Reconfigurable Tunable Microwave Devices Using Liquid Crystal

by

Pouria Yaghmaee

B. Eng (Electrical Engineering-Electronics) Tehran University-Azad Central, Iran, 2006

M. Eng (Telecommunication Engineering) The University of Adelaide, Australia, 2008

Thesis submitted for the degree of

Doctor of Philosophy

in

School of Electrical & Electronic Engineering Faculty of Engineering, Computer & Mathematical Sciences The University of Adelaide, Australia

© 2014 Pouria Yaghmaee All Rights Reserved

DEDICATION

"I dedicate this thesis to my wife, Hedy, for without her love and support none of this would have happened".

"To my parents and sister whom always supported me both emotionally and financially".

Contents

Conte	nts		iii
Abstr	act		vii
Stater	nent of Or	iginality	ix
Ackno	owledgme	nts	xi
Convo	entions		xiii
Public	cations		xv
List of	Figures		xvii
List of	^F Tables		xxi
Chapter 1. Reconfiguration mechanisms and techniques		1	
1.1	Introduction	on	3
1.2	Frequency	y response reconfiguration	5
	1.2.1	Switches	5
	1.2.2	Variable reactive loading	6
	1.2.3	Structural/mechanical changes	7
	1.2.4	Material variation	8
1.3	Polarizati	on reconfiguration	11
	1.3.1	Switches	11
	1.3.2	Material variation	12
1.4	Radiation	pattern reconfiguration	12
	1.4.1	Mechanical changes	13
	1.4.2	Electrical changes	14
	1.4.3	Material variation	15
1.5	Compoun	d reconfiguration	16
1.6	Conclusio	n and summary	17

Chapte	er 2. Physical properties and applications of liquid crystal	19
2.1	Liquid crystal background	21
	2.1.1 The history and discovery	. 21
	2.1.2 Lyotropic and Thermotropic	22
2.2	Liquid crystal-nematic phase	23
	2.2.1 Isotropic and anisotropic states	. 24
	2.2.2 Tuning range and tunability	28
	2.2.3 Switching time	30
2.3	Liquid crystal microwave devices	31
	2.3.1 Resonators and filters	32
	2.3.2 Phase shifters and delay lines	33
	2.3.3 Antenna	. 34
	2.3.3.1 Frequency tunable antennas	. 35
	2.3.3.2 Beam steering antennas and reflectarrays	. 36
	2.3.3.3 Polarization agile antennas	38
	2.3.4 Frequency-selective surfaces and metamaterials	. 39
2.4	Conclusion and summary	. 39
Chapte	er 3. Tunable liquid crystal S-band resonator	41
3.1	Introduction	43
3.2	Theoretical calculation	44
	3.2.1 Primary design	. 44
	3.2.2 Resonant patch and feeding	45
3.3	Simulation: optimization and parametric analysis	46
	3.3.1 Multi-layer structure	46
	3.3.2 Isotropic and anisotropic analysis	48
	3.3.3 Fringing field distribution	50
3.4	3.3.3 Fringing field distribution	50 51
3.4	3.3.3 Fringing field distributionFull-wave electromagnetic simulation3.4.1 Nematic liquid crystal simulation	50 51 51
3.4	 3.3.3 Fringing field distribution Full-wave electromagnetic simulation 3.4.1 Nematic liquid crystal simulation	50 51 51 51
3.4	 3.3.3 Fringing field distribution Full-wave electromagnetic simulation 3.4.1 Nematic liquid crystal simulation 3.4.1.1 E-series and BL-series 3.4.1.2 Standard K15 	50 51 51 51 51 52
3.4 3.5	 3.3.3 Fringing field distribution Full-wave electromagnetic simulation 3.4.1 Nematic liquid crystal simulation 3.4.1.1 E-series and BL-series 3.4.1.2 Standard K15 Prototype and measurement 	50 51 51 51 51 52 . 55
3.4 3.5	 3.3.3 Fringing field distribution Full-wave electromagnetic simulation 3.4.1 Nematic liquid crystal simulation 3.4.1.1 E-series and BL-series 3.4.1.2 Standard K15 Prototype and measurement 3.5.1 Fabrication methodology 	50 51 51 51 52 . 55 55
3.4 3.5	 3.3.3 Fringing field distribution Full-wave electromagnetic simulation 3.4.1 Nematic liquid crystal simulation 3.4.1.1 E-series and BL-series 3.4.1.2 Standard K15 Prototype and measurement 3.5.1 Fabrication methodology 3.5.2 Setup and measurements 	50 51 51 52 55 55 . 58

Chap	oter 4. High performance tunable resonator using liquid crystal mixture	63
4.1	Introduction	65
4.2	Tuning enhancement	65
	4.2.1 Material variation: full-wave simulation	65
4.3	Prototype and measurement	68
	4.3.1 Fabrication procedure	68
	4.3.1.1 Etching and patterning	68
	4.3.1.2 Polyimide film development	68
	4.3.2 Measurements	72
4.4	Conclusion and summary	74
Chap	oter 5. Stepped-impendence resonator modelling	77
5.1	Introduction	79
5.2	Stepped-impedance resonator modelling	79
	5.2.1 Multi-layered SIR design	80
5.3	Lumped-element model	81
	5.3.1 Electrical schematic	81
	5.3.2 Simulation and convergence analysis	85
5.4	Comparison and discussion	87
5.5	Conclusion and summary	90
Chap	oter 6. Tunable liquid crystal FSS using Electric-LC resonator	91
6.1	Introduction	93
6.2	ELC resonators at microwave region	93
6.3	Liquid crystal tunable ELC resonator	95
6.4	Full-wave simulation	100
	6.4.1 Fluid tube approach	100
	6.4.2 Top cover approach	101
	6.4.3 Parametric study and analysis	103
6.5	Lumped-element model	107
6.6	Prototype fabrication	109
	6.6.1 Developing ELC resonator array	109
	6.6.2 Creating the thin channel	111
	6.6.3 Fabrication of top cover	112
	6.6.4 Developing PDMS cover	112
	6.6.5 Pyrex cover	115

6.7	Measurement	116
	6.7.1 Measurement setup	116
6.8	Oil/liquid sensing	117
6.9	Novel tunable liquid crystal FSS	122
	6.9.1 Tunable liquid crystal FSS	122
	6.9.2 Liquid crystal FSS switch	125
	6.9.3 Comparison and further analysis	126
6.10	Conclusion and summary	128
Chap	ter 7. Thesis summary	131
7.1	Reconfigurable/tunable classification: Chapter 1, 2	133
7.2	Tunable and high performance resonator: Chapter 3, 4	134
7.3	Multilayered tunable SIR resonator: Chapter 5	135
7.4	Sensing and tunable FSS: Chapter 6	136
Арре	ndix A. Material transfer agreement	137
A.1	Transfer agreement	139
References		141
Physi	Physical constants Acronyms	
Acroi		
Biogr	Biography	

Abstract

During the past decades, the applications of communication devices have extended widely, from AM radio receivers initially to newly developed GPS, smart mobile phones, radars, wireless LANs, satellite communications and implantable medical devices. The shortage in the available frequency spectrum for radio communications, the demand for portable wireless devices, and the requirement for more functionality in an even smaller volume, requires the development of new concepts in RF technology. One ideal pathway towards development of such new concepts is reconfiguration.

Today, due to the rapid progress in material science and electronic technology, there is great possibility in designing reconfigurable portable wireless devices which are frequency tunable, flexible and consume low energy. In this thesis, the anisotropic properties of liquid crystals in their nematic phase are exploited as a low-voltage (< 35 V) mechanism for designing tunable wireless devices at a low microwave frequency (L to C-band). To demonstrate the possibility of using liquid crystal technology, three different design approaches were pursued: a liquid crystal tunable resonator, a tunable band-pass liquid crystal filter, both at S-band, and liquid crystal tunable frequency selective surfaces operating at C-band. The results from full-wave electromagnetic simulations, lumped-element circuit models and prototype measurements in all cases indicate around 3.1 to 8.2% of continuous frequency tuning with low insertion loss (< 1 dB).

Given that liquid crystals material are transparent, commercially obtainable and are the only liquid material with tunable characteristics at microwave frequency, they could be ideal, in conjunction with flexible electronics, for designing either external or internal implantable microwave devices where flexibility is of great concern.

Statement of Originality

This work contains no material that has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of the thesis, when deposited in the University Library, being available for loan, photocopying, and dissemination through the library digital thesis collection, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Thesis Program (ADTP) and also through web search engines.

Signed

Date

Acknowledgements

I would like to express my deep gratitude to my principal supervisor, Adjunct Prof Bevan Bates. He expressed promptness and concern since my very first email to him, and that has been unchanged throughout the period under his supervision. His friendly and encouraging attitude has been helpful for propelling my work. Bevan's industrial way of thinking inspired me to approach the problems in more practical ways.

A key person whom I am strongly indebted to is my co-supervisor, Professor Christophe Fumeaux. His long experience with microwave frequency design has been of great importance towards my research. He has always given critical and vital comments upon the drafts, without which I would have not been able to complete this thesis. I have endured many hard times in thoroughly revising the drafts to satisfy his strict requirements, but eventually it turned out that it was worth doing so. The best word to describe him would be 'precision and quality research'.

Thanks are also due to all colleagues in the Applied Electromagnetic Research Group, Mr Ali Karimi, Mr Amir Ebrahimi, Mr Shifu Zhao, Mr Longfang Zou, Mr Gerard Rankin, Mrs Echo Niu, Mrs Zahra Shaterian, Dr Withawat Withayachumnankul and Dr Thomas Kaufman under supervision of Professor Christophe Fumeaux. Their critical comments and suggestions towards my presentations and research, not only enhanced my professional knowledge, but also provided a warmth and comfortable environment throughout my PhD research. I particularly would like to acknowledge, Dr Thomas Kaufman, Dr Withawat Withayachumnankul, Mr Ali Karimi, Mr Mehdi Kasaei Kopaei and Mr Amir Ebrahimi, for their ideas, fruitful discussion and assistance towards measurements in the anechoic chamber. It is my pleasure to have great moments with them.

I owe very much to Institute for Microwave Engineering and Photonics people at the Technische Universität Darmstadt (TUD) in Germany under supervision of Professor Rolf Jakoby, particularly Dr Onur Hamza Karabey who assisted me in the laboratory for fundamental experiments. Significant suggestions were also contributed by Dr Mohsen Sazeghar from TUD and Mr Atsutaka Manabe from Merck KGaA, Darmstadt, Germany.

Other sources of support and assistance, especially towards prototype fabrication has been provided by the Defence Science and Technology Organisation (DSTO), especially Mr Igor Switala, the Australian National Fabrication Facility (ANFF), the Ian Wark Research Institute at University of South Australia, Mr Simon Doe and Mr Dipankar Chugh and Macquarie University in Sydney, Mr Ben Johnston.

During my candidature, administrative work has been assisted by Ms Rose-Marie Descalzi, Mrs Ivana Rebellato, Ms Jodie Schluter, Mr Danny Di Giacomo, and Mr Stephen Guest. Other supporting people include the technical officers, Mr Pavel Simcik, Mr Bradon F. Pullen, Mr Alban O'Brien and Mr Ian Linke, and the IT support officers, Mr Ryan King, Mr David Bowler and Mr Mark J. Innes. The person who helped augment my academic writing skill in the early days was Karen Adams. Major financial support has been provided by Australian Postgraduate Award Scholarship (APA) and Australian Research Council (ARC), under the Discovery Project DP120100661. Travel grants were from the School of Electrical & Electronic Engineering, the University of Adelaide.

Finally deep appreciation goes towards my precious wife (Hedy Minoofar), for her constant love and support towards my research and study. She was there from my first step into the PhD, in the stressful moments, until the final stage, caring, encouraging and cheering me to reach my goals and dream. Without her constant help and love, I would have not reached this stage. Last but not least, I would like to express my appreciation to my parents (Bijan Yaghmaee and Farideh Yaghmaei) and my sister (Pegah Yaghmaie), who always endow me with infinite support. Their voice and advice has given me happiness and success in both professional and social life. No words can fully explain my gratefulness to them.

P. Yaghmaee

Conventions

Typesetting This thesis is typeset using Microsoft word, 2007.

Referencing The IEEE style is used for referencing and citation in this thesis.

Spelling Australian English spelling is adopted, as defined by the Macquarie English Dictionary (Delbridge 2001).

System of units The units comply with the international system of units recommended in an Australian Standard: AS ISO 1000-1998 (Standards Australia Committee ME/71, Quantities, Units and Conversions 1998).

Physical constants The physical constants comply with a recommendation by the committee on Data for Science and Technology: CODATA (Mohr and Taylor 2005).

Frequency bands Microwave frequency bands are defined according to "IEEE Standard Letter Designations for Radar-Frequency Bands," IEEE Std 521-2002 (Revision of IEEE Std 521-1984).

Publications

- [1] P. Yaghmaee, O. H. Karabey, B. Bates, C. Fumeaux, and R. Jakoby, "Electrically tuned microwave devices using liquid crystal technology," *International Journal of Antennas and Propagation*, vol. 24, pp. 25-35, September 2013. (Chap. 1-2), Journal
- [2] **P. Yaghmaee**, T. Kaufmann, B. Bates and C. Fumeaux, "Effect of polyimide layers on the permittivity tuning range of liquid crystal," *IEEE European Conference on Antennas and Propagation (EuCap)*, pp. 3579-3582, March 2012. (Chap. 3), Conference
- [3] P. Yaghmaee, C. Fumeaux, B. Bates, A. Manabe, O. H. Karabey and R. Jakoby, "Frequency tunable S-band resonator using nematic liquid crystal," *IET Electronics Letters.*, vol. 48, no. 13, pp. 798-800, June, 2012. (paper was selected for the "in brief" section of the journal, under Wireless Communications - Body Tuning) (Chap. 4), Journal
- [4] P. Yaghmaee, A.K. Horestani, B. Bates and C. Fumeaux, "A multi-layered tunable stepped impedance resonator for liquid crystal characterization," *IEEE Asia-Pacific Microwave Conference (APMC)*, PP. 776-778, December 2012. (Chap. 5), Conference
- [5] P. Yaghmaee, W. Withayachumnankul, A.K. Horestani, A. Ebrahimi, B. Bates and C. Fumeaux, "Tunable electric-LC resonators using liquid crystal," *IEEE International Symposium on Antenna and Propagation (AP-S/USNC-URSI)*, July 2013. (Chap. 6), Conference
- [6] **P. Yaghmaee**, B. Bates, and C. Fumeaux, "Liquid crystal tunable frequency selective surfaces for microwave frequency switching," in preparation. (Chap. 6), Journal
- [7] **P. Yaghmaee**, H. Minoofar, "Electric-*LC* resonators at microwave for oil sensing," accepted in *IET Electronics Letters*. (Chap. 6), Journal
- [8] A. Ebrahimi, P. Yaghmaee, W. Withayachumnankul, C. Fumeaux, S. Al-Sarawi and D. Abbott, "Interlayer tuning of X-band frequency-selective surface using liquid crystal," *IEEE Asia-Pacific Microwave Conference Proceeding (APMC)*, pp. 1118-1120 November 2013. (Future work), Conference
- [9] M. Mohammadzaheri, S. Grainger, M. Bazghaleh and P. Yaghmaee, "Intelligent modelling of a piezoelectric tube actuator," *IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA)*, pp. 1-6, July 2012.* Conference

[10] A. Ebrahimi, and **P. Yaghmaee**, "A new enhanced differential CMOS colpitts oscillator," *Journal of Circuits, Systems, and Computers*, November 2013.* Journal

Note: Articles with an asterisk are not directly relevant to this thesis

Lists of Figures

1.1	Silicon switched dipole antenna	6
1.2	Frequency tunable microstrip patch antenna	7
1.3	Tunable phase-shifter fabricated on BST thick film	10
1.4	Circularly polarized patch antenna with switchable polarization	
	sense	12
1.5	Electronically steerable reflector	13
1.6	Fabricated antenna with MEMS switches	16
2.1	Liquid crystal states	22
2.2	Liquid crystal phase	23
2.3	Polyimide rubbing direction	25
2.4	Liquid crystal molecule orientation	26
2.5	Effective relative permittivity and loss tangent as function of the	29
	applied bias voltage	
2.6	Electromagnetic energy distribution	32
2.7	Tunable band-pass filter	32
2.8	Parallel-coupled line tunable resonators	33
2.9	Tunable phase shifter	34
2.10	2-D electronically steered phased-array antenna	34
2.11	Tunable microstrip patch antenna	35
2.12	Tunable patch antenna	36
2.13	Leaky-wave tunable antenna	36
2.14	Geometry of periodic cell	37
2.15	Polarization agile antenna	38
3.1	Structure of a stepped impedance filter	45
3.2	Multi-layer resonator cross section	47

3.3	Isotropic and anisotropic liquid crystal	49
3.4	Cross-section of the resonator	50
3.5	S-parameters for E7 and BL037	52
3.6	K15 pattern	53
3.7	Tunable liquid crystal resonator	53
3.8	E and H instantaneous field distribution	54
3.9	Simulation-using K15 nematic liquid crystal	54
3.10	Etching process	55
3.11	Alignment of the liquid crystal molecules	57
3.12	Complete S-band tunable resonator	57
3.13	Packaged resonator	58
3.14	Spin-coated polyimide surface	59
3.15	Measurement - presence of polyimide films	60
4.1	Simulation using GT3-23001 liquid crystal mixture	67
4.2	Polyimide coating process	69
4.3	Spinning machine	69
4.4	Polyimide curing	70
4.5	Polyimide curing development	70
4.6	Rubbing machine	71
4.7	Microscopic grooves	72
4.8	Liquid filling process	72
4.9	Simulation and measurement comparison	73
5.1	Geometry of the SIR	80
5.2	Structure cross section	81
5.3	Transmission line circuit schematic	81
5.4	Central patch and the middle layer circuit schematic	83
5.5	SIR patch divisions	85
5.6	Lumped-element model simulation	87

5.7	Comparison for lumped-element simulation, full-wave	
	electromagnetic simulations and prototype measurements	88
6.1	Different cell shape ELC of resonators	93
6.2	Original ELC resonator cell	95
6.3	ELC resonator cell with microfluidic channel	96
6.4	Microfluidic channel filled with liquid crystal	97
6.5	Microfluidic gaps filled with liquid crystal	98
6.6	ELC resonator with bias lines	98
6.7	Modified ELC resonator unit cell	99
6.8	Microfluidic tube channel array	100
6.9	Microfluidic tube channel	101
6.10	Sealed tunable ELC resonator unit cell	102
6.11	Modified tunable ELC resonator	102
6.12	Capacitor length vs. tuning	104
6.13	Capacitor width vs. tuning	105
6.14	Original ELC resonator lumped-element model	107
6.15	Modified tunable ELC resonator lumped-element model	108
6.16	Lumped-element and full-wave model comparison	108
6.17	Masking pattern	109
6.18	Cleaning and baking	110
6.19	Aligning and lithography	110
6.20	ELC resonator prototype	111
6.21	Milled channel	112
6.22	Preheat and coating	113
6.23	Coating process	114
6.24	Lithography	114
6.25	PDMS top cover	115
6.26	Parallel plate waveguide	116
6.27	ELC resonator side view	117
6.28	Filling process of the resonator	117

6.29	Oil sample measurements	118
6.30	Oil sample extracted from the simulation	119
6.31	Crude oil sample measurements	120
6.32	Crude oil sample simulated	121
6.33	Tunable liquid crystal FSS measurement setup	122
6.34	Tunable FSS measurement	123
6.35	Tunable liquid crystal FSS measurement	124
6.36	Liquid crystal FSS switching	125
6.37	Comparison between simulation and measurement	127
6.38	Measurement of the tunable FSS	128

List of Tables

1.1	Studies of various reconfiguration techniques	4
2.1	Properties of some of the most common liquid crystal (nematic)	
	samples	30
3.1	Tunable liquid crystal microwave (C-band \leq) devices	44
3.2	Properties of liquid crystal samples	51
3.3	Dimensions of the fabricated prototype	58
4.1	GT3-23001 liquid crystal	66
4.2	Comparison of frequency tunability	74
5.1	Lumped-element circuit estimated values	84
5.2	Lumped-element circuit values-K15 (5CB)	86
5.3	Lumped-element circuit values-GT3-23001	86
5.4	Results comparison	89
6.1	Final ELC resonator unit cell	99
6.2	Capacitor length (mm)	103
6.3	Capacitor width (mm)	104
6.4	Tuning range performance for sealed ELC resonator	106
6.5	Control process of the photoresist	113
6.6	Measured and extracted data	119
6.7	Measurement and extracted data	121
6.8	Recorded measurement data on 5880	123
6.9	Recorded measurement data on 6002	124
6.10	Final fabricated FSS dimensions	126