the HERA experimental data [148] and the VMD model
prediction. It is also assumed that the transverse and longitudinal ratios are
equal, i.e. RT

ω = RL
ω and RT

φ = RL
φ . By adding these uncertainties in quadra-

ture with those coming from the continuum parameters and the resonances,
we obtain the total error for the γZ structure functions.

The difference between the total uncertainties of the AJM model and
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GHRM’s Model II may be further compared by evaluating the inelastic parity-
violating asymmetry. Since there is data, albeit a small amount, on this phe-
nomenon for both the proton and deuteron it is important to test both these
models with the available experimental values. The asymmetry may be written
as,

APV =

geA

(
GFQ

2

2
√

2πα

) xy2F γZ
1 +

(
1− y − x2y2M2

Q2

)
F γZ

2 +
geV
geA

(
y − 1

2
y2

)
xF γZ

3

xy2F γγ
1 +

(
1− y − x2y2M2

Q2

)
F γγ

2

,

(5.4)

where F γZ
3 is the axial-vector structure function.

As before, the cross section for the F γZ
3 is separated into a background

part and a resonance part. For the resonances we use the parametrisation
of Lalakulich et al. [149, 150, 151] who give expressions for the axial-vector
transition form factors, while background part of the cross section follows CR’s
example [123] and uses a scaled version of the electromagnetic cross section.
This is done by taking the average of the x→ 0 limit, where F γZ

3 = 0 and the
quark model limit, where F γZ

3 = 10/3F γγ
1 thus giving, F γZ

3 = 5/3F γγ
1 [123].

In the case of the deuteron, the rescaling factor becomes, F γZ
3 = 9/5F γγ

1 .
Since the contribution to the overall asymmetry from the axial-vector structure
function is small ( ∼ 10%) the 100% uncertainty assigned to this structure
function will not have an overly large effect on the total asymmetry.

In Fig. 5.8 we compare the AJM and GHRM models’ determination of
the inelastic asymmetry with the value measured by the G0 experiment at
JLab [91]. With a beam energy of E = 0.69 GeV and momentum transfer
Q2 = 0.34 GeV2, this data point sits in the kinematic area of the ∆ resonance
region. Although the central values show good agreement with the data, the
large uncertainty prevents any additional constraints from being placed on
the γZ structure functions. As expected, the uncertainties on the constrained
AJM model predictions are smaller than those predicted using Model II of
Ref. [110]. This is especially so in the higher W region. The asymmetry in the
errors follows from the fact that we use the upper and lower values of the F γZ

i

structure functions in Eq. (5.4) in order to compute the APV uncertainty.
At larger Q2 where JLab experiments more commonly explore, Fig. 5.9

shows that for the kinematics, E = 6 GeV and Q2 = 2.5 GeV2, the difference
between the uncertainties of the two models is even more pronounced. In this
kinematic region the errors computed using the GHRM model are ∼ 4 times
greater than those calculated using the constrained AJM structure functions.
Further comparison between the PDF [141] asymmetry is given by the dotted
green line—shown only as far as W = 2 GeV, since below this region the
perturbation theory is no longer a good description of the physics.

While the AJM model’s error is certainly larger than that of the PDF
parametrisation, it remains of a compatible magnitude. The GHRM model on



Phenomenological constraints 57

ææ

1.5 2.0 2.5 3.0

-120

-100

-80

-60

-40

W HGeVL

A
PVp

�Q2
Hpp

m
G

eV
-

2 L GHRM

ææ

1.5 2.0 2.5 3.0

-120

-100

-80

-60

-40

W HGeVL

A
PVp

�Q2
Hpp

m
G

eV
-

2 L AJM

Figure 5.8: Proton parity-violating inelastic asymmetry APV/Q
2, measured in

parts per million (ppm) GeV−2, as a function of W , at fixed incident energy
E = 0.69 GeV and Q2 = 0.34 GeV2, for the GHRM Model II [110] (top) and
the AJM model (bottom). The data point at W = 1.18 GeV (black circle) is
from the Jefferson Lab G0 experiment [91].
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Figure 5.9: Proton parity-violating inelastic asymmetry APV/Q
2 as a function

of W , at fixed incident energy E = 6 GeV and Q2 = 2.5 GeV2, for the GHRM
Model II [110] (top) and the AJM model (bottom). The asymmetry computed
directly from PDFs [141] is represented by the green band.
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the other hand clearly overestimates the asymmetries errors in the kinematic
region where the DIS structure functions are also valid. Although the PDF
parametrisations are not of themselves accurate descriptions of the structure
functions in the resonance region, we emphasise that the constraints which
are placed by the boundary matching conditions mean that the errors on the
interference structure functions in the low-Q2, low-W 2 region must also be
significantly constrained. In the next section we test the AJM model further
by comparing with recent PVDIS data from electron–deuteron scattering.

Deuteron asymmetry

In 2013, the E08-011 experiment released results for PV electron–deuteron
inelastic scattering in the resonance region [56]. This was followed by DIS
asymmetries published earlier this year [93]. While the DIS data was unavail-
able at the time, we were able to use the resonance data to independently
check the accuracy of the γZ structure functions constructed using our pro-
cedure. Given the large dependence of <e�VγZ on the resonance region, the
investigation of the resonance structure functions is particularly important.
Furthermore, the AJM model could still be used to predict the DIS asymme-
tries of which the numerical values are shown in Table 5.2. In Chapter 6 we
compare these predictions with the experimental results.

The asymmetry was measured at W = 1.26, 1.59, 1.86 and 1.98 GeV,
with the Q2 values extending from as low as 0.76 GeV2 and up to as much
as 1.47 GeV2. These data points are compared with the AJM model deter-
minations in Fig. 5.10. (Dividing the deuteron PV asymmetry, AdPV, by Q2

allows the various experimental values to be displayed on the same plot.) As
before, the input deuteron structure functions have been constrained by using
the parton description [141], where F d

i is simply,

F d
i = F p

i + F n
i ; i = 1, 2, L (5.5)

and this is true for both the electromagnetic and interference structure func-
tions. For the deuteron, the constraints from PDFs give κTC(d) = 0.79 ± 0.05
for the continuum parameter of the transverse cross section. The resulting
asymmetry is for the most part, in excellent in agreement with the experimen-
tal data [56], although at Q2 = 0.95 GeV2 where the ∆ resonance dominates
there is a small difference.

It is difficult to understand theoretically the variation between the model
prediction and the E08-011 ∆ resonance data point since the theory value de-
pends only on isospin symmetry and the assumption that vector current is
conserved. Perhaps the discrepancy is a result of the nonresonant background
having a stronger isospin dependence [152] than previously estimated. How-
ever, the difference is still . 2σ. Furthermore, from Fig. 5.8 it is clear that the
models agree well with the ∆ resonance G0 data [91] point even though the
errors are significantly larger.

For the longitudinal continuum parameter, the matching with the global
PDF structure functions of Ref. [141] give κLC(d) = 0.2± 3.4. The propagation
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Figure 5.10: Deuteron parity-violating asymmetry AdPV/Q
2 as a function of

W for incident electron energy E = 4.9 GeV (top) and E = 6.1 GeV (bot-
tom). The data points from the Jefferson Lab E08-011 experiment [56] at
W = 1.26 (green square), 1.59 (red circle), 1.86 (blue triangle) and 1.98 GeV
(black diamond) correspond to average values of Q2 = 0.95, 0.83, 0.76 and
1.47 GeV2, respectively. The AJM model uncertainties (inner dashed band)
are constrained by matching the continuum parameters κT,LC (d) to the DIS
region γZ structure functions [141], and are compared with those computed
with errors on κT,LC (d) of 100% (outer dotted bands) and 25% (inner dotted
bands).
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Figure 5.11: As in Fig. 5.10, but with the AJM model asymmetries (solid) and
their uncertainties (dashed) constrained by the E08-011 data [56]. Note the
different scale on the y-axis to that in Fig. 5.10.
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Table 5.2: Parity-violating deuteron asymmetries in the AJM model at the
kinematics of the E08-011 experiment [56]. The asymmetries are computed
with the continuum parameters κT,LC (d) constrained by the E08-011 data, or
by matching to the DIS region described in terms of PDFs. Note that the
points marked with asterisks (∗) are predictions.

APV/Q
2 (ppm GeV−2)

E (GeV) W (GeV) Q2 (GeV2) PDF constrained E08-011 constrained
4.9 1.26 0.95 −93.7+8.8

−9.0 −93.1+8.8
−9.0

4.9 1.59 0.83 −82.7+9.7
−9.9 −80.1+10.1

−10.3

4.9 1.86 0.76 −86.2+6.7
−6.9 −82.4+7.9

−8.0

6.1 1.98 1.47 −84.7+6.2
−6.4 −79.2+8.6

−8.8

6.1 2.03 1.28 −84.9+6.2
−6.4

(∗) −79.7+8.4
−8.6

(∗)

6.1 2.07 1.09 −85.2+6.2
−6.4

(∗) −80.3+8.2
−8.3

(∗)

6.1 2.33 1.90 −82.7+6.3
−6.5

(∗) −76.5+9.3
−9.3

(∗)

of this error into the total AdPV uncertainty is problematic as a result of the
nature of the CB parametrisation [121], we may, however, use the uncertainties
of the proton κT,LC values to take into account the errors from the longitudinal
continuum parameter instead. The uncertainties for both κTC and κLC have
been included in Fig. 5.10. For comparison, we also include in the plot an
estimate of the error using a 100% uncertainty for the continuum parameters
as in Ref. [110]. By following GHRM’s example, the uncertainty for the PV
asymmetry at W & 1.8 GeV is approximately 6 times larger than those from
the AJM prediction. Even with a 25% error, the total uncertainty on AdPV

is larger than the AJM model’s, although they are more compatible than
GHRM’s.

In the same way that the continuum parameters were constrained using
the PDFs, as a check, we constrain the κTC(d) by fitting to the E08-011 data
points instead. Such a fit results in κTC(d) = 0.69±0.13, which agrees well with
the PDF constraints within errors. (Alternatively, one may omit the discrepant
∆ point from the fit and obtain a slightly greater value, κTC(d) = 0.72± 0.13.)
Since the CB parametrisation provides only the F γγ

1 deuteron structure func-
tion explicitly—the longitudinal F γγ

L is obtained by the ratio R = σγγL /σ
γγ
T

which is assumed to be the same for the deuteron as the proton—it is not pos-
sible to use the experimental data points to directly constrain the longitudinal
continuum parameter as previously. Nevertheless, the longitudinal structure
function errors may still be propagated through to the asymmetry by including
the uncertainties of the κT,LC values for the proton in the analogous σγZL /σγZT
ratio. Ideally, a parametrisation of the deuteron F γγ

L would be constructed
explicitly which would allow for a more accurate determination of κLC(d) and
straightforward propagation of errors.

Once more the predicted asymmetries are in good agreement with the
e–d scattering data. Comparing Fig. 5.11 with 5.10 it is also clear that the
two methods give very similar predictions, with the data constrained central
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AdPV values only marginally higher than those constrained by PDFs. Fur-
thermore, the uncertainties which result remain three to four times smaller
for W & 1.8 GeV than those estimated using the 100% uncertainty. Even
the 25% errors give final asymmetry uncertainties which are larger than those
from data constraints. The agreement between the two methods of predictions
and the data points gives us confidence in the reliability of our method for
constraining the proton γZ structure functions in the low-Q2, low-W 2 region
which dominates the <e�VγZ correction.

To complete this section, in Table 5.2 we show the determination of the
deuteron asymmetries and their uncertainties calculated using the constraints
coming from the PDFs and those from the E08-011 experiment. The AJM
model’s prediction (identified by asterisks) for the DIS asymmetries are also
included in this table. Now that we have a construction of the proton γZ
structure functions, and successfully shown the reliability of this model, the
�VγZ correction may be calculated. In the following chapter we show the energy
dependence of this contribution and determine the size of its uncertainty for
the Qweak and MOLLER experiments.





6

The �VγZ correction

Having constructed the AJM model using constraints from parton distribu-
tions and having shown the reliability of this model by testing it with empirical
data from the PV electron–deuteron experiment, we are now in the position
to calculate the �VγZ correction. Furthermore, since we have developed a good
understanding of where the uncertainties in the AJM model come from and
why they differ from Model II of Gorchtein et al. [110], it will be relatively
straightforward to understand any differences found in the estimated uncer-
tainty on the γZ box. Given the recent debate surrounding the �VγZ correction
and the size of that uncertainty, this is particularly important.

In this chapter, the energy dependence of <e�VγZ and its associated
error are examined in some detail. While the <e�VγZ correction needs to be
determined for both Qweak and MOLLER, the variation in the experimental
kinematics of the two means that different aspects of the calculation need to be
emphasised. These calculations are therefore dealt with in separate sections.
In Section 6.1 we examine the <e�VγZ correction to Qweak, while Section 6.3
contains the MOLLER analysis. A comparison with earlier work is possible
for the Qweak evaluation, however, for the larger energies, <e�VγZ has not yet
been calculated and thus our work represents the first determination of this
important background correction to the MOLLER experiment at ∼ 11 GeV. In
between these two sections, the parity-violating DIS asymmetries which were
predicted in Table 5.2 of Chapter 5 will be revisited and compared with the
results from Ref. [93]. We will also predict the proton inelastic asymmetry for
a possible Qweak measurement [153] in this section.

Because of the nature of the break up of the various regions’ contribu-
tions to <e�VγZ at MOLLER energies, additional checks on the model depen-
dence will be required. As we will see, Region II dominates the MOLLER
<e�VγZ contribution and by constructing a number of other models, we in-
vestigate the possible model dependence of the Regge contribution and how
this might affect the final uncertainty. Another possible source of error lies
in the kinematic dependence of the continuum parameters; this issue is dis-
cussed for both Qweak and MOLLER. Note that since κLC plays only a small
role in the final uncertainty we may concentrate simply on the transverse case.
Finally, we examine what effects the ‘hard’ boundaries have on the determina-

65
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Table 6.1: Contributions to <e�VγZ from various regions in Q2 and W 2 in the
AJM model (see Fig. 5.1) at the Qweak energy E = 1.165 GeV.

Region <e�VγZ (×10−3)

I (res) 2.18± 0.29
I (bgd) 2.46± 0.20
I (total) 4.64± 0.35
II 0.59± 0.05
III 0.35± 0.02
Total 5.57± 0.36

tion of the γZ box. This analysis is necessary for both PV electron scattering
experiments.

6.1 γZ box corrections for Qweak

The <e�VγZ contribution, given by Eq. (3.16), is plotted as a function of beam
energy, E, in Fig. 6.1. In the upper panel, the contributions from Regions I,
II and III are presented in conjunction with the total correction, while in the
lower panel, the breakdown of the dominant Region I into its resonance and
background components is shown. A summary of these contributions and their
uncertainties at Qweak energy is given in Table. 6.1.

From these plots it is clear that at low energy (E . 1 GeV), by far the
largest contribution to the γZ box comes from the low-Q2, low-W 2 Region I.
This agrees well with the earlier work of Refs. [106, 107, 108, 109, 110]. The
separation into the resonance and background parts is also instructive, with
their central values approximately equal at Qweak energies and their uncertain-
ties compatible. The shapes of the two contributions are, however, quite dis-
tinct with the (red dashed) resonance curve peaking at approximately 0.7 GeV
before tapering off as E increases, while the background on the other hand, in-
creases steadily with beam energy. Most of the resonance contribution comes
from the ∆(1232) resonance, with the others only accounting for secondary
amounts. The final contributions come from Regions II and III, with both
giving only minor additions to <e�VγZ at low energies. At E = 1.165 GeV,
Region II accounts for approximately 10%, while Region III accounts for even
less at ≈ 6%. This emphasises the fact that for Qweak it is most important to
have an accurate description of the structure functions in the resonance region.

Although Table 6.1 divides the uncertainties into regions, we may also
separate the <e�VγZ error into background and resonance components. This
is especially useful for comparing with the equivalent error breakdown in
Ref. [110]. At Qweak energy we find,

<e�VγZ = (5.57± 0.21 [bgd] ± 0.29 [res] ± 0.02 [DIS])× 10−3, (6.1)
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Figure 6.1: Energy dependence of the contributions to <e�VγZ from the vari-
ous regions in Q2 and W displayed in Fig. 5.1 in the AJM model (top), and
the breakdown of Region I into its resonance and nonresonant background
components (bottom).
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Figure 6.2: Comparison of the AJM model <e�VγZ with earlier work.

where ‘bgd’ refers to the background error, ‘res’ the resonances’ and ‘DIS’ the
uncertainty coming from the deep inelastic region. Comparing with GHRM’s
calculation (Eq. 56 of Ref. [110]), the error on our resonances is about ∼ 40%
smaller. This most likely reflects the difference between taking the extremal
errors of the helicity amplitudes as GHRM have done, versus combining them
in quadrature as we did. The largest difference between this work and GHRM
is seen, however, in the uncertainty of the background, where the constrained
continuum parameters have led to a background error which is roughly 9 times
smaller than those in Ref. [110].

Combining these errors in quadrature we have,

<e�VγZ = (5.57± 0.36)× 10−3 , (6.2)

where the relative uncertainty on <e�VγZ stays approximately constant with
increasing energy, even though at large E the contributions from Regions II and
III become more important. As the structure functions have been constrained
using global PDF fits, it is perhaps not surprising that the uncertainty remains
largely energy independent.

In Fig. 6.2 we plot the total �VγZ correction determined using the AJM
model and compare it with the values calculated by the previous groups shown
in Table 4.1 of Chapter 4. As can be seen, our central value agrees well with
earlier determinations of <e�VγZ . The uncertainty of the AJM model is, on
the other hand, significantly smaller, with the next smallest error more than
twice the size.1

1While SBMT have a lower error on <e�VγZ which is approximately the same as that in
Eq. (6.2), the average of the SBMT’s upper and lower uncertainties is more than twice that
of the AJM model.
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Figure 6.3: Energy dependence of the contributions to <e�VγZ from a con-
strained version of Model II.

Although the AJM model provides the most accurate and precise de-
termination of the γZ box correction, it is helpful to compare this value with
an alternative version of GHRM’s Model II. In this estimate, the structure
functions of Region II of the AJM model are extended to all kinematics—as
in Model II of Ref. [110]. Remember, however, that these extended struc-
ture functions have been constrained using the PDFs [141], before being used
as inputs to the dispersion integral to calculate <e�VγZ . The results for this
constrained Model II are shown in Fig. 6.3 where at Qweak energy we have,

<e�VγZ = (5.40± 0.54)× 10−3 . (6.3)

The uncertainty here is ∼ 4 times smaller than those determined by Gorchtein
et al. Compared with the AJM model though, it is still slightly larger. Such a
determination suggests what might occur should the information available from
PDF fits and e–d PV scattering data be taking into account in the construction
of GHRM’s Model II.

6.2 Predictions for parity-violating asymme-

tries

The constrained deuteron γZ structure functions may be used to further de-
termine the parity-violating deep inelastic scattering asymmetry measured by
the E08-011 experiment at JLab [56, 93]. The AJM predictions for the ex-
periments’ Q2 values are plotted as a function of W in Fig. 6.4. Since, as
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Figure 6.4: Comparison of the predictions for the PV deuteron asymmetry
AdPV/Q

2 as a function ofW (solid) for the DIS region kinematics of the Jefferson
Lab E08-011 experiment [93, 154] at Q2 = 1.28 GeV2 (green), 1.09 GeV2 (red)
and 1.90 GeV2 (blue) (see also Table 5.2). The uncertainties (dashed) are
computed in the AJM model with the continuum parameters κT,LC constrained
by DIS structure functions (top), and by the E08-011 resonance region data
(bottom).
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try ApPV as a function of W for the Qweak inelastic measurement [153] at
Q2 = 0.09 GeV2 (solid line and open symbol). The AJM model uncertain-
ties (dashed) are compared with those from the GHRM model with 100%
uncertainty on the continuum parameters (dotted).

discussed previously, we may constrain the structure functions using either
the DIS parton distributions [141] or the resonance E08-011 data, both are
displayed in this figure. For the numerical values of these predictions see
Table 5.2 of Chaper 5. The experimental measurements from Ref. [93] are
represent by the solid data points. Note that the uncertainties on AJM model
curves include the total errors from the resonances and the background as
before.

Comparing the two predictions, we see that the central values for the
E08-011 constrained asymmetries are slightly higher than those given by the
PDF constraints. This agrees with our previous findings in Figs. 5.10 and 5.11
for the resonance asymmetries. Also similar is the fact that the uncertain-
ties are larger for the data constrained APV(d). The unconstrained structure
functions—that is, what would be expected using the 100% error assumptions
of Ref. [110]—on the other hand, give predictions approximately 4–5 times
larger. Most importantly, the both methods give asymmetries which are in
good agreement with the experimental results. Furthermore the PDF con-
strained curves more closely match the data points, which further confirms
the reliability of our method in using parton distributions to restrict the γZ
structure functions.

An additional data point will be available from the Qweak experiment
which will measure the inelastic asymmetry for the proton at an invariant mass
of W = 2.23 GeV. Since the Qweak asymmetry involves the proton structure
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functions, this will be particularly useful for constraining the <e�VγZ uncer-
tainty. In Fig. 6.5 we plot the AJM model prediction for ApPV together with
an estimate its uncertainty. Numerically we have,

ApPV = (−7.8± 0.6) ppm (6.4)

for momentum transfer Q2 = 0.09 GeV2. The structure functions with con-
strained κT,LC , predict asymmetry uncertainties roughly two times smaller than
the estimated using GHRM’s model [110]. In order to be able to differentiate
between the models, the experimental uncertainty would need to significantly
smaller than that of GHRM, which is ∼ 16%.

In the resonance region where W ≈ 1.5 GeV, the background contri-
bution to the cross sections is small and the large uncertainty in the GHRM
model is a direct result of taking extrema values for the helicity amplitudes
rather than adding in quadrature. Using the more conventional method for
combining uncertainties, the GHRM errors would almost be equal to the AJM
model’s at this point. Needless to say, additional measurements such as the
Qweak inelastic measurement and higher energy deuteron PV asymmetries, will
be invaluable for further constraining the interference structure functions and
the <e�VγZ correction.

6.3 Qp
W at 11 GeV

So far in this thesis, the AJM model has only been utilised for those exper-
iments performed using Jefferson Lab’s 6 GeV polarised electron beam. The
results, comparisons and predictions have been limited to the kinematic regions
associated with this beam energy. Here we discuss some of the implications of
the constrained structure functions relevant to a new range of measurements
currently planned for the 12 GeV upgrade to the JLab accelerator. These new
experiments (such as MOLLER [55] and SoLID [57]) will result in even tighter
constraints on the SM. In this section we will look at the MOLLER experi-
ment which proposes to measure the PV asymmetry in elastic electron–electron
scattering. What we are specifically interested in, are the γZ corrections to
the Qp

W measurement—an important background arising from electron–proton
scattering. Since one of the main theoretical uncertainties in the experiment
is this Qp

W measurement, care is needed to ensure the correct evaluation of the
�VγZ contributions.

The experiment’s set up involves scattering longitudinally polarised elec-
trons from atomic electrons present in the energy shells of the (liquid) hydrogen
target. The aim is to measure the electron’s weak charge, Qe

W , to 2.3% [55].
Such a determination would be equivalent to measuring the weak mixing angle,
sin2 θW , to 0.1% and would equal the precision of the two (different) measure-
ments made at the Z-pole by LEP. Although the PDG value for sin2 θW is
currently taken as the average of these two measurements, they in fact dif-
fer by 3σ and were the MOLLER experiment to show either of these to be
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Figure 6.6: Effects of BSM physics on the theoretical values of the proton’s
and electron’s weak charge [98].

correct, the running of sin2 θW (with respect to Q) would change markedly [55]
from the SM expectation. Were the average at the Z-pole shown to be correct,
however, the new measurement would still be important in constraining the
possibility of new physics [55, 74, 98]. Given that the effects of certain BSM
physics differ in how they alter the theoretical predictions of the proton’s and
electron’s weak charge as illustrated in Fig. 6.6, this measurement is highly
complementary to the Qweak experiment [98].

As for Qweak, the asymmetry may be written as,

APV =
σ+ − σ−
σ+ + σ−

. (6.5)

Although here, σλ is the cross section for the left-handed (λ = −1) or right-
handed (λ = +1) beam electron scattering from the atomic electrons instead
of protons. Once more the APV is dominated by the interference between the
exchanges of γ and Z. From Ref. [155] we have,

APV = meE
GF√
2πα

2y(1− y)

1 + y4 + (1− y)4
Qe
W , (6.6)

where we remind the reader that α is the electromagnetic structure constant,
E is the incoming electron’s energy and me is the mass of the electron. At the
Born level, the electron’s weak charge is defined as,

Q
e(Born)
W = −1 + 4 sin2 θW . (6.7)

However, for the precision required by the MOLLER experiment, radiative
corrections need to be included also. Unlike for Qp

W , there is little controversy
over the calculated [156, 157, 158] Qe

W radiative corrections.
An unavoidable background of the MOLLER experiment comes from

the use of a hydrogen target. Not only will the incoming electrons scatter off
the electrons, but they will also collide with the protons of the target, resulting
in a PV background which depends on the proton’s weak charge. The Qweak
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Figure 6.7: Energy dependence of the contributions to <e�VγZ from the W 2

and Q2 Regions I (blue dot-dashed line), II (red dashed line), and III (green
dotted line), together with the total (black solid line). The lower panel shows
the break up of Region I into resonance and background contributions as in
Fig. 6.1. The vertical line indicates the energy at the MOLLER experiment.
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Table 6.2: Contributions to <e�VγZ in the AJM model from Regions I, II
and III at the kinematics of the Qweak (E = 1.165 GeV) and MOLLER (E =
11 GeV) experiments.

<e�VγZ (×10−3)
Region Qweak MOLLER
I 4.64± 0.35 3.04± 0.26
II 0.59± 0.05 5.26± 0.49
III 0.35± 0.02 3.18± 0.16
Total 5.57± 0.36 11.5± 0.6

experiment should determine Qp
W to an accuracy level of 4% at a beam energy

of 1.165 GeV. As we have pointed out, the γZ box contribution is particu-
larly important to the theoretical calculation of Qp

W . Although for Qweak the
�VγZ contributes an ≈ 7% correction, this grows significantly with increasing
energy and at the energy of MOLLER (E = 11 GeV), we therefore expect this
contribution to be substantially larger.

Given the experimental error budget for the weak charge of the proton
is . 4%, it is imperative that the γZ box correction is accurately determined
and any uncertainties well accounted for at these much larger energies. While
there has to date been no determination of �VγZ for these kinematics, by ex-
tending the work of previous sections we have a reliable way of calculating this
important correction.

In Fig. 6.7 we show the energy dependence of <e�VγZ up to 12 GeV cal-
culated using the AJM model. As in Fig. 6.1 the break down of the individual
kinematic regions’ contributions has also been included. In Table 6.2 these are
compared with the equivalent Qweak values. Looking at the total correction
for the MOLLER experiment, the <e�VγZ correction is approximately twice

that of Qweak and now, almost a third of the tree level sin2 θW . Additionally,
the contributions from each of the individual kinematic regions differs dramat-
ically. Before, at 1.165 GeV, Region II accounted for about 10% of the total
contribution, while now at E = 11 GeV, it is close to 50%. On the other
hand, Region I which use to be more than 80% of <e�VγZ now accounts for
only a third of the correction. Region III, while contributing more here than
for Qweak, remains relatively less important, yielding about the same as the
low-Q2, low-W 2 region.

Model dependence

Although the AJM model gives the best determination of <e�VγZ and its
uncertainties currently available using constraints from PDFs and other ex-
perimental data, it is necessary to ensure that any model dependence of the
correction is accurately taken into account. Here we examine the effects
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Figure 6.8: Contributions to <e�VγZ from various kinematic regions in Q2

(top) and W 2 (bottom), as a function of the energy E.
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the choice of model might have on the most important Region II contribution
where the VMD+Regge description is used. We also investigate the kinematic
dependence of the continuum parameters κiC and how this might alter the
calculation of <e�VγZ .

To find the kinematic regions most relevant to the evaluation, we divide
the Q2–W 2 plane into separate intervals in Q2 and W 2. The results for these
divisions are illustrated in Fig. 6.8. Similar plots examining different intervals
specifically within Region II are shown in Fig. 6.9. For the total contribution,
at E . 1 GeV, the Q2 < 1 region tends to dominate. By the time E increases
to ≈ 10 GeV, however, this contribution makes up only ∼ 50% of <e�VγZ .
Alternatively, if we examine the W 2 regions, most of contribution comes from
below W 2 ∼ 9 GeV where the resonance region lies. As the energy increases,
the higher W 2 region becomes significantly more important. For example,
the W 2 > 10 GeV2 interval comprises almost two thirds of the total box
contribution at E ≈ 10 GeV.

In order to test the model dependence of Region II, we examine several
alternative models for the γZ interference structure functions. Each of these
models is based on electromagnetic parametrisations of cross section data in the
kinematic regions relevant to Region II and rely on different physical mech-
anisms of the scattering events. With the electromagnetic parametrisations
mostly been discussed previously in Chapter 4, we simply summarise here the
γZ models used in the comparison:

Modified Regge model (MRM)

While this follows Sibirtsev et al. [108] in the use of the Capella et al.
parametrisation [133] for the electromagnetic cross sections, for the interference
structure functions, we use the γZ/γγ ratio of Eq. (4.32) to modify the F γγ

1,2

instead of the leading-twist parton distributions that SBMT employ. Unlike
previous models, where the cross sections could be split into separate reso-
nance and background components and each part be modified independently,
the Capella et al. structure functions can only be transformed in their en-
tirety. This may at first seem ad hoc, since each individual resonance will be
rotated by the same amount in this method, however, as the resonance piece
is negligible in Region II, the total cross sections σT,L are effectively given by
just their backgrounds, i.e.

σT,L ≈ σ
(bgd)
T,L . (6.8)

CDP model

The colour dipole parametrisation of the electromagnetic cross sections [127,
129] has been discussed in detail in Section. 4.3. As mentioned, this is the
basis of Model I used in Gorchein et al. [110]. Instead of using the VMD to
compute the κV and κiC values in the ratio of Eq. (4.32), these are determined
using the ratios of electric quark charges. This results in a constant scaling
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Figure 6.10: Contribution of Region II to <e�VγZ as a function of energy using
various models for the γZ structure functions: AJM (red dashed line), MRM
(green solid line), CDP/VDM (blue dotted line), and CDP (gray dot-dashed
line).

factor for the σγZi /σγγi ratio [110],

σγZi
σγγi

=
9

5
− 4 sin2 θW . (6.9)

In this work we use an updated version of the CDP parametrisation of the
transverse and longitudinal cross sections from Ref. [159].

CDP/VMD model

Finally, we use the electromagnetic cross sections of Cvetic et al. [127, 129]
and modify them into their interference analogues using the γZ/γγ ratio of
Eq. (4.32). We point out that for both this model and the CDP parametrisa-
tion, the structure functions have only been given for W 2 < 1000 GeV2. Since
it is clear from Fig. 6.8 that the contribution to <e�VγZ from W 2 > 1000 GeV2

is minimal this is not a problem. However, in order to get as close as possible
to the correct Region II contribution, we scale the CDP and CDP/VMD re-
sults by the same amount in going from W 2 = 1000 GeV2 to W 2 = ∞ using
the AJM model i.e.,

Mod∞ = Mod1000 ×
AJM∞

AJM1000

, (6.10)

where ‘Mod’ refers to either the CDP or CDP/VMD model contribution to
Region II and the AJM contributions (to Region II) up to W 2 = 1000 GeV2

and W 2 =∞ are given by AJM1000 and AJM∞ respectively.
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Figure 6.11: A plot showing the <e�VγZ contribution and associated errors
when the continuum parameter κTC is a linear function of momentum transfer
for 0 < Q2 < 2.5 GeV2.

In Fig. 6.10 we show the results of using these additional models which
incorporated different physics in the γZ structure functions and compare with
the AJM model of Ref. [90] in Region II. Looking at the AJM and MRM model
determinations, we can see that these show excellent agreement over the full
range of energies given. The CDP and CDP/VMD models’ contributions are,
on the other hand, slightly less than the AJM model’s. While the errors
associated with the AJM model take into account the MRM and CDP/VMD
parametrisations, the CDP results fall just outside the lower error band in
Fig. 6.10. We take into account this model dependence in the Regge region
by including an additional uncertainty found by taking the difference between
the central value of the AJM model and the outer most CDP model. This is
then combined with the uncertainty arising from the AJM parametrisation by
adding the two contributions in quadrature.

A source of additional error to <e�VγZ could come from the continuum
parameters’ dependence on the invariant mass. In the AJM model, the fitted
values took into account possible W 2 dependence by matching the γZ/γγ ratio
over the range W 2 = 4 GeV2 to 13 GeV2. Any resulting variation was included
in the final uncertainties. If the W 2 range is increased to 4 ≤ W 2 ≤ 1000 GeV2,
the fit gives,

κTC = 0.86± 0.24 , κLC = −1.3± 2.3 , (6.11)

which within errors, agrees with the previous determinations of κTC = 0.65 ±
0.14 and κLC = −1.3± 1.7 [90]. While the new values for κiC result in structure
functions which differ from those used previously, the errors assigned to the
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Figure 6.12: The <e�VγZ contribution as it depends on the boundaries between
Regions I and II.

AJM model structure functions are large enough to cover these alternativeF γZ
i .

As the additional error associated with the W 2 dependence of κiC is negligible,
no further error needs to be added to our evaluation.

In a similar vein, the continuum parameters may also show some depen-
dence on the momentum transfer Q2. Since we constrain the κiC at Q2 > 2.5,
the only place where this Q2-dependence might occur is in the region 0 ≤ Q2 ≤
2.5 GeV2. To estimate possible Q2-dependence, we use the AJM values for κiC
for Q2 ≥ 2.5 GeV2 while for Q2 < 2.5 we linearly increase the uncertainties to
100% at Q2 = 0. The energy dependence of these modified constraints is illus-
trated in Fig. 6.11. Numerically we find the error increases to ± 0.59×10−3 at
the Qweak energy, while for MOLLER there is a 200% increase, with the total
uncertainty becoming ± 1.2× 10−3. Although these errors are still within the
budgeted uncertainty, we believe they are overly conservative and therefore in
practice, take the errors on κTC to be Q2 independent.

One last area which may artificially effect the result of <e�VγZ is the
use of fixed boundaries between the different regions. Figure 6.12 illustrates,
however, the fact that the dependence on the position of the boundaries is
negligible. Although not shown, we also tested the boundary-dependence of the
Q2 borders by lowering the DIS region limit from Q2 = 2.5 GeV to Q2 = 1 GeV
and again, found no significant change in the results.

Using the PDF-constrained AJM to calculate the <e�VγZ correction at
MOLLER energies, we see that the relative contributions from the various
regions differ significantly from those evaluated at the Qweak experiment’s en-
ergy. Particularly important is the increase in the Region II contribution from
about 10% to ∼ 50%. Including additional errors arising from the model de-
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pendence of the Region II contribution, we estimate the total <e�VγZ correction
at 11 GeV, to be

<e�VγZ = (11.5± 0.6± 0.6)× 10−3, (6.12)

where the first error includes the previous uncertainties in the AJM model,
and the latter comes from the additional model dependence discussed in this
section. Of course, any future experiments would help to lower this uncertainty
still further.

With the current level of precision available using the AJM model, the
proton’s (effective) weak charge grows from 0.0757±0.0007 at E = 1.165 GeV
to 0.0814±0.0010 at E = 11 GeV. A necessary inclusion in these Qp

W effective
values is the vector electron, axial-vector hadron coupling piece, �AγZ . Extend-
ing the previous work of Refs. [101, 102], this term decreases from 0.0037(2)
at E = 1.165 GeV to 0.0035(2) at E = 11 GeV [103]. Since the current
background estimate from PV electron–proton scattering is around 8% for the
MOLLER experiment, the uncertainty from Qp

W is ≈ 0.1%. While still sig-
nificant, this value is well within the budgeted 0.3% given in the MOLLER
proposal.

6.4 APVDIS for the proton at 11 GeV

As well as the background coming from elastic ep scattering, the MOLLER
experiment will measure the inelastic cross section. Although this cross section
is smaller than the elastic background by an order of magnitude, because it is
not suppressed by a factor of 1 − 4 sin2 θW as in the elastic case, it will still
contribute a significant amount to the overall asymmetry. In this section we
use the AJM model to estimate this important, additional background.

The proton parity-violating asymmetry given in Section 5.3,

APV =

geA

(
GFQ

2

2
√

2πα

) xy2F γZ
1 +

(
1− y − x2y2M2

Q2

)
F γZ

2 +
geV
geA

(
y − 1

2
y2

)
xF γZ

3

xy2F γγ
1 +

(
1− y − x2y2M2

Q2

)
F γγ

2

,

(5.4)

is plotted using the AJM model γZ structure functions in Fig. 6.13, where for
the MOLLER experiment, the momentum transfer is Q2 ≈ 0.004 GeV2. As in
the plots of the γZ structure functions, the matching between Regions I and
II is excellent. For W < 2 GeV, the resonance structure of the cross sections
is clearly evident in the asymmetry plotted. At larger W , the resonances
become negligible and the asymmetry is mostly constant at ≈ 85 ppm/GeV2.
Although the uncertainty grows slightly with W , for the most part it stays at
≈ 7% in our model.
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Figure 6.13: PV asymmetry ApPV for inelastic ep scattering, scaled by 1/Q2,
at E = 11 GeV in the AJM model, showing the matching of the contributions
from Region I (blue solid line) and Region II (red dashed line). The typical
momentum transfer relevant to the MOLLER experiment is ≈ 0.004 GeV2.

In the previous section, we investigated what would happen to the mag-
nitude of the uncertainties were the continuum parameters κiC to depend on Q2

in the region 0 ≤ Q2 < 2.5 GeV2. Here, increasing the uncertainties linearly
from the AJM values at 2.5 GeV2 to 100% at the real photon point results in
the relative error on the inelastic APV growing to approximately 25% for the
MOLLER experiment. In such a scenario, additional data would be needed to
further constrain the model, and it will be necessary for the MOLLER exper-
iment to do so directly within their own setting. Given that the earlier SLAC
E158 experiment was able to constrain their background to better than 20%
[84], this should not be overly difficult.

Although PV inelastic scattering includes other standard radiative cor-
rections that have not been included here, but which might alter the W de-
pendence shown in Fig. 6.13 and would therefore also need to be included in
the final estimate of the background PV inelastic asymmetry, for the require-
ments of illustrating the characteristics of the asymmetry (together with the
magnitude of the uncertainty) our analysis suffices. More detailed analyses
would be necessary further along in the experimental process.

* * * *

In summary, we have determined the energy dependence of the �γZ
radiative correction to the elastic PV asymmetry to a precision level of about
≈ 7% needed for the MOLLER experiment at E = 11 GeV. Unlike in the Qweak

experiment, where the resonance region dominates the final box correction,
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at energies relevant to MOLLER, the region with the largest contribution is
Region II where Regge physics is most appropriate. By examining additional
uncertainties arising from the model dependence of the interference structure
functions in this region and including them in the overall uncertainty we find
the proton’s effective weak charge to be 0.0814±0.0010 at 11 GeV. With these
uncertainties, the Qp

W background is known precisely enough that it remains
well within the experimental error budget.

Furthermore, we have used the AJM structure functions to calculate
the magnitude of the inelastic ep asymmetry and the size of its uncertainty.
Although the errors arising from the AJM model are small enough to remain
within the experimental budget, using a more conservative Q2-dependent κTC
results in the conclusion that an experimental monitoring of this background
will be needed for MOLLER. On the other hand, such a measurement could
also be used as an additional constraint on the parameters of the AJM model,
thus decreasing the uncertainties in the model further.

In the next two chapters we make use of the AJM model of the structure
functions to study other nonperturbative effects. Chapter 7 uses the electro-
magnetic parametrisation to study the electric and magnetic polarisabilities of
the proton, while in Chapter 8 we look at the higher-twist contributions to the
nucleon structure function moments.



7

Electric and magnetic
polarisabilities of the proton

The interference structure functions have been used in the analysis of the
proton’s ‘weak’ properties. In a similar manner, the γγ structure functions
can be utilised to determine the electromagnetic character of the proton. In
this chapter we use the electromagnetic parametrisations upon which the AJM
γZ expressions are based to determine the electric and magnetic polarisabilities
of the proton. Although we limit ourselves to the polarisabilities of the proton
here [160], such a study could also be done for the neutron.1 Since the various
models have already been addressed in the development of the AJM model,
we may proceed directly to the necessary background formalism.

7.1 The generalised Baldin sum rule

Polarisabilities occur in composite systems because the photon’s electric and
magnetic fields alter the dynamics the charged constituents resulting, even
in neutral targets, in current and charge multipoles [161]. The parameters
which describe this response in nucleons are the electric (α) and magnetic (β)
polarisabilities. Intuitively, α and β characterise the rigidity of the nucleon and
encode information regarding the electromagnetic charges and interactions of
the internal constituents [161]. For structureless objects the values of α and
β vanish. The spin-dependent polarisabilities also play an important role in
understanding the electromagnetic properties of the proton.

The polarisabilities α and β are defined in the context of the expansion
of the Compton amplitude at low energies, with the sum being the part of the
electromagnetic polarisability which does not have its helicity flipped [162].
The static polarisabilities are related to the unpolarised photoabsorption cross
sections by the Baldin sum rule—the unpolarised analogue of the Gerisamov-

1Difficulties arising from the (relative) instability of the neutron mean that experiments
use deuterium instead. This results in much larger uncertainties on the neutron’s electro-
magnetic polarisabilities.
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Drell-Hearn sum rule [163, 164]—which is given as [165, 166],

α + β =
1

4π2

∫ ∞
νπ

σ1/2 + σ3/2

ν2
dν, (7.1)

where σλ is the cross section for the production of λ = 1/2 and 3/2 helicity
states, ν is the photon energy and νπ the pion production threshold. The sum
rule establishes a relation between the static and dynamic properties of the
nucleon and allows for the extraction of α+β from precision measurements of
real Compton scattering [162].

Additional insight into the polarisation density is gained by studying
the Q2-dependence of α and β. Drechsel et al. used dispersion relations to ex-
tend Eq. (7.1) to the case of virtual Compton scattering [167]. This generalised
Baldin sum rule [167] provides a way of determining the polarisabilities’ depen-
dence on the momentum transfer via radiative electron scattering. Explicitly,
it is written [167],

α(Q2) + β(Q2) =
8αemM

Q4

∫ xπ

0

xF γγ
1 (x,Q2) dx,

= 8αemM

∫ ∞
W 2
π

F γγ
1 (W 2, Q2)

(W 2 −M2 +Q2)3 dW
2,

(7.2)

where M is the mass of the proton, αem is the fine structure constant, x =
Q2/(W 2−M2 +Q2) is the Bjorken scaling variable and W the invariant mass.
F γγ

1 is the proton’s electromagnetic structure function and we also note that,
in a similar manner to Eq. (7.1), xπ and Wπ refer to the pion production
threshold.

There has recently been considerable interest in precisely determining
the Q2-dependence of α and β both experimentally [162, 168, 169], and the-
oretically [170, 171]. Liang et al. used e–p scattering data from the JLab
E94-110 experiment [113] to measure the second moments of the F γγ

1 structure
function. From these measurements they extracted values for the generalised
Baldin sum rule using Eq. (7.2). The sum α(Q2) + β(Q2) was obtained for a
number of kinematic points over the range 0.3 < Q2 < 4 GeV2. An additional
feature of their analysis was the separation of the structure function integral
into a resonance (W 2 < 4 GeV2) and a DIS (W 2 > 4 GeV2) section. (For the
DIS region the authors used the SLAC parametrisation of R = FL/2xF1 and
F2 from Ref. [172]).

Theoretically, Sibirtsev and Blunden made use of updated data [112]
from the same E94-110 experiment to construct a parametrisation of the elec-
tromagnetic F γγ

1 and F γγ
2 structure functions [108, 170]. As discussed in ear-

lier chapters, this parametrisation was used as the basis of the interference
structure function inputs in the work on the γZ box contribution [108]. In
Ref. [170], however, the electromagnetic F γγ

1 parametrisation was used in the
Baldin integral to determine the sum of the polarisabilities.
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Figure 7.1: Proton F1 structure function versus W 2 at fixed Q2 = 0.06, 0.6,
1.0 and 1.5 GeV2 for the CB fit [121] at low W 2 (blue solid), VMD+Regge
parametrisation [134] at highW 2 (red dashed) and ABM11 [141] (green dotted)
parametrisations. The boundaries between these regions are indicated by the
vertical dashed lines at W 2 = 4 and 9 GeV2.
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The results of Sibirtsev and Blunden provide valuable information on the
low-Q2 dependence of α(Q2) + β(Q2), with values determined as low as Q2 =
0.225 GeV2 (cf. Fig. 4 of Ref. [170]). Additionally, they were able to examine
the purely resonance contribution to the generalised Baldin integral, finding
that for Q2 < 1 GeV2 the resonances dominate [170]. Since the parameters of
their model were fit only to Q2 data above 0.225 GeV2, however, Sibirtsev and
Blunden were unable to provide an estimate of the static polarisablities. In
fact, an extrapolation of their results would see them significantly overestimate
α + β—see Fig. 7.2.

In the next section we improve upon the work of Sibirtsev and Blunden,
exploiting the AJM parametrisation of the F γγ

1 electromagnetic structure func-
tion to evaluate the generalised Baldin sum rule. Since this parametrisation
is consistent down to Q2 = 0.06 GeV2 we will be able to show the momen-
tum transfer dependence of the electric and magnetic polarisabilities to much
lower Q2 than that in Ref. [170]. Furthermore, extrapolating our results to the
photoproduction point results in a good estimate of α+ β. Before proceeding
to the evaluation of the sum rule, however, the consistency of the structure
functions at the boundaries between the different regions must first be checked.
To do so we plot F γγ

1 (W 2, Q2) as a function of W 2 for multiple values of Q2

ranging from Q2 = 0.06 to 6.0 GeV2. Illustrated in Fig. 7.1, these plots make
it clear that as for F γγ

2 , the descriptions of the structure functions are in good
agreement at the borders. As discussed in Chapter 5, for the (blue) Christy-
Bosted structure functions we assign a 5% error. This is based on the fact
that more than half the data points differed from their fit by 3% or less, and
almost all by less than 5% [121]. For the (green) PDF structure functions the
errors are those given by Alekin et al. in Ref. [141], while for the Region II
structure functions, comparing the VMD+Regge model with data shows that
assigning a 5% error on this model should suffice to account for any variation
with experimental values.

7.2 Q2 dependence of α and β

Since we would like to determine the Q2-evolution of the electromagnetic
polarisabilities all the way to the real photon point, the behaviour of the
F γγ

1 structure function as Q2 → 0 is particularly important. Christy and
Bosted’s parametrisation includes data down to Q2 = 0.06 GeV2 as well at
Q2 = 0 and shows excellent agreement with the empirical data in the re-
gions where data exists. However, no data exists for Q2 between 0–0.06 GeV2

and the fit fails to smoothly match onto the real photon point. Difficulties
arise in the second resonance region where, although the overall magnitude
of the transverse resonance is consistent with data, the individual transi-
tion form factors of the fit are not (cf. Table III of Ref. [121]) and result
in a discontinuity in the cross sections between the lowest finite momen-
tum transfer and the photoproduction point. In order to surmount this is-
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Figure 7.2: The sum of the electric and magnetic polarisabilities as a function
of Q2. The blue line (with errors) represents our calculation for Q2 ≤ 3.0 GeV2,
the green dotted line for Q2 > 2.0 GeV2, whilst the red dashed line is the earlier
calculation of Ref. [170]. The grey, dot-dashed line denotes the contributions
to the polarisabilities from the W 2 < 4.0 GeV2 region. On this scale the values
of α+β at the real photon point overlay each other and are given by the black
triangle [173] and red square [174].
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Figure 7.3: As in Fig. 7.2 but with the boundary region 2 ≤ Q2 ≤ 4 GeV2

scaled up. The red dashed line of Sibirtsev and Blunden has been dropped
since here we are solely interested in the overlap of the (blue) Q2 ≤ 3.0 GeV2

and (green) Q2 > 2.0 GeV2 regions.

sue, we use CB’s F γγ
1 structure functions to evaluate α(Q2) + β(Q2) down to

Q2 = 0.06 GeV2, before extrapolating to Q2 = 0 GeV2. We estimate the
uncertainty arising from this extrapolation by using several different ranges to
constrain the extension to zero momentum transfer.

The results of our analysis are illustrated in Fig. 7.2. We evaluate the
Baldin integral over the range 0.06 ≤ Q2 ≤ 6 GeV2 and include in the plot the
calculation of Ref. [170] for comparison. In Fig. 7.3 we show a magnified version
of the boundary region, displaying good overlap between the two. Note that
although Fig. 7.2 shows the Q2-dependence up to 6 GeV2, the only limitation
on the range is the validity of the parton distributions. One could in principle
show results up to LHC energies.

From Fig. 7.2 we see that the Q2-evolution of the AJM parametrisation
differs significantly from that of Ref. [170]. Most importantly, as Q2 approaches
zero, α(Q2) + β(Q2) converges towards the static polarisabilities, where as an
extrapolation of Sibirtsev and Blunden’s results would considerably over esti-
mate this value. The difference between these two results may be understood
by the fact that CB’s fit of the cross sections includes data at much lower
values of Q2. From the grey dot-dashed curve in Fig. 7.2 and the blue dashed
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Figure 7.4: The results for the electromagnetic polarisabilities using W 2 = 4
(gray dot-dashed), 6 (red dashed) and 9 GeV2 (blue solid) as the boundary
between Regions I and II. All three curves sit directly above each other.

line in Fig. 4 of Ref. [170], it is, however, seen that both models agree that
the resonance contribution dominates the Baldin integral. We also note that
setting the boundary between Regions I and II at different W 2 has negligible
effect on the final value. This is seen diagrammatically in Fig. 7.4.

For Q2 below 0.06 GeV2, we fitted the results of the generalised Baldin
sum rule to the inverse of a polynomial over four different ranges of Q2:

I: 0.04 < Q2 < 0.10 GeV2;

II: 0.04 < Q2 < 0.12 GeV2;

III: 0.06 < Q2 < 0.10 GeV2;

IV: 0.06 < Q2 < 0.12 GeV2.

In order to obtain α+ β, each of these fits were extrapolated to Q2 = 0 GeV2.
The extrapolations are illustrated in Fig. 7.5 and show minimal variation over
the various Q2 ranges.

At the photoproduction point,

α + β = (13.7± 0.7)× 10−4 fm3 , (7.3)
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Figure 7.5: In this plot, the individual points are values extracted using the
AJM parametrisation, whilst the blue lines are fits to points over four distinct
ranges in Q2. The values of α + β at Q2 = 0 GeV2 have been offset slightly
and are given by the black triangle [173] and red square [174].

where we use the fit over the Q2 ranges given in III for the final results. The
uncertainty ±0.7 on α + β comes from the 5% error assigned to the CB F γγ

1

structure function. Our determination is in excellent agreement with the earlier
evaluation of Babusci et al. [173], who give,

α + β = (13.69± 0.14)× 10−4 fm3, (7.4)

and the more recent analysis,

α + β = (13.8± 0.4)× 10−4 fm3, (7.5)

of Ref. [174]. Although both data points have been included in Figs. 7.5
and 7.2, the latter is not only more recent, but stems from more conservative
uncertainty estimates [161].

Finally, we may determine the ‘radius’ of the sum of the electric and
magnetic polarisabilities, i.e.,

〈r2〉 =
−6

H(0)

dH(Q2)

dQ2

∣∣∣∣
Q2=0

, (7.6)
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where, H(Q2) = α(Q2) +β(Q2). Using the same fit which gave the Q2 extrap-
olation, we found,

〈r2〉1/2α+β = 0.98± 0.05 fm , (7.7)

which agrees well with the heavy baryon chiral perturbation theory (HBχPT)
value of ∼ 1.1 fm given in Ref. [175].

The agreement of the AJM parametrisation with the earlier determi-
nations of the static electromagnetic polarisabilities, the good convergence to
Q2 = 0 point and the compatibility with the HBχPT value of the radius gives
further evidence of the robustness of these structure functions.

* * * *

Utilising a parametrisation of the electromagnetic F γγ
1 structure function

consistent down to Q2 = 0.06 GeV2, we have shown that the Q2-dependence
of the electromagnetic polarisabilities converges to the photoproduction point.
While our results at the real photon point agree well with the work of Refs. [173,
174, 175] the evolution of α(Q2) + β(Q2) differs substantially from Sibirtsev
and Blunden. The variation we observe is accounted for by the fact that our
parametrisation is fitted to much lower Q2. On the other hand, the devia-
tion at higher momentum transfer comes from the difference between their
parametrisation and Christy-Bosted’s.

Although the uncertainties on the sum of α and β are similar to other
determinations, it would be useful to reduce them still further. Additional data
in the very low-Q2 and low-W 2 region would remove the need for extrapolation
and increase the precision. Given the importance of understanding the nature
of the electromagnetic structure of the nucleon, there is a well motivated need
for further experimental efforts.





8

Quark-hadron duality

In spite of the apparent differences between the partonic and hadronic reali-
sations of QCD, at low energies there are instances where the averaged cross
sections coincide with those determined using the parton model. This be-
haviour is known as ‘quark-hadron duality’, and in this chapter we make use
of the AJM model to study this phenomenon.

8.1 Duality in the SM

Quark-hadron duality in the Standard Model is the physical manifestation
of the relationship between confinement and asymptotic freedom, and marks
the transition between perturbative and nonperturbative QCD. Duality is ob-
served in many different areas such as e+e− annihilation, semi-leptonic decays
and electron–nucleon scattering. This latter field is what we are particularly
interested in since it links the physics surrounding resonance production with
scaling. Given that structure functions cover both of these regions, it is no
surprise they are one of the tools used to study this subject.

Historically, duality was observed even before the formulation of QCD
and its acceptance as the correct description of the strong interaction. Bloom
and Gilman found that resonance structure functions at low invariant mass
averaged to the scaling curve which accounted for the high-W values [176,
177]. After QCD was invented, duality was expressed in terms of the operator
product expansion [178, 179], and its violation was seen as a consequence of
higher-twist operators which described long range physics [180]. The OPE,
however, still failed to explain the physics of how the resonances transitioned
into the scaling regime and it was not until the advent of recent low-energy
precision measurements of structure functions that duality became an active
area of research once more. An example of modern evidence for duality in the
proton structure functions is illustrated in Fig. 8.1.

At large energies, duality between the partonic and hadronic descriptions
may understandably be considered exact. What is perhaps not so expected,
is the ‘local’ duality seen in the JLab precision data [181], where the averaged
resonance and scaling structure functions appear to match even in the indi-
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Figure 8.1: Example of duality in the F p
2 structure function [180]. Target mass

(TM) corrections are included in the MRST and CTEQ6 parametrisations
of the PDFs and the data points come from the JLab E94-110 experiment
[113, 182].

vidual resonance regions. This is particularly puzzling since at these lowQ2, the
strong coupling constant is relatively large and therefore perturbation theory
is no longer valid. Additionally, the degree to which duality holds and the
kinematic range to which it applies is difficult to quantify. All these questions
have played a large role in motivating the renewed efforts—both theoretically
and experimentally—to study duality.

Recent work has looked at a number of aspects of duality including, its
flavour, spin and nuclear dependence [181, 183, 184, 185, 186]. It has also been
investigated in neutrino scattering experiments [151]. Our own interest in the
topic is twofold: firstly, since in the AJM model we have a reliable description
of both the γγ and γZ structure functions, we have the necessary tools to
study and compare duality in both the electromagnetic and interference cases;
secondly, duality arguments may also be used to further constrain the γZ
structure functions. In electron–nucleon scattering, duality has been observed
as low as Q2 = 1 GeV2 [180]. Should the γZ resonance structure functions in
this region behave similarly, their averaged curves will be restricted to values
close to the LT structure functions.

The rest of the chapter is arranged as follows: in the next section we
begin by briefly describing the formalism surrounding the twist expansion of
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the moments of structure functions. The relationship between the Nachtmann
moments which include target mass corrections (TMCs), and the Cornwall-
Norton moments are also included in this section. After this we present results
using the AJM model, before finally in Section 8.3, we discuss the implications
for the �VγZ corrections.

8.2 Moments of structure functions

The OPE [187, 188, 189] is used to theoretically describe Bloom-Gilman duality
in QCD. Intuitively the OPE provides a way of separating out the nonpertur-
bative physics of parton correlation functions from the perturbative part of
hard scattering. More precisely, it involves expanding the product of two op-
erators with small light-cone separation into a sum of local operators [190].
Quantities most suited for study within the framework of the OPE analysis
are the structure function moments.

The Cornwall-Norton moments, are defined as [191],

Mn
1 (Q2) =

∫ 1

0

dx xn−1F1(x,Q2) , (8.1)

Mn
2 (Q2) =

∫ 1

0

dx xn−2F2(x,Q2) . (8.2)

At Q2 much greater than the QCD energy scale (Λ2
QCD) these moments may

be expanded in powers of 1/Q2 [180]. For example, the above Mn
2 moment

becomes,

Mn
2 (Q2) =

∞∑
τ=2,4...

Anτ (αs (Q2))

Qτ−2
, n = 2, 4, 6 . . . (8.3)

where the twist τ is defined as the difference between the mass dimension and
the spin of the operator. The coefficients Anτ are matrix elements of quark
and gluon operators [180]. The higher-twist (HT) terms (τ > 2) contribute at
smaller Q2, whilst at larger Q2 the leading-twist terms dominate. In Fig 8.2
we give examples of LT and HT diagrams which contribute to the structure
functions.

Incorporating target mass corrections, the Nachtmann µn2 moment may
be written [188, 192],

µn2 (Q2) =

∫ 1

0

dx
ξn+1

x3

{
3 + 3(n+ 1)r + n(n+ 2)r2

(n+ 2)(n+ 3)

}
F2(x,Q2) , (8.4)

(8.5)

where,

ξ =
2x

1 +
√

1 + 4M2x2/Q2
, (8.6)



98 8. Quark-hadron duality

Figure 8.2: Leading- (left) and higher- (right) twist contributions to structure
functions

is the new scaling variable, r =
√

1 + 4M2x2/Q2 and M (with no numerical
subscript) is the mass of the nucleon. The two descriptions are related via
[193],

µn2 (Q2) = Mn
2 (Q2)− n(n− 1)

n+ 2

M2

Q2
Mn+2

2 (Q2)

+
n(n2 − 1)

2(n+ 3)

M4

Q4
Mn+4

2 (Q2)− n(n2 − 1)

6

M6

Q6
Mn+6

2 . . . , (8.7)

or inversely [193],

Mn
2 (Q2) = µn2 (Q2) +

n(n− 1)

n+ 2

M2

Q2
µn+2

2 (Q2)

+
n(n2 − 1)(n+ 2)

2(n+ 3)(n+ 4)

M4

Q4
µn+4

2 (Q2)

+
n(n2 − 1)(n+ 2)(n+ 3)

6(n+ 5)(n+ 6)

M6

Q6
µn+6

2 . . . . (8.8)

Furthermore, as Q2 →∞, the two definitions of the moments coincide.

Electromagnetic moments

Using the AJM electromagnetic parametrisations we determine the moments
of the nucleon’s F γγ

2 structure function. Since the integral over x (W 2) contains
the elastic piece, the elastic structure functions must also be included [194],

W1(ν,Q2) =
Q2

4M2

[
Gγp
M (Q2)

]2
δ

(
ν − Q2

2M

)
(8.9)

W2(ν,Q2) =
[Gγp

E (Q2)]
2

+ Q2

4M2 [Gγp
M (Q2)]

2

1 + Q2

4M2

δ

(
ν − Q2

2M

)
(8.10)

where Gγp
E (Q2) and Gγp

M (Q2) are the electric and magnetic form factors of the
nucleon, and

F1(x,Q2) = MW1(ν,Q2) (8.11)

F2(x,Q2) = νW2(ν,Q2) . (8.12)
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For the form factors, we use the standard Kelly parametrisation [195] and
assign a conservative 5% uncertainty to these elastic structure functions similar
to previous chapters.

The proton and neutron second moments are shown over the range 1 ≤
Q2 ≤ 9 GeV2 in Fig. 8.3.1 Since QCD radiative corrections result in the
LT structure functions evolving logarithmically, we plot the moments against
log Q2. Also note, that as mentioned in Chapter 7 the larger uncertainty in the
neutron plots are a result of the difficulty in extracting the neutron structure
functions from deuteron data.

In determining the µn2 Nachtmann moments, the CB parametrisation is
utilised in the range (MN+mπ)2 ≤ W 2 ≤ 6 GeV2, where MN is the mass of the
proton (N = p) or neutron (N = n). For W 2 > 6 GeV2, we use Alekhin’s full
PDF structure functions.2 The term ‘full’ signifies that the structure functions
include leading twists , TMCs, and higher-twist contributions in its parametri-
sation. (Note that here we use the ABM11 structure functions all the way to
1 GeV2 as opposed to 2.5 GeV2 for the �VγZ analysis.) Combining these two
parametrisations effectively gives the total structure functions and is denoted
in Fig. 8.3 by the solid black line. The LT curve (red dashed line) also uses
Alekhin’s PDF structure functions, however only the LT contribution is in-
cluded. For the LT structure functions, the Cornwall-Norton moments must
be used instead of the Nachtmann moments. Furthermore, the PDFs are used
over the entire kinematic region of the integral; although, since the elastic piece
is purely HT, the LT moment does not include contributions from the form
factors.

The results for the proton µ2
2(p) moment—for which we know the struc-

ture functions most accurately—show remarkable agreement between the total
structure function moment and the LT contribution. Although there is larger
variation between the total and LT moments for the neutron, the LT curve
remains within the uncertainties of the total moment and there is still a very
strong correspondence between the two. (We assigned a 10% uncertainty to
the neutron structure functions following Ref. [122].) The HT contributions
can be found by taking the difference between the µ2

2(N) moment given by
the total structure function and that given by the LT expressions. In Fig. 8.4
we plot the magnitude of the higher-twist contributions relative to the total
structure functions for the proton and neutron moments. Although the central
curves for the proton’s HT terms are predominantly below zero, taking into
account uncertainties, the HT contributions are consistent with zero over the
entire range of Q2. While the neutron’s higher twists are always positive, the
large errors mean that these contributions are also consistent with zero.

Given that there is nothing in the physics of the interference cross sec-
tions to suggest that the γZ moments will be any different, we also expect the

1As it is difficult to ascertain the reliability of the LT structure functions below 1 GeV2

we limit the comparison to the range given.
2A comparison of the moments using different values for the W 2 boundary showed neg-

ligible variation over the range of Q2 considered.
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Figure 8.3: µ2
2(N) moments using the electromagnetic structure functions. The

upper figure represents the proton Nachtmann moment, and the lower figure
the neutron Nachtmann moment.
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HT contributions there to be small. This means that the averaged total γZ
structure functions should be very similar to the averaged leading-twist struc-
ture functions—at least to Q2 = 1 GeV2. In the next section we test this claim
by calculating the moments determined using interference structure functions.

γZ moments

Using the AJM interference structure functions we may determine the proton
and neutron’s second moments. As before, we need the elastic forms of the (in
this case γZ) structure functions,

F γZ
1 (W 2, Q2) =

Q2

2
Gγp
M GZp

M δ
(
W 2 −M2

)
(8.13)

F γZ
2 (W 2, Q2) =

Q2

1 + Q2

4M2

(
Gγp
E GZp

E +Gγp
M GZp

M

)
δ
(
W 2 −M2

)
(8.14)

where
GZp
E,M = (1− 4 sin2 θW )Gγp

E,M −G
γn
E,M −G

s
E,M , (8.15)

are the interference electric and magnetic form factors. In practice, the strange-
ness contribution, Gs

E,M , is neglected and charge symmetry is assumed exact.
We assign 5% uncertainties to these elastic structure functions.

The calculation for the γZ moments follows in much the same manner
as the electromagnetic ones. For the uncertainties, the proton’s γZ structure
functions are the same as those used in the �VγZ calculation. The neutron’s,
however, were given a 15% error since this takes into account what is known
about the deuteron F γZ

i uncertainties, while still incorporating the difficulties
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in determining the neutron cross sections from them. In Fig. 8.5 we show the
resulting γZ moments, while Fig. 8.6 gives the relative HT contributions.

As in the γγ structure function moments, the results for µ2
2(N) using

the interference structure functions show that HTs contribute only a small
amount to the total structure functions. This confirms what was concluded
from the electromagnetic moments. While the relative contributions from the
higher twists are larger in the γZ case, the uncertainties are also larger and
the results are consistent with those in Fig. 8.4.

8.3 Implications for the �VγZ correction

In order to determine the effects of the moment results on the �γZ calculation,
the hadronic vector (and for completeness the axial-vector) correction from
the DIS region may be expanded in terms of moments [101],

�VγZ =
2ME

π

∫ ∞
Q2

0

dQ2 α(Q2)

Q4(1 +Q2/M2
Z)

[
M2

2 (Q2)

+
2

3
M2

1 (Q2) +
2M2

3Q4

(
E2 −Q2

)
M4

2 (Q2)

+
2M2

5Q4

(
4E2 − 5Q2

)
M4

1 (Q2) + · · ·
]
, (8.16)

�AγZ =
3

2π

∫ ∞
Q2

0

dQ2 ve(Q
2)α(Q2)

Q2(1 +Q2/M2
Z)

[
M1

3 (Q2)

+
2M2

9Q4

(
5E2 − 3Q2

)
M3

3 (Q2) + · · ·
]
. (8.17)
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There are two conclusions that we may draw. The first, is that duality between
the scaling region and the resonance structure functions to a large degree holds
to Q2 at least as low as 1 GeV2. This means that the DIS region structure
functions may be used to a lower Q2 than was done in the AJM model (where
Region III only began at Q2 = 2.5 GeV2) and therefore the M2

2 moment, which
already dominates, will contribute an even larger amount. This would decrease
the uncertainty in the final box correction since the PDFs are much better
understood. (Even though the parton distributions do not have any resonance
structure in them, the fact that the�VγZ correction involves an integral means—
because duality holds—that the PDFs will still give a good approximation to
the final result.)

The second conclusion that may be drawn relates to the continuum
piece in the transformation of the γγ cross section background to the γZ case.
Again, looking at Figs. 8.3 and 8.5, since the electromagnetic LT and total
structure function moments agree so well, it means that there is only a min-
imal amount of contribution from HTs. Since the total structure function is
then constrained to agree with the LT within certain limits, and since the LT
structure functions are precisely known, the total structure functions are con-
strained to values within a certain range from the LT structure functions. This
means that the background contribution—and thus the continuum parameter
which modifies the background—is also constrained to within a certain limit
of the LT structure functions. As the results for the γZ moments themselves
show good agreement with the LT, this confirms the conclusions drawn from
the electromagnetic moment.

It is thus clear from the results in this chapter that the uncertainties on
the �VγZ correction given by the AJM, PDF constrained model are well soundly
based. The results for the moments confirm our earlier argument, based on
PDF constraints and deuteron PV asymmetry results, that the uncertainties
for the �VγZ correction are severely overestimated by GHRM.



9

Summary and conclusion

In the preceding work we have investigated a number of aspects concerning
Standard Model calculations of low-energy observables of which, using current
phenomenological knowledge of nucleon structure functions, we have been able
to determine to new levels of precision. The study of these structure functions
both experimentally and theoretically will continue to enhance our understand-
ing of the nucleon’s internal structure.

Motivating much of the discussion in this work is the �γZ radiative cor-
rection to the weak charge of the proton. As the Qweak experiment is now in
its analysis stage, it is essential to have a good understanding of all radiative
corrections to Qp

W . Utilising the Adelaide-Jefferson Lab-Manitoba model, we
have calculated the energy dependence of �VγZ up to energies relevant to the
proposed MOLLER experiment. The proton and deuteron inelastic asymme-
tries were also determined.

After reviewing previous efforts in Chapter 4, most of Chapter 5 was de-
voted to the construction of the AJM model’s interference structure functions.
Starting with the division of the dispersion integral into different kinematic
regions depending on the physics involved, we transformed the electromag-
netic structure functions into their interference analogues. By matching the
structure functions at the boundaries between the regions, we were able to
constrain the interference cross sections using parton distribution functions.
Furthermore, in using the quadrature method used to combine errors, we fol-
lowed the standard conventions in the literature and had a consistent way of
dealing with any uncertainties which arose in the analysis. Using the same
method to construct deuteron structure functions, we tested the AJM model
predictions of the parity-violating inelastic asymmetries by comparing with
empirical data from electron–deuteron scattering. Within our quoted errors,
those results were in good agreement with the experimental data, confirming
the reliability of the model.

Having constructed a robust model of the interference structure func-
tions, we proceeded to calculate the �VγZ correction in Chapter 6. Since this
correction is important in both the Qweak measurement of the proton’s weak
charge and the MOLLER experiment, the initial low-energy calculation was
extended upto 12 GeV. In both cases, the AJM model’s determination of
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�VγZ gave uncertainties well within the error budget. In fact, at Qweak energies,
the γZ box was calculated to a precision more than twice that of previous
best estimates. For the MOLLER experiment, the relative contributions to the
�VγZ correction from the various kinematic regions differed significantly from
the low-energy evaluation. In particular, the Regge region became the domi-
nant part of the total correction. In order to ensure that any model dependence
from this region was properly accounted for, we used a number of physically
different models to compare with the AJM determination. Although the ma-
jority of these models were in good agreement, an additional error needed to
be included to account for this model dependence. Nevertheless the final un-
certainty remained within the experimental budget. The more recent E08-011
results for the parity-violating deep inelastic scattering asymmetry were also
studied in this chapter, with the theory values again in matching well with the
data.

Although we have examined the energy dependence of the γZ box correc-
tion, both the Qweak and the MOLLER experiment operate at finite Q2. Since
the framework used to calculate �VγZ is the dispersion formalism, which has
been used in the form derived at zero momentum transfer, the additional Q2-
dependence needs to be taken into account. Future efforts in this area would
prove valuable. Additional experiments to measure the γZ structure functions
would also help to further lower the current uncertainty on the �γZ correction.

While this work has given considerable attention to the γZ box correc-
tion, the structure functions developed in the AJM model may also be used to
study other low energy phenomena. In Chapter 7, we used the electromagnetic
parametrisations of the cross sections as inputs in the generalised Baldin sum
rule, to determined the momentum transfer dependence of the electric and
magnetic polarisabilities. Our results significantly improved upon the earlier
findings of Sirbitsev and Bluden, showing good convergence towards the real
photon point. An extrapolation of our results yielded a value for the static
electromagnetic polarisabilities which was in excellent agreement with previous
determinations. We were also able to determine the ‘radius’ of these polaris-
abilities, making contact with estimates from heavy baryon chiral perturbation
theory.

In the future, this analysis would benefit from increased electron–nucleon
cross section data in the very low Q2 region (Q2 < 0.06 GeV2), since this would
remove the need to extrapolate to the photoproduction point. Additionally,
such data would reduce the uncertainties currently present in the resonance
region parametrisation, resulting in smaller errors on the final estimates of
both the Q2-evolution of the polarisablities and their static values. To further
enhance our understanding of the internal structure of the nucleon, such efforts
are invaluable.

Finally, by studying the moments of the electromagnetic and interfer-
ence structure functions we showed that duality holds at an unexpected level of
precision to reasonably low momentum transfer, Q2 ∼ 1 GeV2. Comparing the
(proton and neutron) second moments of the total electromagnetic F2 struc-
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ture function with the leading-twist moments, the close agreement between
the two provided evidence of small higher-twist contributions. While there
was marginally greater variation between the leading-twist and total structure
function moments in the γZ moments, the uncertainties in the interference
parametrisations were also larger and the results remained consistent with the
γγ moments. The confirmation of duality further highlights the reliability of
the AJM model: since the higher-twist contributions are small, the averaged
γZ structure functions are constrained to resemble the leading-twist structure
functions, preventing the uncertainty from becoming overly large.

An obvious extension to this analysis involves extracting the nucleon
matrix elements from the higher-twist contributions. With the accuracy of the
AJM model structure functions, we are in a position to calculate these matrix
elements to a better precision than previous estimates [196, 197]. It would also
be interesting to compare the higher-twist results found using the AJM model
with those determined using lattice QCD [198] and other phenomenological
models [199, 200].





A

Further determinations of

<e�VγZ

While the γZ box correction has been calculated at Qweak and MOLLER en-
ergies in the main body of this thesis, in order to fit to the E = 0 point, data
from other PVES experiments is also needed [89]. However, the �γZ correction
must be included in each of these data points. In the following table we show
the results for <e�VγZ at the kinematics of these additional measurements,
most of which were originally tabulated in Ref. [201].

Table A.1: The <e�VγZ correction evaluated for additional parity-violating
elastic scattering experiments.

Collaboration Q2 (GeV2) θ E (GeV) <e�VγZ (×10−3) Ref.

PVA4 0.23 35.3 0.85 4.61 ± 0.35 [88]
PVA4 0.108 35.4 0.57 3.75 ± 0.29 [202]
HAPPEX 0.477 12.3 3.35 7.81 ± 0.80 [203]
HAPPEX 0.099 6.0 3.03 7.55 ± 0.76 [204]
G0 0.122 6.68 3.03 7.55 ± 0.76 [205]
G0 0.128 6.84 3.03 7.55 ± 0.76 [205]
G0 0.136 7.06 3.03 7.55 ± 0.76 [205]
G0 0.144 7.27 3.03 7.55 ± 0.76 [205]
G0 0.153 7.5 3.03 7.55 ± 0.76 [205]
G0 0.164 7.77 3.03 7.55 ± 0.76 [205]
G0 0.177 8.09 3.03 7.55 ± 0.76 [205]
G0 0.192 8.43 3.03 7.55 ± 0.76 [205]
G0 0.21 8.84 3.03 7.55 ± 0.76 [205]
G0 0.232 9.31 3.03 7.55 ± 0.76 [205]
G0 0.262 9.92 3.03 7.55 ± 0.76 [205]
G0 0.299 10.63 3.03 7.55 ± 0.76 [205]
G0 0.344 11.45 3.03 7.55 ± 0.76 [205]
G0 0.41 12.59 3.03 7.55 ± 0.76 [205]

109



110 A. Further determinations of <e�VγZ

Table A.1 (continued): The <e�VγZ correction evaluated for additional parity-
violating elastic scattering experiments.

Collaboration Q2 (GeV2) θ E (GeV) <e�VγZ (×10−3) Ref.

G0 0.511 14.2 3.03 7.55 ± 0.76 [205]
G0 0.631 15.98 3.03 7.55 ± 0.76 [205]
G0 0.788 18.16 3.03 7.55 ± 0.76 [205]
G0 0.997 20.9 3.03 7.55 ± 0.76 [205]
HAPPEX 0.109 6.0 3.18 7.68 ± 0.78 [206]
HAPPEX 0.624 13.7 3.48 7.91 ± 0.82 [207]
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