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Distributed finite-time containment control for

double-integrator multi-agent systems

Xiangyu Wang, Shihua Li, Senior Member, IEEE, and Peng Shi, Senior Member,

IEEE

Abstract

In this paper, the distributed finite-time containment control problem for double-integrator multi-

agent systems with multiple leaders and external disturbances is discussed. In the presence of multiple

dynamic leaders, by utilizing the homogeneous control technique, a distributed finite-time observer is

developed for the followers to estimate the weighted average of the leaders’ velocities at first. Then

based on the estimates and the generalized adding a power integrator approach, distributed finite-time

containment control algorithms are designed to guarantee that the states of the followers converge to

the dynamic convex hull spanned by those of the leaders in finite time. Moreover, as a special case of

multiple dynamic leaders with zero velocities, the proposed containment control algorithms also work for

the case of multiple stationary leaders without using the distributed observer. Simulations demonstrate

the effectiveness of the proposed control algorithms.

Index Terms

Distributed control, containment control, finite-time control, second-order systems, multi-agent

systems
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I. INTRODUCTION

In recent years, as a specific problem of complex networks, distributed cooperative control for

multi-agent systems has attracted more and more research attention. This is due to its broad

applications (e.g., formation control [1]–[4], flocking [5], [6], rendezvous [7], [8], etc.) and

its advantages (e.g., better efficiency, higher robustness, less communication requirement, etc.)

compared with the traditional centralized coordination control approaches.

In the distributed cooperative control field, most of the existing results reported in the literature

concentrate on two fundamental problems. One is the consensus problem for leaderless multi-

agent systems, which is also called as the synchronization problem in complex networks (for

more details about synchronization in complex networks, see [9], [10]). The consensus of multi-

agent systems means that all the agents reach the agreement on a common state by implementing

appropriate consensus control laws. Recently, consensus algorithms have been extensively studied

for first-order [11]–[13], second-order [13]–[18] and high-order [19], [20] multi-agent systems.

The other fundamental problem is the consensus tracking problem for leader-follower multi-

agent systems. In this case, the control objective is to drive the states of the followers to track

the state of the single leader. Control algorithms for this problem have been reported in [13],

[14], [18]–[26].

Different from the leaderless and the leader-follower consensus problems, a more challenging

problem in distributed cooperative control is the containment control problem for multi-agent

systems with multiple leaders, which is also an extension of the leader-follower consensus

problem to the multi-leader case. In this case, the control objective is to drive the states of

the followers into the convex hull spanned by those of the leaders. The containment control

problem is also very important since the multiple leaders are useful to achieve effectively the

containment or guidance of an agent group in a target region [27]. Moreover, the study of

containment control stems from numerous natural phenomena and potential applications. For

examples, the male silkworm months will end up in the convex hull spanned by all the female

silkworm moths by detecting pheromone released by females; for a vehicle group moving to

a target place, the followers will stay in the safe area formed by the leaders when close to

the hazardous obstacles, where the vehicles which are equipped necessary sensors to detect the

obstacles paly the role of the leaders and the others are the followers. As a result, the containment
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control is meaningful for many practical problems, such as UAV [28], autonomous underwater

vehicle (AUV) [29] formation control, and robot swarms [30].

For the first-order multi-agent systems, several containment control algorithms have been

proposed recently in [31]–[33]. Since many practical individual systems, especially mechanical

systems, are of second-order dynamics, it is significant and necessary to study containment

control algorithms for the second-order multi-agent systems [33]–[37]. In [33], both continuous-

time and sampled-data based containment control algorithms were proposed for double-integrator

multi-agent systems with multiple dynamic leaders. [34] investigated the containment control

problem for double-integrator multi-agent systems under random switching topologies. In [35],

attitude containment control algorithms were proposed for multiple rigid bodies. [36] focused on

the problem of distributed second-order multi-agent tracking of a convex set specified by multiple

dynamic leaders under jointly connected switching topologies. [37] studied the containment

control problem for networked Lagrangian systems with multiple dynamic leaders in the presence

of parametric uncertainties under a directed graph. Note that all the control algorithms proposed

in the aforementioned literature provide asymptotic convergence, which means that convergence

rates of the closed-loop systems are at best exponential with infinite settling time. In other words,

the states of the followers can not converge to the convex hull spanned by those of the leaders

in finite time. To this end, considering the convergence rates, finite-time containment control

algorithms are more desirable.

Besides faster convergence rates, the closed-loop systems with finite-time convergence usually

demonstrate some other superiorities, such as better disturbance rejection properties and better

robustness against uncertainties [18], [38]. Because of the above superiorities, some kinds of

finite-time containment control algorithms have been developed for second-order multi-agent

systems [39], [40]. In [39], for the multiple rigid bodies with multiple stationary and dynamic

leaders, homogeneous and nonsingular terminal sliding mode control techniques were used to

design finite-time attitude containment algorithms, respectively. However, two main problems

exist there. One is that in the stationary leader case, the proposed distributed control law for

each follower needs the information from its neighbors’ neighbors, which is difficult to obtain in

practice. The other is that the switching control scheme proposed for the dynamic leader case is

also somehow impractical, since to obtain the switching time instant (or the finite settling time

of the distributed sliding mode observer), some global information of the agent communication
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topology and the bound on the accelerations of the leaders are required to be known. In [40],

for the double-integrator multi-vehicle systems with multiple dynamic leaders under a fixed

directed network topology, based on the homogeneous control method presented in [41], finite-

time containment control laws were proposed. Nevertheless, the dynamic leaders are required to

have an identical velocity there, which is somehow harsh for practical implementations.

Considering various potential applications of the containment control, the superiorities of the

finite-time control, and also to improve the aforementioned problems in the existing literature

on the distributed finite-time containment control for second-order multi-agent systems, in this

paper, distributed finite-time containment control algorithms are proposed for double-integrator

multi-agent systems with multiple dynamic or stationary leaders in the presence of external

disturbances. At first, in the dynamic leader case, the finite-time containment control is achieved

by integrating the adding a power integrator technique [42], [43] (to design the distributed control

laws), the homogeneous control method [41] (to design the distributed observer), and the graph

theory. Then the proposed control algorithms are shown to be also able to cope with the stationary

leader case without using the distributed observer.

The main contributions of this paper are fourfold. Firstly, this paper extends the result in our

previous work [18] from the single-leader case to the multi-leader case. Specifically, compared

with the single-leader case, the communication subgraph of the followers in the multi-leader case

is not required to be connected while the whole agent communication topology becomes more

complex due to the presence of multiple leaders. In other words, in contrast with their single-

leader counterparts, the main difficulty in design and analysis of algorithms with multiple leaders

is that the followers need to use more limited information to achieve more complicated collective

behaviors. A case in point is that, in the dynamic leader case, the finite-time convergence proof on

the distributed observer is more difficult than its single-leader counterpart (see more in Remark 2).

Secondly, in the case of multiple stationary leaders, for each follower, the proposed distributed

control law in this paper requires less information than that designed in [39], namely, only

information from its neighbors (see more in Remark 6). Thirdly, in this paper, in the case of

multiple dynamic leaders, based on a distributed finite-time observer without using any global

information of the agent communication topology and the bound information on the accelerations

of the leaders, non-switching containment control laws are proposed, which are more convenient

in practical implementations than those designed by using the switching control scheme presented
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in [39] (see more in Remark 5). The last but not least, also in the dynamic leader case, the

proposed distributed control laws in this paper achieve finite-time convergence without requiring

that the velocities of the dynamic leaders be identical, while which is required in [40].

The remainder of this paper is organized as follows. In Section II, some useful preliminaries

and problem formulation are exhibited. In Section III, the main result, i.e., the distributed finite-

time containment control scheme, is presented. Some simulations are performed in Section IV.

Finally, conclusions are drawn in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notations

Denote sigα(x) = sgn(x)|x|α, where x, α ∈ R and sgn(·) is the standard sign function.

Given a vector x = [x1, · · · , xn]T ∈ Rn and α ∈ R, let xα = [xα
1 , · · · , xα

n]T , sigα(x) =

[sigα(x1), · · · , sigα(xn)]T , especially, sgn(x) = [sgn(x1), · · · , sgn(xn)]T . Let ‖x‖ =
√

xTx de-

note the Euclidean norm of vector x. Let P > 0 denote a symmetric positive definite matrix

P . Let λmax(P ) and λmin(P ) denote the maximum and minimum eigenvalues of matrix P ,

respectively. For brevity, let 1n = [1, · · · , 1]T ∈ Rn. Let Ip denote p× p identity matrix, where

p is a positive integer.

B. Useful lemmas and definitions

Lemma 1: [38] Consider the system ẋ = f(x), f(0) = 0, x ∈ Rn, there exist a positive

definite continuous function V (x) : U → R, real numbers c > 0 and α ∈ (0, 1), and an open

neighbor U0 ⊂ U of the origin such that V̇ (x) + c(V (x))α ≤ 0, x ∈ U0 \ {0}. Then V (x)

approaches 0 in finite time. In addition, the finite settling time T satisfies that T ≤ V (x(0))1−α

c(1−α)
.

Lemma 2: [43] For any real numbers xi, i = 1, · · · , n and 0 < q ≤ 1, the following inequality

holds (
∑n

i=1 |xi|)q ≤ ∑n
i=1 |xi|q. When 0 < q = q1/q2 ≤ 1, where q1, q2 are odd integers, then

|xq − yq| ≤ 21−q|x− y|q.

Lemma 3: [43] If c > 0, d > 0 and γ(x, y) > 0 is a real-valued function for x ∈ R, y ∈ R,

then |x|c|y|d ≤ cγ(x,y)|x|c+d

c+d
+ dγ−c/d(x,y)|y|c+d

c+d
.

Lemma 4: [44] Given matrices A and B with compatible sizes, then (A ⊗ B)T = AT ⊗
BT , (A⊗ Ip)(B ⊗ Ip) = AB ⊗ Ip, where ⊗ denotes the Kronecker product.
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Definition 1: [39] Let X be a set in a real vector space V ⊆ Rp, where p is a positive integer.

The convex hull Co(X) of the set X is defined as Co(X) = {∑k
i=1 aixi|xi ∈ X, ai ∈ R, ai ≥

0,
∑k

i=1 ai = 1, k = 1, 2, · · · }.

C. Graph theory notions

Let G = (V , E ,A) be a directed graph, where V = {v1, · · · , vn} is the set of nodes, E ⊆ V × V
is the set of edges and A = [aij] ∈ Rn×n is the weighted adjacency matrix of the graph G. The

node indexes belong to a nonempty finite index set Γ = {1, · · · , n}. An edge (vi, vj) denotes

that node vj can access information from node vi and vi is said to be a neighbor of vj , but not

necessarily vice versa. The set of neighbors of node vi is denoted as Ni = {vj ∈ V|(vj, vi) ∈ E}.

In addition, an undirected graph G is defined such that (vj, vi) ∈ E implies (vi, vj) ∈ E . In a

directed graph, a directed path is a sequence of edges of the form (vk1 , vk2), (vk2 , vk3), · · · , ki ∈
Γ. An undirected path in an undirected graph is defined analogously. An undirected graph is

connected if there is an undirected path between every pair of distinct nodes.

The adjacency matrix A = [aij] ∈ Rn×n associated with the directed graph G is defined such

that aij > 0 if (vj, vi) ∈ E while aij = 0 otherwise. For an undirected graph, we assume that

aij = aji. Moreover, we assume that aii = 0,∀i ∈ Γ. The Laplacian matrix L = [lij] ∈ Rn×n

associated with A is defined as lii =
∑

j∈Ni
aij and lij = −aij , where i 6= j. Obviously, zero is

an eigenvalue of L with an associated eigenvector 1n. Note that matrix L is symmetric for an

undirected graph while not necessarily symmetric for a directed graph.

D. Problem formulation

First, in this paper, the multi-agent systems to be studied are of the form

ẋi(t) = vi(t), v̇i(t) = ui(t) + di(t), i ∈ F
⋃

L, (1)

where xi(t) = [xi1(t), · · · , xip(t)]
T , vi(t) = [vi1(t), · · · , vip(t)]

T , ui(t) = [ui1(t), · · · , uip(t)]
T ∈

Rp are the position, velocity and control input, respectively, p is a positive integer, di(t) =

[di1(t), · · · , dip(t)]
T ∈ Rp represents a bounded external disturbance satisfying ‖di(t)‖ ≤ h with

h being a positive constant, associated with the i-th agent, i ∈ F
⋃

L, and F = {1, · · · , n} and

L = {n + 1, · · · , n + m} represent the follower set and the leader set, respectively. For the

leaders, the following natural assumption is made.

May 3, 2013 DRAFT
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Assumption 1: For the leaders of multi-agent system (1), xj(t), vj(t), v̇j(t), j ∈ L are all

bounded ∀ t ∈ [0,∞).

Second, the communication topology of multi-agent system (1) can be described by a directed

graph Gn+m = (Vn+m, En+m,An+m) with m leader nodes and n follower nodes. A node is

called a follower if the node has at least one neighbor. Otherwise, the node is called a leader.

An+m = [aij] ∈ R(n+m)×(n+m) and Ln+m = [lij] ∈ R(n+m)×(n+m) denote the adjacency and the

Laplacian matrices of the graph Gn+m, respectively. For brevity, we use A and L to replace

An+m and Ln+m later in this paper, respectively. Let GF
n = (F, EF , AF ) and GL

m = (L, EL, AL)

denote the follower and the leader communication topologies, respectively. Assume that the

leaders do not communicate with each other, which implies that EL = ∅. The communication

between different followers are bidirectional, namely, GF
n is an undirected graph. In addition,

the communication between a leader and a follower is unidirectional with the leader issuing

the communication. Thus, each entry of the last m rows of the Laplacian matrix Ln+m is zero

and Ln+m =




T Td

0m×n 0m×m


, where T = [Tij] ∈ Rn×n, Td ∈ Rn×m. On the communication

topology Gn+m of system (1), the following natural assumption is made.

Assumption 2: For each follower of multi-agent system (1), there exists at least one leader

that has a path to the follower.

Lemma 5: [39] Under Assumption 2, matrix T is positive definite. In addition, each entry

of −T −1Td is nonnegative and each row sum of −T −1Td is equal to one.

For brevity, we denote xF = [xT
1 , · · · , xT

n ]T , vF = [vT
1 , · · · , vT

n ]T , xL = [xT
n+1, · · · , xT

n+m]T , vL =

[vT
n+1, · · · , vT

n+m]T , xd = [xT
d1, · · · , xT

dn]T = −(T −1Td ⊗ Ip)xL and vd = [vT
d1, · · · , vT

dn]T = ẋd,

where xdi = [xdi1, · · · , xdip]
T , vdi = [vdi1, · · · , vdip]

T ∈ Rp, i ∈ F . From Definition 1 and

Lemma 5, xF → xd (i.e., xi → xdi, i ∈ F ) means that xi, i ∈ F converge to the convex

hull Co{xj, j ∈ L}.

Based on the above descriptions, the objective of this paper is to achieve distributed finite-time

containment control for multi-agent system (1), i.e., to design the distributed control laws for

system (1) such that xi → Co{xj, j ∈ L}, i ∈ F (specifically, xi → xdi, vi → vdi, i ∈ F ) in

finite time under Assumptions 1-2.
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III. MAIN RESULT

Without loss of generality, the leaders of multi-agent system (1) are presumed to be dynamic.

Actually, stationary leaders can also be regarded as dynamic ones but with zero velocities. The

distributed finite-time control design mainly consists of two parts. First, a distributed finite-time

observer is proposed for the followers to obtain the accurate estimates of the weighted average

of the leaders’ velocities in finite time. Second, based on the estimated weighted average of the

leaders’ velocities, distributed finite-time containment control laws are proposed for system (1).

A. Distributed finite-time observer design

Let v̂di = [v̂di1, · · · , v̂dip]
T , i ∈ F denote the estimate of vdi with respect to the i-th follower

and v̂d = [v̂d1, · · · , v̂dn]T . For multi-agent system (1), the distributed observer is designed as

˙̂vdi =
1

Tii

∑

j∈F
⋃

L

aij
˙̂vdj − k

Tii

sigα




∑

j∈F
⋃

L

aij(v̂di − v̂dj)


 , i ∈ F, (2)

where v̂dj = vj, j ∈ L, k > 0, 0 < α < 1, Tii is the (i, i) entry of matrix T defined in Lemma 5.

For brevity, denote ei = [ei1, · · · , eip]
T =

∑
j∈F

⋃
L aij(v̂di − v̂dj), i ∈ F and e = [eT

1 , · · · , eT
n ]T .

Proposition 1: Under Assumption 2, the distributed observer (2) is globally finite-time con-

vergent, namely, v̂di → vdi, i ∈ F in a finite time T0 satisfying T0 = max∀i∈F,1≤l≤p

{ |eil(0)|1−α

k(1−α)

}
.

Proof: Based on the definition of ei, the equality (2) can be rewritten as

ėi = −ksigα(ei), i ∈ F. (3)

By direct integration on (3), the convergence time Ti of ei is Ti = max1≤l≤p

{ |eil(0)|1−α

k(1−α)

}
, i ∈ F .

Hence, e → 0 in a finite time T0 = max∀i∈F Ti = max∀i∈F,1≤l≤p

{ |eil(0)|1−α

k(1−α)

}
.

Denote v̄dj = [v̄dj1, · · · , v̄djp]
T = v̂dj − vdj, j ∈ F . Then ei =

∑
j∈F

⋃
L lij v̂dj =

∑
j∈F Tij v̄dj +

∑
j∈F Tijvdj +

∑
j∈L lijvj, i ∈ F , where lij, Tij are the (i, j) elements of matrices L and T ,

respectively. Denote B = [bij] = −T −1Td ∈ Rn×m. Then vd = (B⊗Ip)vL and thus
∑

j∈F Tijvdj =
∑n

j=1 Tij
∑m

k=1 bjkvk+n =
∑m

k=1

(∑n
j=1 Tijbjk

)
vk+n. Also note that

∑n
j=1 Tijbjk = −lik+n, i ∈

F, k = 1, · · · ,m, where lik+n is equal to the (i, k) entry of matrix Td because of T (−T −1Td) =

−Td. Then
∑

j∈F Tijvdj = −∑
j∈L lijvj, i ∈ F , which implies that ei =

∑
j∈F Tij v̄dj, i ∈ F.

From the above proof, we have e = (T ⊗Ip)(v̂d−vd). Since T is invertible under Assumption

2, then v̂d → vd (i.e., v̂di → vdi, i ∈ F ) in the finite time T0. This completes the proof.
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Remark 1: It is notable that the proof on e = (T ⊗Ip)(v̂d−vd) is more difficult than its single-

leader counterpart in [18], due to the more complex agent communication topology in the case

of multiple leaders. Next, the structure of observer (2) will be analyzed. On one hand, observer

(2) is designed based on the homogeneous control method [41]. Specifically, for the i-th (i ∈ F )

follower, the terms − k
Tii

sigα(
∑

j∈F
⋃

L aij(v̂di − v̂dj)) in observer (2) aim to guarantee that the

follower can obtain the accurate estimate of v̇di in finite time, and the computation of ˙̂vdi depends

on both its neighbors’ states and their derivatives as in [16], [18]. Actually, the derivatives can

be calculated by numerical differentiation. On the other hand, the distributed observer (2) is not

suitable for the case of followers with cycles in their communication subgraph, because in this

case, the interconnections among the followers are highly coupled and the computation of ˙̂vdi

depends on the computation of ˙̂vdk (for some k), which in turn depends on the computation of
˙̂vdi, which is technically impractical.

Remark 2: From the proof of Proposition 1, the finite-time settling time T0 of observer (2)

depends on the communication topology structure, the initial states v̂di(0), i ∈ F, vj(0), j ∈ L,

and the control parameters k, α. By defining f(α) =
x1−α
0

k(1−α)
for α ∈ (0, 1) with x0 > 0 being a

constant, it follows that ∂f(α)
∂α

=
x1−α
0 (1−ln x1−α

0 )

k(1−α)2
. Therefore, under any admissible communication

topology satisfying Assumption 2 and initial states, if fixing α, T0 decreases as k increases.

However, if fixing k, the monotonicity of T0 on α is complex, which is also related to the

communication topology structure and the aforementioned initial states.

B. Distributed finite-time containment control design

Based on the developed distributed finite-time observer (2), for multi-agent system (1) with

multiple dynamic leaders, the control law ui for the i-th follower is designed as

ui = ˙̂vdi − k2


(vi − v̂di)

1/q + k
1/q
1




∑

j∈F
⋃

L

aij(xi − xj)







2q−1

− k4sgn


(vi − v̂di)

1/q + k
1/q
1




∑

j∈F
⋃

L

aij(xi − xj)





 , i ∈ F, (4)

where v̂di is the estimate of vdi, i ∈ F generated from observer (2), and the control parameters

satisfy k1 ≥ 21−q

1+q
+ (β+nη)q

1+q
+ k3, k2 ≥ (2 − q)21−qk

1+1/q
1

[
(k1+nη)21−qq

k1(1+q)
+ σ

k1
+ k3

]
, k3 > 0, k4 ≥

h, β = max∀i∈F

{∑
j∈F

⋃
L aij

}
, η = max∀i,j∈F{aij}, σ = (β+nη)(k1+21−q)+βq21−q

1+q
, 1/2 < q =

q1/q2 < 1 with positive odd integers q1, q2.
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Proposition 2: For multi-agent system (1), if Assumptions 1-2 hold and the control law ui, i ∈
F is designed as (4), then xi(t), vi(t), i ∈ F are bounded ∀ t ∈ [0,∞).

Proof: See Appendix.

With the help of Proposition 2, the main result of the paper can be stated as the following

theorem.

Theorem 1: For multi-agent system (1) with multiple dynamic leaders, if Assumptions 1-2

hold and the control law ui, i ∈ F is designed as (4), then xi → Co{xj, j ∈ L} in finite time,

more specifically, xi → xdi, vi → vdi, i ∈ F in finite time.

Proof: For the case of 0 < t < T0, it follows from Proposition 2 that xi(t), vi(t), i ∈ F are

bounded. Next, we focus on the global finite-time convergence proof for the case of t ≥ T0.

When t ≥ T0, it follows from Proposition 1 that v̂di = vdi, i ∈ F . Denote x̄i = [x̄i1, · · · , x̄ip]
T =

xi − xdi, v̄i = [v̄i1, · · · , v̄ip]
T = ˙̄xi, ūi = [ūi1, · · · , ūip]

T = ui − v̇di, i ∈ F, x̄j = 0, j ∈ L,

x̄F = [x̄T
1 , · · · , x̄T

n ]T , v̄F = [v̄T
1 , · · · , v̄T

n ]T , and x̄L = [x̄T
n+1, · · · , x̄T

n+m]T . By applying the new

notations to system (1), the tracking error dynamics of the followers and the leaders can be

respectively written as

˙̄xi(t) = v̄i(t), ˙̄vi(t) = ūi(t) + di(t), i ∈ F, (5)

x̄j(t) = 0, ˙̄xj(t) = 0, ¨̄xj(t) = 0, j ∈ L. (6)

The following proof is based on the generalized adding a power integrator technique ( [42],

[43]), which is composed of two steps. First, a virtual velocity v̄∗i is designed for each follower.

Second, the distributed law is designed for each follower such that v̄i → v̄∗i in finite time and

then global finite-time convergence of the closed-loop system (4)-(5) is guaranteed.

Step 1. (Virtual velocity design) Choose the following Lyapunov function

V0 =
1

2
x̄T

F (T ⊗ Ip)x̄F =
1

4

n∑

i=1

n∑

j=1

aij‖x̄i − x̄j‖2 +
1

2

n∑

i=1

n+m∑

j=n+1

aij‖x̄i‖2. (7)

By Assumption 2, V0 is positive definite and differentiable. In addition, V0 ≤ 1
2
λmax(T )x̄T

F x̄F ,

where λmax(T ) > 0 since T > 0 (by Lemma 5). The derivative of V0 along system (5) is

V̇0 = x̄T
F (T ⊗ Ip) ˙̄xF =

n∑

i=1




n+m∑

j=1

aij(x̄i − x̄j)
T


 v̄i. (8)
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By denoting wi = [wi1, · · · , wip]
T =

∑n+m
j=1 aij(x̄i − x̄j), i ∈ F , it follows that [wT

1 , · · · , wT
n ]T =

(T ⊗ Ip)x̄F and then
∑n

i=1 wT
i wi = x̄T

F (T ⊗ Ip)
T (T ⊗ Ip)x̄F = x̄T

F (T 2 ⊗ Ip)x̄F . Thus,
n∑

i=1

wT
i wi ≥ λmin(T 2)x̄T

F x̄F ≥ 2λmin(T 2)V0

λmax(T )
, (9)

where λmin(T 2) > 0 since T 2 > 0. Take the virtual velocity as

v̄∗i = [v̄∗i1, · · · , v̄∗ip]
T = −k1w

q
i , i ∈ F, (10)

where k1 > 0 to be determined, and 1/2 < q = q1/q2 < 1 with positive odd integers q1, q2. With

the help of (10), (8) becomes

V̇0 = −k1

n∑

i=1

wT
i wq

i +
n∑

i=1

wT
i (v̄i − v̄∗i ). (11)

Step 2. (Control law design) Denote ξi = [ξi1, · · · , ξip]
T = v̄

1/q
i − v̄

∗1/q
i , i ∈ F and r = 1+ q.

Choose the following Lyapunov function

V = V0 +
n∑

i=1

p∑

l=1

Vil, (12)

where Vil = 1

(2−q)21−qk
1+1/q
1

∫ v̄il
v̄∗

il
(s1/q − v̄

∗1/q
il )2−qds, v̄∗il = −k1w

q
il, i ∈ F, l = 1, · · · , p. From

Propositions B1 and B2 in [42], Vil (also V ) is differentiable, positive definite and proper ∀i ∈
F, l = 1, · · · , p. Moreover, based on the fact 0 < q < 1 and Lemma 2, it can be obtained that

Vil ≤ 1

(2− q)21−qk
1+1/q
1

|v̄il − v̄∗il||ξil|2−q ≤ 1

(2− q)k
1+1/q
1

ξ2
il, i ∈ F, l = 1, · · · , p. (13)

Then by integrating (9) and (13), there is c = max
{

λmax(T )
2λmin(T 2)

, 1

(2−q)k
1+1/q
1

}
such that

V = V0 +
n∑

i=1

p∑

l=1

Vil ≤ c
n∑

i=1

p∑

l=1

(w2
il + ξ2

il), (14)

Next, we estimate the terms in V̇ = V̇0 +
∑n

i=1

∑p
l=1 V̇il from left to right. First, by Lemmas

2-3, it follows from (11) that

V̇0 ≤ −k1

n∑

i=1

p∑

l=1

wr
il + 21−q

n∑

i=1

p∑

l=1

|wil||ξil|q

≤ −k1

n∑

i=1

p∑

l=1

wr
il + 21−q

n∑

i=1

p∑

l=1

(
wr

il

r
+

qξr
il

r

)
. (15)

Second, taking the derivative of Vil along system (5) yields

V̇il = − 1

21−qk
1+1/q
1

dv̄
∗1/q
il

dt

∫ v̄il

v̄∗
il

(sq − v̄
∗1/q
il )1−qds +

ξ2−q
il (ūil + dil)

(2− q)21−qk
1+1/q
1

, i ∈ F, l = 1, · · · , p.

(16)
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From (10), it can be obtained that dv̄
∗1/q
il /dt = −k

1/q
1

∑n+m
j=1 aij(v̄il − v̄jl) ≤ k

1/q
1 (β|v̄il| +

η
∑n

j=1 |v̄jl|), i ∈ F , where β = max∀i∈F

{∑
j∈F

⋃
L aij

}
and η = max∀i,j∈F{aij}. In addition,

by Lemma 2, it holds that
∫ v̄il
v̄∗

il
(s1/q − v̄

∗1/q
il )1−qds ≤ |v̄il − v̄∗il||ξil|1−q ≤ 21−q|ξil|. Based on the

above analysis, it follows from (16) that

V̇il ≤ 1

k1


β|v̄il|+ η

n∑

j=1

|v̄jl|

 |ξil|+ ξ2−q

il (ūil + dil)

(2− q)21−qk
1+1/q
1

, i ∈ F, l = 1, · · · , p. (17)

From (10) and Lemma 2, it holds that |v̄jl| ≤ |v̄∗jl| + |v̄jl − v̄∗jl| ≤ k1|wjl|q + 21−q|ξjl|q, j ∈
F, l = 1, · · · , p. By Lemma 3, it follows that |v̄jl||ξil| ≤ (k1|wjl|q + 21−q|ξjl|q)|ξil| ≤ k1q

r
wr

jl +

21−qq
r

ξr
jl +

k1+21−q

r
ξr
il. Then, by applying the above inequalities to (17) yields (i ∈ F, l = 1, · · · , p)

V̇il ≤ βq

r
wr

il +
σ

k1

ξr
il +

ηq

r

n∑

j=1

wr
jl +

η21−qq

k1r

n∑

j=1

ξr
jl +

ξ2−q
il (ūil + dil)

(2− q)21−qk
1+1/q
1

, (18)

where σ = (β+nη)(k1+21−q)+βq21−q

r
.

Note that |di| ≤ h, i ∈ F . Then, putting (12), (15), and (18) together yields

V̇ ≤−
[
k1 − 21−q

r
− (β + nη)q

r

]
n∑

i=1

p∑

l=1

wr
il +

[
(k1 + nη)21−qq

k1r
+

σ

k1

]
n∑

i=1

p∑

l=1

ξr
il

+
1

(2− q)21−qk
1+1/q
1

n∑

i=1

p∑

l=1

ξ2−q
il ūil +

h

(2− q)21−qk
1+1/q
1

n∑

i=1

p∑

l=1

|ξil|2−q. (19)

Similar to the proof in Proposition 1, we have
∑

j∈F Tijxdj = −∑
j∈L lijxj, i ∈ F . Then it

follows that
∑

j∈F
⋃

L aij(x̄i − x̄j) =
∑

j∈F Tijx̄j =
∑

j∈F
⋃

L aij(xi − xj). If ui is taken as (4),

by noting that ūi = ui − v̇di, i ∈ F , control input ūi of system (5) can be described as

ūil = −k2ξ
2q−1
il − k4sgn(ξil), i ∈ F, l = 1, · · · , p, (20)

where k1 ≥ 21−q

r
+ (β+nη)q

r
+ k3, k2 ≥ (2− q)21−qk

1+1/q
1

[
(k1+nη)21−qq

k1r
+ σ

k1
+ k3

]
, k3 > 0, k4 ≥ h.

Substituting (20) into (19) yields

V̇ ≤− k3

n∑

i=1

p∑

l=1

(wr
il + ξr

il). (21)

Based on the fact 0 < r/2 < 1 and Lemma 2, it follows from (14) and (21) that

V̇ +
k3

cr/2
V r/2 ≤ 0, (22)

which means that V reaches zero in finite time (by Lemma 1). Then x̄F → 0, v̄F → 0, i.e.,

xi → xdi and vi → vdi, i ∈ F in finite time with control law (4). This completes the proof.
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Remark 3: On one hand, the terms ˙̂vdi − k2[(vi − v̂di)
1/q + k

1/q
1 (

∑
j∈F

⋃
L aij(xi − xj))]

2q−1

in the distributed control law (4) are used to force the i-th (i ∈ F ) follower to converge to

the leaders’ convex hull Co{xj, j ∈ L} in finite time, and these terms are obtained through

a recursive design process based on the generalized adding a power integrator technique [42],

[43]. On the other hand, the discontinuous term k4sgn(·) in control law (4) is used to dominate

the external disturbance di contained in the i-th follower dynamics of system (1) such that the

global finite-time convergence of the whole closed-loop system can be achieved. In the absence

of external disturbances, this discontinuous term is not needed.

Remark 4: Let T denote the settling time of the closed-loop system (1)-(2)-(4). From (22)

and Lemma 1, it follows that T ≤ T0 + 2c(1+q)/2V (T0)(1−q)/2

k3(1−q)
with T0 being the finite settling

time of observer (2) and c = max
{

λmax(T )
2λmin(T 2)

, 1

(2−q)k
1+1/q
1

}
. For t ≥ T0, we define K(t) =

∑n
i=1

[
λmax(T )

2
‖xi(t)−xdi(t)‖2 + 1

(2−q)k
1+1/q
1

‖(vi(t)− vdi(t))
1/q +k

1/q
1

∑n+m
j=1 aij(xi(t)−xj(t))‖2

]
.

Note that
∑n+m

j=1 aij(x̄i − x̄j) =
∑n+m

j=1 aij(xi − xj). Then, from (7), (12), and (13), it can be

obtained that V (t) ≤ K(t),∀t ≥ T0. Therefore, an upper bound of T can be given by T ≤
T0 + 2c(1+q)/2K(T0)(1−q)/2

k3(1−q)
. From the above analysis and noting that k1, k2 depend on k3, then T

mainly depends on the communication topology structure, the agent initial states, T0 and the

control parameters k3, q.

Remark 5: In the case of multiple dynamic leaders, if Assumptions 1-2 hold, according to the

control design in [39], for the i-th (i ∈ F ) follower in system (1) without external disturbances,

the switching finite-time containment control law can be written as

ui =





−kpi
xi − kdi

vi, t ≤ T ∗,

−α−1b−1sig2−α(vi − v̂di)− µsgn
(∑n

j=1 Tijsj

)
− %sigγ

(∑n
j=1 Tijsj

)
, t > T ∗,

(23)

where kpi
, kdi

, b, % > 0, 1 < α < 2, µ > supi∈L,l=1,2,3 |v̇il|, 0 < γ < 1, si =
∑

j∈F
⋃

L aij(xi −
xj) + b

∑n
j=1 Tijsig

α(vj − v̂dj), Tij is the (i, j) entry of the matrix T defined in Lemma 5, and

v̂di, i ∈ F denotes estimate of vdi with respect to the i-th follower, which is generated from the

following distributed sliding mode observer with a finite settling time T ∗

˙̂vdi = −ksgn




∑

j∈F
⋃

L

aij(v̂di − v̂dj)


 , i ∈ F, (24)
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where v̂dj = vj, j ∈ L, supi∈L,l=1,2,3 |v̇il| < k < µ and the initial states satisfy v̂di(0) = 0, i ∈ F .

According to analysis in [39], T ∗ =
√

3n‖vd‖∞λmax(T )
(p−‖v̇d‖∞)λmin(T )

, where ‖ · ‖∞ represents the infinity norm.

As the authors said in [39], the switching time T ∗ depends on ‖v̇d‖∞ and global information

λmax(T ), λmin(T ). However, it is usually difficult to obtain this global information and hence the

switching time T ∗ in a distributed way. In addition, the control law ui = −kpi
xi − kdi

vi, i ∈ F

is used to guarantee the state boundedness of the closed-loop system (1)-(23)-(24) when t ≤ T ∗,

but it may negatively affect the followers’ tracking performances. Therefore, compared with the

switching control law (23), the non-switching control law (4) is more convenient to be taken

into practice.

Actually, the result of Theorem 1 also covers the case of multiple stationary leaders. The only

difference is that for multi-agent system (1) with multiple stationary leaders (i.e., the leaders’

velocities are all zeros), the distributed observer is not needed anymore. More specifically, without

further proof, the following corollary can be given.

Corollary 1: For multi-agent system (1) with multiple stationary leaders, if Assumption 2

holds and the control law ui, i ∈ F is designed as

ui =− k2


v

1/q
i + k

1/q
1




∑

j∈F
⋃

L

aij(xi − xj)







2q−1

− k4sgn


v

1/q
i + k

1/q
1




∑

j∈F
⋃

L

aij(xi − xj)





 , i ∈ F, (25)

where the control parameters are the same as those defined in (4), then xi → Co{xj, j ∈ L} in

finite time, more specifically, xi → xdi, vi → 0, i ∈ F in finite time.

Remark 6: Control law (25) is obtained by letting v̂di = 0, ˙̂vdi = 0, i ∈ F in control law (4)

and thus (25) has almost the same structure as (4): the terms −k2[v
1/q
i + k

1/q
1 (

∑
j∈F

⋃
L aij(xi −

xj))]
2q−1 are used to guarantee the finite-time convergence and the discontinuous term k4sgn(·)

is used to dominate the external disturbances. Since Assumption 1 naturally holds for stationary

leaders, it is omitted in Corollary 1. By Remark 4, an upper bound for the finite settling time T

of the closed-loop system (1)-(25) can be directly obtained: T ≤ 2c(1+q)/2K(0)(1−q)/2

k3(1−q)
, where K(t)

(note that t ≥ T0 = 0 and vdi = 0, i ∈ F here) is the same as that defined in Remark 4. In

the case of multiple stationary leaders, if Assumption 2 holds, according to the control design

in [39], for the i-th (i ∈ F ) follower in system (1) without external disturbances, the finite-time
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containment control law can be written as

ui =− b1

∑

j∈L
⋃

F

aij


sigα1




∑

k∈L
⋃

F

aik(xi − xk)


− sigα1




∑

k∈L
⋃

F

ajk(xj − xk)







− b2

∑

j∈L
⋃

F

aij


sigα2




∑

k∈L
⋃

F

aik(vi − vk)


− sigα2




∑

k∈L
⋃

F

ajk(vj − vk)





 , i ∈ F,

(26)

where b1, b2 > 0, 0 < α2 < 1 and α1 = α2

2−α2
. Note that for each follower, control law (26) needs

the information from its neighbors’ neighbors, which is usually difficult to obtain in practice. In

contrast, for each follower, control law (25) only requires information from its neighbors, which

makes (25) easier for practical implementations.

IV. NUMERICAL SIMULATIONS

In this section, some simulations are conducted to illustrate the effectiveness of the control

scheme proposed in Theorem 1. We consider a group of 3-D agents with 4 leaders and 6

followers, i.e., m = 4, n = 6. The communication topology among the agents is shown in Fig.

1 with F = {1, 2, 3, 4, 5, 6} and L = {7, 8, 9, 10}. The external disturbances are assumed to

be di(t) = [0.1 sin(t), 0.1 cos(0.5t), 0.1 sin(t) + 0.1 cos(0.5t)]T , i ∈ F . It is easy to obtain that

‖di(t)‖ ≤ 0.2, i ∈ F .

A. Simulations in the case of multiple dynamic leaders

The leaders are assumed to have constant velocities v7(t) = [0.51, 0.61,−0.09]T , v8(t) =

[0.49, 0.6,−0.08]T , v9(t) = [0.5, 0.59,−0.1]T , v10(t) = [0.5, 0.6,−0.09]T ,∀t ≥ 0 (note that

their velocities are different from each other’s) and their initial coordinates are the four ver-

tices of a tetrahedron: x7(0) = [0, 0, 0]T , x8(0) = [0, 3, 0]T , x9(0) = [3
√

3/2, 3/2, 0]T , and

x10(0) = [
√

3/2, 3/2,
√

6]T . The followers are assumed to be static at t = 0 and their initial

coordinates are x1(0) = [−1.2, 3.6, 1.8]T , x2(0) = [0.1, 1.3, 3]T , x3(0) = [1.6, 2.1, 2.6]T , x4(0) =

[1.5, 0.3,−1.5]T , x5(0) = [2.2, 3.1, 2.2]T , x6(0) = [−1,−0.5, 0.8]T . The initial states of the

distributed observer (2) are set to zeros, i.e., v̂di(0) = 03×1, i ∈ F .

For the distributed control law (4), take q = 9/11, k3 = 1.5. By calculation, it can be obtained

that β = max∀i∈F

{∑
j∈F

⋃
L aij

}
= 0.24 and η = max∀i,j∈F{aij} = 0.1. According to the
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Fig. 1. The communication topology among the agents with F = {1, 2, 3, 4, 5, 6}, L = {7, 8, 9, 10}.
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Fig. 2. 3-D phase-plot for the agents with control law (4). The small blocks represent the followers, the small circles represent

the leaders, and the small asterisks represent the weighted average of the leaders’ coordinates (note that xd1 = xd5 and thus

being denoted by xd1,5).

sufficient conditions given in Theorem 1, the other parameters of control law (4) can be chosen

as k1 = 2.5019, σ = 1.8024, k2 = 29.3536, k4 = 0.2. For observer (2), take k = 5, α = 0.9.

By Proposition 1, the settling time T0 of observer (2) is T0 = max∀i∈F,1≤l≤3

{ |eil(0)|1−α

k(1−α)

}
, where

eil(0) =
∑

j∈F
⋃

L aij(v̂dil(0)− v̂djl(0)), i ∈ F, v̂djl(0) = vjl(0), j ∈ L, l = 1, 2, 3. With the chosen
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Fig. 3. Response curves of the followers with control law (4).
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Fig. 4. 3-D phase-plot for the agents with control law (25). The small blocks represent the followers, the small circles represent

the leaders, and the small asterisks represent the weighted average of the leaders’ coordinates.

parameters and initial states, it can be obtained that T0 = 1.6466.

The simulation results are shown in Figs. 2-3. It can be seen that with control law (4),

ri → rdi, vi → vdi, i ∈ F , i.e., the states of the followers converge to the dynamic convex hull

spanned by those of the dynamic leaders, in finite time.

B. Simulations in the case of multiple stationary leaders

In this subsection, the leaders are assumed to be static. All the initial states are the same as

those set in the above subsection and the parameters for control law (25) are also the same as

those taken for control law (4) in the above subsection. The simulation results are shown in

Figs. 4-5. It can be seen that with control law (25), ri → rdi, vi → 0, i ∈ F , i.e., the states

of the followers converge to the static convex hull spanned by those of the stationary leaders,

in finite time. The chattering in the curves of the control inputs is caused by the discontinuous

term sgn(·) contained in control law (25).
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Fig. 5. Response curves of followers 1, 6 with control law (25).

.

V. CONCLUSIONS

In this paper, distributed finite-time containment control algorithms have been proposed for

double-integrator multi-agent systems with multiple dynamic or stationary leaders. It has been

shown that with the proposed control algorithms, the states of the followers can converge to the

convex hull spanned by the those of the leaders in finite time for both cases in the presence of

external disturbances .

APPENDIX

Proof of Proposition 2. For brevity, we denote xF = [xT
1 , · · · , xT

n ]T , vF = [vT
1 , · · · , vT

n ]T , xL =

[xT
n+1, · · · , xT

n+m]T , vL = [vT
n+1, · · · , vT

n+m]T , uF = [uT
1 , · · · , uT

n ]T , dF = [dT
1 , · · · , dT

n ]T for the

following proof. First, we define ρ(xF , vF ) = 1
2
xT

F xF + 1
2
vT

F vF . Note that ‖di‖ ≤ h, i ∈ F .

Taking derivative of ρ along system (1) yields

ρ̇ = xT
F vF + vT

F (uF + dF ) ≤ ρ +
n∑

i=1

‖vi‖(‖ui‖+ h). (A.1)

Next, we begin to estimate ‖ui‖, i ∈ F . From (4), it can be obtained that

‖ui‖ ≤ ‖ ˙̂vdi‖+ k4 + k2

∥∥∥∥∥∥∥


(vi − v̂di)

1/q + k
1/q
1




∑

j∈F
⋃

L

aij(xi − xj)







2q−1∥∥∥∥∥∥∥
, i ∈ F. (A.2)
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We now estimate the last term of (A.2). By Lemma 2, ∀y = [y1, · · · , yp]
T ∈ Rp, a ≥ 0, we have

‖ya‖ =

[ p∑

l=1

(ya
l )

2

]1/2

≤
p∑

l=1

|yl|a ≤ p

( p∑

l=1

y2
l

)a/2

= p‖y‖a, . (A.3)

Clearly, (A.3) holds by letting y = (vi− v̂di)
1/q +k

1/q
1 (

∑
j∈F

⋃
L aij(xi−xj)) ∈ Rp, a = 2q−1 or

y = vi−v̂di ∈ Rp, a = 1/q. Based on the fact 0 < 2q−1 < 1 and Lemma 2, it follows that p‖(vi−
v̂di)

1/q + k
1/q
1 (

∑
j∈F

⋃
L aij(xi − xj))‖2q−1 ≤ p‖(vi − v̂di)

1/q‖2q−1 + pk
2−1/q
1 ‖∑

j∈F
⋃

L aij(xi −
xj)‖2q−1. Note that 0 < 2 − 1/q < 1. With the help of (A.3) and Lemma 2, it can be verified

that ‖(vi − v̂di)
1/q‖2q−1 ≤ p2q−1(‖vi‖+ ‖v̂di‖)2−1/q ≤ p2q−1(‖vi‖2−1/q + ‖v̂di‖2−1/q). In addition,

we have ‖∑
j∈F

⋃
L aij(xi − xj)‖ ≤ β

∑n+m
j=1 (‖xi‖ + ‖xj‖) = β(n + m)‖xi‖ + β

∑n
j=1 ‖xj‖ +

β
∑n+m

j=n+1 ‖xj‖, where β = max∀i∈F

{∑
j∈F

⋃
L aij

}
. Based on the above analysis, we have

p

∥∥∥∥∥∥∥
(vi − v̂di)

1/q + k
1/q
1




∑

j∈F
⋃

L

aij(xi − xj)




∥∥∥∥∥∥∥

2q−1

≤ p2q
(
‖vi‖2−1/q + ‖v̂di‖2−1/q

)

+ pk
2−1/q
1 β2q−1


(n + m)2q−1‖xi‖2q−1 +

n∑

j=1

‖xj‖2q−1 +
n+m∑

j=n+1

‖xj‖2q−1


 , i ∈ F.

(A.4)

Then, putting (A.2)-(A.4) together yields

‖ui‖ ≤ ‖ ˙̂vdi‖+ k4 + k2p
2q

(
‖vi‖2−1/q + ‖v̂di‖2−1/q

)
+ k2pk

2−1/q
1 β2q−1

[
(n + m)2q−1‖xi‖2q−1

+
n∑

j=1

‖xj‖2q−1 +
n+m∑

j=n+1

‖xj‖2q−1

]

≤ δ1 + k2p
2q‖vi‖2−1/q + k2pk

2−1/q
1 β2q−1


(n + m)2q−1‖xi‖2q−1 +

n∑

j=1

‖xj‖2q−1


 , i ∈ F,

(A.5)

where δ1 > 0 satisfying δ1 ≥ ‖ ˙̂vdi‖+ k4 + k2p
2q‖v̂di‖2−1/q + k2pk

2−1/q
1 β2q−1 ∑n+m

j=n+1 ‖xj‖2q−1.

From the proof of Proposition 1, we have v̂d = (T ⊗ Ip)
−1e − (T −1Td ⊗ Ip)vL and ˙̂vd =

−k(T ⊗Ip)
−1sigα(e)−(T −1Td⊗Ip)v̇L. Due to global convergence of observer (2) and Assumption
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1, the existence of δ1 is guaranteed. Then it follows from (A.1), (A.5) and Lemma 3 that

ρ̇ ≤ ρ + (δ1 + h)
n∑

i=1

‖vi‖+ k2p
2q

n∑

i=1

‖vi‖3−1/q +
k2pk

2−1/q
1 β2q−1

2q

n∑

i=1

[(n + m)2q−1 + n]‖vi‖2q

+
k2pk

2−1/q
1 β2q−1(2q − 1)

2q

n∑

i=1


(n + m)2q−1‖xi‖2q +

n∑

j=1

‖xj‖2q




≤ ρ + (δ1 + h)
n∑

i=1

‖vi‖+ k2p
2q

n∑

i=1

‖vi‖3−1/q +
k2pk

2−1/q
1 β2q−1[(n + m)2q−1 + n]

2q

×
n∑

i=1

(‖xi‖2q + ‖vi‖2q). (A.6)

In addition, it holds that max{‖xi‖a, ‖vi‖a} ≤ (‖xi‖2 + ‖vi‖2)a/2,∀ a ≥ 0. Then based on the

fact 0 < q, (3− 1/q)/2 < 1 and (A.6), it follows that

ρ̇ ≤ ρ + (δ1 + h)
n∑

i=1

(‖xi‖2 + ‖vi‖2)1/2 + k2p
2q

n∑

i=1

(‖xi‖2 + ‖vi‖2)(3−1/q)/2

+
k2pk

2−1/q
1 β2q−1[(n + m)2q−1 + n]

q

n∑

i=1

(‖xi‖2 + ‖vi‖2)q. (A.7)

Note that ‖x‖p = (
∑m

l=1 |xl|p)1/p ,∀x = [x1, · · · , xm]T with p ≥ 1,m ∈ N+ denotes p-norm

in Rm. Based on the equivalence between any two different norms in Rp and Lemma 2, we

can find δ2 > 0 such that
∑n

i=1(‖xi‖2 + ‖vi‖2)1/2 ≤ ∑n
i=1(‖xi‖ + ‖vi‖) ≤ δ2ρ

1/2. Similarly,
∑n

i=1(‖xi‖2 + ‖vi‖2)(3−1/q)/2 ≤ δ3ρ
(3−1/q)/2,

∑n
i=1(‖xi‖2 + ‖vi‖2)q ≤ δ4ρ

q hold with appropriate

δ3 > 0, δ4 > 0. Then, it follows from (A.7) that

ρ̇ ≤ ρ + (δ1 + h)δ2ρ
1/2 + k2p

2pδ3ρ
(3−1/q)/2 +

k2pk
2−1/q
1 β2q−1[(n + m)2q−1 + n]δ4

q
ρq. (A.8)

From Lemma 3, ρb = ρb · 11−b ≤ bρ + 1− b, ∀ 0 < b ≤ 1. Then it follows from (A.8) that

ρ̇ ≤ δ5ρ + δ6, (A.9)

where δ5 = 1 + (δ1+h)δ2
2

+ 3q−1
2q

k2p
2qδ3 + k2pk

2−1/q
1 β2q−1[(n + m)2q−1 + n]δ4 and δ6 = (δ1+h)δ2

2
+

1−q
2q

k2p
2qδ3+

k2pk
2−1/q
1 β2q−1[(n+m)2q−1+n]δ4(1−q)

q
. By noting that δ5, δ6 ∈ (0,∞), it follows from (A.9)

immediately that ρ is bounded, which implies that xi(t), vi(t), i ∈ F are bounded ∀ t ∈ [0, +∞).

This completes the proof.
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