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Parameter estimation plays an important role in computer vision. Many computer vision prob-

lems can be reduced to estimating the parameters of a mathematical model of interest from

the observed data. Parameter estimation in computer vision is challenging, since vision data

unavoidably have small-scale measurement noise and large-scale measurement errors (outliers)

due to imperfect data acquisition and preprocessing. Traditional parameter estimation methods

developed in the statistics literature mainly deal with noise and are very sensitive to outliers.

Robust parameter estimation techniques are thus crucial for effectively removing outliers and

accurately estimating the model parameters with vision data. The research conducted in this

thesis focuses on single structure parameter estimation and makes a direct contribution to two

specific branches under that topic: geometric fitting and deformable registration.

In geometric fitting problems, a geometric model is used to represent the information of interest,

such as a homography matrix in image stitching, or a fundamental matrix in three-dimensional

reconstruction. Many robust techniques for geometric fitting involve sampling and testing a

number of model hypotheses, where each hypothesis consists of a minimal subset of data for

yielding a model estimate. It is commonly known that, due to the noise added to the true data

(inliers), drawing a single all-inlier minimal subset is not sufficient to guarantee a good model

estimate that fits the data well; the inliers therein should also have a large spatial extent. This

thesis investigates a theoretical reasoning behind this long-standing principle, and shows a clear

correlation between the span of data points used for estimation and the quality of model estimate.

Based on this finding, the thesis explains why naive distance-based sampling fails as a strategy

to maximise the span of all-inlier minimal subsets produced, and develops a novel sampling

algorithm which, unlike previous approaches, consciously targets all-inlier minimal subsets with

large span for robust geometric fitting.

The second major contribution of this thesis relates to another computer vision problem which

also requires the knowledge of robust parameter estimation: deformable registration. The goal

of deformable registration is to align regions in two or more images corresponding to a com-

mon object that can deform nonrigidly such as a bending piece of paper or a waving flag. The
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information of interest is the nonlinear transformation that maps points from one image to an-

other, and is represented by a deformable model, for example, a thin plate spline warp. Most of

the previous approaches to outlier rejection in deformable registration rely on optimising fully

deformable models in the presence of outliers due to the assumption of the highly nonlinear

correspondence manifold which contains the inliers. This thesis makes an interesting observa-

tion that, for many realistic physical deformations, the scale of errors of the outliers usually

dwarfs the nonlinear effects of the correspondence manifold on which the inliers lie. The find-

ing suggests that standard robust techniques for geometric fitting are applicable to model the

approximately linear correspondence manifold for outlier rejection. Moreover, the thesis devel-

ops two novel outlier rejection methods for deformable registration, which are based entirely

on fitting simple linear models and shown to be considerably faster but at least as accurate as

previous approaches.
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Chapter 1

Introduction

1.1 Introduction

In contrast to humans with the natural ability to observe and understand the images, computers

can only see an image as a collection of numbers, which merely represent the color information.

The ultimate purpose of Computer Vision is thus to mimic human perception, and provide ma-

chines with the ability to analyse, extract and understand the semantic information in the images.

Research in computer vision also has an important contribution towards the future of intelligent

robots which can behave like humans.

Over the last decade, there have been significant advances in the field of computer vision. As

the result of the intense efforts of computer vision researchers, numerous computer vision ap-

plications have emerged, and made a positive impact on our everyday lives. One representative

example of such applications is Microsoft’s Photosynth. Photosynth allows users to align mul-

tiple images of a planar scene and stitch them into a single seamless panoramic photo [1]. The

tool is very useful in helping users organise and appreciate their photo collections. Another

interesting computer vision application is Videotrace, which speeds up the generation of three-

dimensional structure of a static scene from a sequence of images [2]. The generated models

offer users a better understanding of the objects, e.g., archaeological remains or architectural

structures, compared to just two-dimensional images, and can be smoothly inserted into video

games or simulated environments for virtual reality.

The above novel applications depend on methods that belong to the broad topic of Parameter

Estimation. In parameter estimation problems, the information of interest is represented by a

parameterised model and the goal is to estimate the model parameters from the observed data.

For example, in Photosynth, the transformation between two images is modelled by a homogra-

phy matrix [3], which is employed to stitch the images together. In Videotrace, a fundamental

1



Chapter 1. Introduction 2

matrix [3] is used to establish the relationship between two views, and employed for three-

dimensional reconstruction. Since various parameterised models are used in computer vision,

parameter estimation plays an integral role in a variety of computer vision applications, such as

three-dimensional reconstruction [4, 5], image stitching [6, 7], image registration [8, 9], shape

matching [10, 11], object recognition [12, 13] and surveillance [14, 15].

1.2 Background and motivation

Vision data (e.g., images or videos) usually have a huge variability due to several factors. For

instance, the projective transformation in the image formation process can severely distort the

scene. The lighting conditions can cause extreme brightness variations such as reflections or

shadows. In addition, being very high-dimensional, vision data typically contain redundant or

spurious information that interferes with the task of parameter estimation. In practice, feature-

based representations of the images are often used to capture the key elements (features) that

are relevant to a particular task and reduce the variability of vision data. For example, scale-

invariant feature transform (SIFT) matches [16] are frequently employed as the input data for the

estimation of two-view geometry (i.e., fundamental matrix estimation or homography matrix es-

timation), while shape matching is often performed on shape context (SC) correspondences [10]

instead of raw images.

Due to imperfect feature extraction and matching, visual data points invariably include small-

scale measurement noise, and are unavoidably contaminated by large-scale measurement errors

(outliers) that are not explainable by the model (e.g., incorrect SIFT correspondences or false

SC matches). Traditional parameter estimation methods proposed in the field of statistics, e.g.,

least squares regression, mostly deal with noise and are vulnerable to outliers [17]. Robust

Parameter Estimation hence aims to effectively remove outliers and accurately estimate the

model parameters in the presence of outliers.

Despite the immense body of work in both the statistics and the computer vision literatures,

robust parameter estimation with vision data remains challenging and there are still many unan-

swered questions. Progress in this topic is difficult since it requires a thorough understanding

of various disciplines, including mathematical analysis, statistical modelling and optimisation.

For a specific task in computer vision, a mathematical model is first required for correctly rep-

resenting the information of interest. The statistical modelling is also employed for properly

handling noise in variables. Furthermore, the optimisation needs careful design to effectively

tackle outliers and avoid getting stuck at locally optimal solutions.

Given that robust parameter estimation in computer vision is complex and challenging, we con-

centrate on single structure parameter estimation and set out to make a contribution to two
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specific branches under that topic: geometric fitting (Section 1.2.1) and deformable registration

(Section 1.2.2).

1.2.1 Geometric fitting

In Geometric Fitting problems, the information of interest is represented by a geometric model,

which has a fixed and known number of degrees of freedom. For instance, many tasks in

multiple-view geometry are geometric fitting problems, such as fundamental matrix estima-

tion with seven degrees of freedom or homography matrix estimation with eight degrees of free-

dom [3]. Due to the known number of degrees of freedom, many robust techniques for geometric

fitting involve generating and analysing a number of model hypotheses, where each hypothesis

is fitted on a minimal subset of data, e.g., a fundamental matrix estimate can be obtained by

using seven SIFT matches (each match offers one constraint), while four SIFT correspondences

are used for yielding a homography matrix estimate (every correspondence provides two con-

straints) [3].

Intuitively, drawing an all-inlier minimal subset is not sufficient to guarantee a satisfactory

model estimate that fits the data well; the inliers therein should also have a large span. To

illustrate this notion, we consider the problem of 2D line fitting in Figure 1.1, where the data

have been generated without outliers for simplicity. Two particular choices of all-inlier minimal

subsets are highlighted; clearly Set A yields a better estimate than Set B, as can be verified by

a suitable goodness-of-fit criterion, e.g., [18, 19]. It is also apparent that the points in Set A are

separated by a larger distance than those in Set B.
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Figure 1.1: Two particular all-inlier minimal subsets with different fitting qualities on 2D line fitting.

The observation above explains, to a large degree, previous findings [17, 20–23] that the num-

ber of randomly drawn minimal subsets required before finding a satisfactory model estimate is
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often far higher than predicted. The truth is that such predictions assume that retrieving a single

all-inlier sample is sufficient, which ignores the fact that all-inlier samples differ in terms of their

spatial coverage, and hence intrinsic quality. It has also been remarked that taking minimal sub-

sets amplifies the noise magnitude [17] . However, little study was devoted to this phenomenon

and, more importantly, the manner in which the data span affects different minimal subsets.

Theoretical and algorithmic studies of this long-standing issue are generally lacking.

1.2.2 Deformable registration

When the scene can deform nonrigidly between the images, another computer vision prob-

lem, which also requires the knowledge of robust parameter estimation, frequently arises: De-

formable Registration. The goal of deformable registration is to align regions in two or more

images containing a common object that can deform smoothly, such as a waving flag or a bend-

ing piece of paper. The information of interest is the nonlinear transformation that maps points

from one image to another, and is represented by a deformable model, e.g., a thin plate spline

(TPS) [24] warp. Given that visual data points are noisy and invariably contain outliers, ro-

bust techniques are thus necessary for effectively rejecting outliers and accurately estimating

the model parameters. If no mismatches exist, estimating the model parameters is trivial, e.g.,

by solving a linear system for a TPS warp [24].

At the first glance it would appear that standard robust techniques for geometric fitting are not

suitable for outlier rejection in deformable registration, the fundamental obstacle being that the

underlying transformation is of unknown and varying complexity [25, 26]. Also, it is widely

assumed that many realistic deformations (e.g., a bending sheet of paper or a rippling cloth)

are too nonlinear to be amenable to simple geometric modelling. Figure 1.2 (taken from [27])

depicts such impressions of the data.

Due to the above assumption of the highly nonlinear correspondence manifold on which the

inliers lie, robust loss functions [28] are usually applied to alleviate the effects of outliers, e.g.,

see [29, Equation (5)] or [30, Equation (6)]. However, such robust loss functions (known as

hard redescenders [28]) are often nonconvex and they complicate the warp optimisation. Most

of the previous approaches resort to iterative algorithms, such as semi-implicit optimisation [29]

or Gauss-Newton approximation [30], whose success depends critically on good parameter ini-

tialisations.



Chapter 1. Introduction 5

6 Int J Comput Vis (2010) 89: 1–17

4.2 Refine the Estimation Iteratively

In this subsection, we will discuss the correspondence func-
tion f only, f ′ can be similarly done.

In theory, correspondence function f can be estimated by
SP algorithm (Table 2) embedded with anyone nonparamet-
ric regression method. In correspondence problem, however,
putative correspondences are usually corrupted with noise
and the percentage of mismatches is high, sometimes more
than 40% or 50%, due to viewpoint change, occlusion, lo-
cally ambiguous regions, shadow, noise, etc. And the pu-
tative correspondences, which are inconsistent with corre-
spondence function f , are called outliers of f . In real appli-
cations, there are two kinds of possible outliers for f : one is
mismatches, the other is the correct matches that are incon-
sistent with f (according to the definition of correspondence
function, the correct matches are not necessary to be consis-
tent with both f and f ′ simultaneously). Therefore, there
exist usually many outliers in estimating correspondence
function f . Many of the outliers may have undue influence
on the estimation of f , and they usually are called influen-
tials in robust statistics. The influentials usually can ruin the
traditional regression methods (Rousseeuw and Leroy 1987;
Barnett and Lewis. 1994).

Our research shows that the regression method SVM
(Support Vector Machine) is very robust against outliers.

Fig. 1 Robustness of SVM: 150 observations are sampled from
y = sin(x)/x with noise N(0,0.1), and 225 observations are randomly
generated from the area [−10,10] × [−0.6,1.4]. The dotted line is
y = sin(x)/x, the solid line is the estimation of SVM

Even if there is a large percentage of outliers in training
data set, SVM still can capture the general trend of the data
(Fig. 1). In such circumstances, although the SVM estima-
tion are too coarse to be used for detecting mismatches ac-
curately, it is still enough to help us detect some of the
most egregious observations. After deleting them, an im-
proved estimation can be re-estimated. Iteratively using this
scheme, we could peel off the outliers that have undue influ-
ence on estimation (influentials), and obtain an acceptable
estimation. The proposed iterative algorithm is presented in
Table 3.

With our proposed IECF algorithm, three questions im-
mediately arise:

(1) How to Select a Suspect Influential Subset

For a given estimation f̂ (u, v) of the correspondence func-
tion f (u, v), we propose to select the suspect influentials by
residual analysis as:

Sc = {(p,p′)||e1(p,p′)| > τσ1,or

|e2(p,p′)| > τσ2, (p,p′) ∈ S}, (11)

where τ > 0 is a preset threshold, and ei(p,p′) is the esti-
mation error

ei(p,p′) = ĝi (p,p′) − gi(p,p′), (p,p′) ∈ S, i = 1,2.

(12)

Suppose the estimation error ei follows a Gaussian proba-
bility distribution with zero mean and standard deviation σi ,

Table 3 IECF (Iteratively Estimate Correspondence Function) Algo-
rithm: Iteratively estimate correspondence function f by peeling off
outliers gradually. Correspondence function f ′ can be estimated sim-
ilarly. SP(SVM): the algorithm SP embedded with SVM regression
method in step 2) (Table 2)

Assume S is a set of putative correspondences:

(1) Estimate correspondence function f (u, v) from S by algorithm
SP(SVM), and denote the estimation as f̂ (u, v).

(2) Choose a subset Sc from S as suspect influentials based on f̂ (u, v).
(3) Reestimate f (u, v) from S− = S − Sc, and get f̂−(u, v).
(4) Determine the influence of Sc by comparing f̂ (u, v) and f̂−(u, v).
(5) If Sc have undue influence on f̂ (u, v), then Sc is rejected as influ-

entials, and let f̂ (u, v) = f̂−(u, v), S = S−, go to (2).
(6) If the influence of Sc is appropriate, then it is assumed that there

are no more influentials in S and terminate the procedure.

Table 2 SP (Subspace projection) Algorithm: given a set of putative correspondences S, the correspondence function f (u, v) = (u′, v′) =
(g1(u, v), g2(u, v)) can be estimated from the projections of S. And the correspondence function f ′(u′, v′) can be estimated similarly

(1) Project the putative correspondences S into the subspaces by (7) and (8).

(2) By regression method, the CF component functions g1 and g2 are estimated from SU×V ×U ′ and SU×V ×V ′ , respectively.

Figure 1.2: The characteristic and level of difficulty of the correspondence manifold targeted in the
literature. This figure is taken from [27].

1.3 Contributions of this thesis

In this thesis we focus on parameter estimation of a single structure and make an original con-

tribution to two problems that are typically encountered in the context of robust parameter esti-

mation with vision data. The first problem relates to sampling minimal subsets with large span

for robust geometric fitting (Section 1.3.1), while the second one relates to the approximately

linear correspondence manifold for robust deformable registration (Section 1.3.2).

1.3.1 Geometric fitting with large span sampling

We provide an important study on the problem of large span sampling in geometric fitting.

Specifically, we will show that a theoretical explanation for the intuition in Figure 1.1 lies in a

little known result relating to minimal subset expansion for least squares regression. From this

result, the quality of a minimal subset estimate is proportional to the span of the associated data

points.

One of the main contributions of this thesis is to develop a similar minimal subset expansion for

total least squares [31], which is directly related to geometric estimation techniques in computer

vision, such as the direct linear transformation [32]. In addition, we will show a clear connection

between the span of data points used for estimation and the quality of model estimate in the task

of fundamental matrix estimation.
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Based on this insight, we will explain why naive distance-based sampling fails as a strategy

to maximise the span of all-inlier minimal subsets produced. Moreover, we propose a novel

sampling algorithm which, unlike previous approaches [20–23, 33–37], consciously targets all-

inlier minimal subsets with large span for robust geometric fitting.

1.3.2 Deformable registration with approximately linear correspondence mani-
fold

In contrast to the common assumption of the highly nonlinear correspondence manifold illus-

trated in Figure 1.2, we make an interesting observation that, for many types of deformations

examined in the literature, the scale of errors of the outliers usually dwarfs the effects of the cur-

vature of the correspondence manifold containing the inliers. Therefore, relative to the outliers,

the inliers lie very close to a linear hyperplane.

Based on this insight, standard robust techniques for geometric fitting can be used to model

the approximately linear correspondence manifold for outlier rejection. Furthermore, we will

present in this thesis two novel outlier rejection methods for deformable registration, which are

based entirely on fitting simple linear models. Our techniques are shown to be significantly more

efficient and at least as accurate as previous approaches [27, 29, 30, 38–42] that are often based

on optimising fully deformable models in the presence of outliers.

1.4 Organisation of this thesis

Chapter 2

In the second chapter, we review previous approaches to robust geometric fitting and robust de-

formable registration in the current literature, which are relevant to this thesis. We further discuss

the problem of large span sampling in robust geometric fitting (Section 1.2.1), and explain the

assumption of the highly nonlinear correspondence manifold for outlier rejection in deformable

registration (Section 1.2.2). This chapter also provides the reader a theoretical background for

better understanding the proposed methods in the next chapters.

Chapter 3

The third chapter presents a theoretical basis for large span sampling in robust geometric fitting

(Section 1.2.1). We first describe the minimal subset expansion for least squares regression

(previously mentioned in Section 1.3.1), where the quality of a minimal subset estimate is a
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function of the span of the associated data points. We then develop an analogous minimal subset

expansion for total least squares, which is highly related to the direct linear transformation,

a widely used geometric estimation technique in computer vision. Moreover, we analyse the

influence of data span on the task of fundamental matrix estimation.

Chapter 4

The forth chapter focuses on an algorithmic solution for large span sampling in robust geometric

fitting (Section 1.2.1). We study the disadvantage of proximity sampling which actually limits

the span of all-inlier minimal subsets produced, and propose a novel sampling algorithm which

actively searches for all-inlier minimal subsets with large span. Our method is benchmarked

against previous approaches on synthetic and real datasets for robust fundamental matrix esti-

mation.

Chapter 5

The fifth chapter applies standard robust geometric fitting techniques to outlier rejection in de-

formable registration (Section 1.2.2). We describe the interesting observation of the approxi-

mately linear correspondence manifold (previously mentioned in Section 1.3.2), and present a

simple outlier rejection method which approximates the correspondence manifold with a linear

hyperplane. We evaluate the performance of our method on synthetic and real datasets, and

investigate its application in retexturing deformable surfaces.

Chapter 6

The sixth chapter pushes the linear approximation idea further, for outlier rejection in deforma-

tion registration (Section 1.2.2). We tweak the fitted linear hyperplane in the previous chapter

to produce a nonlinear manifold that better respects the nonlinearity of the true manifold and

improves the separation between inliers and outliers. We analyse the observation of the approx-

imately linear correspondence manifold in the previous chapter, and benchmark the proposed

method against previous approaches on different kinds of deformable objects.

Chapter 7

In the last chapter, we summarise the main contributions of this thesis and offer some open

problems for future research.





Chapter 2

Robust Parameter Estimation in
Computer Vision

2.1 Introduction

Traditional parameter estimation methods developed in the statistics community focus on han-

dling small-scale noise in the data, e.g., the least squares estimator proposed by Gauss in 1809

computes the model parameters that minimise the sum of squared residuals (fitting errors) of all

data points. It is well known that traditional methods are very sensitive to outliers [17], e.g., a

single outlier in the data can move the least squares estimate arbitrarily far from the true solu-

tion. Statisticians have thus attempted to develop methods which are more robust to outliers.

One representative effort is the least median squares estimator [43] which was introduced by

Rousseeuw in 1984. The least median squares method searches for the model parameters that

offer the minimum median of squared residuals of all data points, and hence it can tolerate at

most 50% outliers in the data.

As discussed in Chapter 1, the data encountered in computer vision are often heavily contam-

inated by outliers, which can compose a large percentage (e.g., 90%) of the data. Traditional

parameter estimation techniques in the statistics community are not applicable to vision data

because of their sensitivity to high outlier rate. Computer vision researchers have thus made

significant efforts to develop robust methods which can tackle highly contaminated vision data.

In this chapter, we will review state-of-the-art techniques for robust geometric fitting and robust

deformable registration, which are two typical branches under the topic of robust parameter

estimation with vision data. Since the focus of this thesis is on parameter estimation of a single

structure, most of the methods discussed in this chapter (and more generally this thesis) are for

9
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data containing one structure; although we will discuss the handling of multiple-structure data

in Section 7.2.

The rest of this chapter is organised as follows: We first present in Section 2.2 a review of pre-

vious robust geometric fitting methods that often rely on sampling and testing minimal subsets

of data. We then discuss the problem of sampling minimal subsets with large span (previously

mentioned in Section 1.2.1) and current solutions to this issue. Section 2.3 describes the com-

mon assumption of the highly nonlinear correspondence manifold in deformable registration

(previously mentioned in Section 1.2.2), which precludes the use of standard robust geometric

fitting techniques for outlier rejection. Moreover, we survey previous outlier rejection methods

for deformable registration that are based on this assumption. Finally, Section 2.4 summarises

the issues to be addressed in the next chapters.

2.2 Geometric fitting

2.2.1 Minimal subset sampling for robust geometric fitting

One of the earliest recorded use of minimal subsets in parameter estimation occurred in 1755,

when Boscovich attempted to determine the meridian arc near Rome (Italy) from five mea-

surements [44]. He solved for the two unknowns of the arc by using all ten possible pairings

(minimal subsets) of the data. Two of the pairs were ignored for yielding what Boscovich con-

sidered to be unusual outcomes, and the remaining estimates were simply averaged for his final

result. Boscovich’s work predated Gauss’s paper on least squares which was published in 1809,

but did not gain traction due to a lack of analytical basis.

Presently however, the use of minimal subsets has become an integral part of robust geometric

fitting, especially in the estimation of multiple-view geometry from noisy image data [3]. This

prevalent use of minimal subsets stems from the fact that geometric models have a known num-

ber of degrees of freedom, e.g., fundamental matrix, thus an estimate of the model parameters

can be obtained from a minimal subset of data. Moreover, many robust criteria, such as least

median squares [43], do not have closed-form solutions. Therefore, sampling and testing model

hypotheses from minimal subsets is often the only way to obtain a good model estimate in a

reasonable time.

The most famous and widely used robust geometric fitting method in the computer vision com-

munity is RANSAC [18], which relies on sampling and analysing minimal subsets of data.

Compared to traditional parameter estimation methods in the statistics literature, RANSAC is

simple but more effective in dealing with outliers. Figure 2.1 illustrates an example on 2D
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line fitting data with 60% outliers, where the classical least squares and least median squares

methods fail while RANSAC achieves a reasonably good estimate of the line.
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Figure 2.1: Performance comparison of least squares, least median squares and RANSAC on 2D line
fitting data with 60% outliers.

RANSAC iteratively performs the two following steps: (1) it first generates a model hypothesis

by randomly sampling a minimal subset of data (e.g., four data points for a homography matrix

estimate), and (2) it then scores the model hypothesis by calculating the number of data points

with residuals less than a predefined inlier threshold. The set of such data points (inliers) is

called the consensus set of the hypothesis. The output of RANSAC is the maximum consen-

sus set found among all generated hypotheses, as well as an estimate of the model parameters

based on this set of inliers. In particular, the inliers within the maximum consensus set can

be used with uniform weights or truncated quadratic weights to compute the model estimate.

For example, in Figure 2.1, the line attributed to RANSAC was estimated by using the direct

linear transformation technique [45] on the maximum consensus set obtained among 100 ran-

domly generated hypotheses, and the inliers within the maximum consensus set were given the

same weight in computing the line estimate. In some cases, the RANSAC estimate is further

refined by using iterative algorithms such as Levenberg-Marquardt, whose starting point is the

RANSAC estimate and errors are distributed over all data rather than a minimal or small subset.

While RANSAC makes a hard distinction between inliers and outliers and maximises the num-

ber of inliers achieved, there are variants of RANSAC [46, 47] which make a soft decision and

employ different criteria. These methods associate a value between 0 and 1 to each data point. In

particular, MSAC [46] assigns a weight computed using robust weight functions to each datum,

and searches for the hypothesis maximising the sum of weights of all data. In MLESAC [47],

the likelihood of each datum being an inlier or outlier is calculated, and the goal is to seek the

hypothesis offering the maximum likelihood of all data. These modified criteria can replace the
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maximum consensus criterion of RANSAC with little extra cost, and following RANSAC, these

methods also rely on random sampling of minimal subsets for generating hypotheses.

The number of iterations in the above hypothesise-and-verify procedure of RANSAC is fre-

quently calculated such that with a high probability at least one outlier-free (all-inlier) minimal

subset is obtained. The underlying assumption is that if the minimal subset contains no out-

liers then the generated hypothesis is more likely to be a good fit to the data (i.e., with a large

consensus set); see Figure 2.2 for an example on 2D line fitting. Due to this assumption, the

number of samples required to be drawn is highly related to the size of a minimal subset m and

the ratio of outliers over the entire data ε. Assuming that the minimal subset size m and the

outlier ratio ε are known, the probability of selectingm inliers (i.e., an all-inlier minimal subset)

at random is PI = (1−ε)m, and hence the probability of obtaining an outlier-contaminated (im-

pure) minimal subset is PO = 1− (1− ε)m. Suppose that we draw N samples, the probability

of success (i.e., at least one all-inlier sample among N randomly drawn samples) is computed

as α = 1 − (1 − (1 − ε)m)N . In practice, the probability of success α is fixed at a value close

to 1.0 (e.g., 0.95), thus we can deduce the number of samples needed to draw such that with a

probability α at least one all-inlier sample is obtained as

N =
log (1− α)

log (1− (1− ε)m)
. (2.1)

Let the probability of success α = 0.95, the estimated N under different settings of ε and m is

presented in Table 2.1. It is clear that the required number of samplesN increases exponentially

with the minimal subset size m and the outlier ratio ε. In particular, it is very difficult to select

an all-inlier minimal subset at random when the minimal subset size m is large or the outlier

ratio ε is high. Therefore, randomly sampling minimal subsets in which each datum has an equal

likelihood of being selected can become intractable in practice.
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Figure 2.2: Consensus sets of an all-inlier minimal subset and an impure minimal subset on 2D line
fitting.
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ε = 20% ε = 35% ε = 50% ε = 65% ε = 80% ε = 90%

m = 2 3 6 11 23 74 299

m = 3 5 10 23 69 373 2995

m = 4 6 16 47 199 1871 29956

m = 5 8 25 95 569 9361 299572

m = 6 10 39 191 1629 46807 2995731

m = 7 13 60 382 4655 234041 29957322

m = 8 17 93 766 13302 1170207 299573225

Table 2.1: The number of samples required by RANSAC with different minimal subset sizes and outlier
ratios.

Since random sampling is not efficient in cases of high-dimensional models or highly contami-

nated data, and also the accuracy of the estimated model depends on the ability to obtain good

hypotheses which are fitted on all-inlier minimal subsets, many alternative sampling strategies

have been proposed in the computer vision literature. In this section, we will review vari-

ous robust geometric fitting methods which rely on the hypothesise-and-verify framework of

RANSAC and aim to accelerate the retrieval of all-inlier minimal subsets or reduce the num-

ber of samples required. Such sampling methods (known as guided sampling methods) can be

categorised into four major groups. In the following, we will discuss the main ideas and some

representative methods of each group.

2.2.1.1 Matching scores

As mentioned in Chapter 1, feature detection and matching algorithms [16, 48, 49] are usually

used to reduce the large variability of image data and capture the key elements that are relevant

to a particular task in computer vision. More specifically, these methods detect the local salient

features (keypoints) in each individual image and establish the correspondences across the im-

ages. In numerous parameter estimation problems in computer vision, the input data are a set of

keypoint correspondences between the images. For instance, Figure 2.3 shows the correspon-

dences between two images computed by using SIFT [16], which can become the input data for

fundamental matrix estimation (the images are taken from the publicly available real datasets

of [50]). The quality of a particular correspondence is often measured as a numeric score which

indicates how similar its keypoint in one image is compared to the corresponding keypoint in

another image.

The first group of guided sampling methods [22, 35, 51, 52] exploits such matching scores to

bias the procedure of minimal subset sampling. The assumption behind theses methods is that

the inliers (true correspondences) often have higher matching scores than the outliers (incorrect

correspondences). For example, Figure 2.4 illustrates the matching scores of the correspon-

dences in Figure 2.3, in which the inlier scores are frequently larger than the outlier scores.
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(a) Detected keypoints (b) Keypoint correspondences

Figure 2.3: Detected keypoints and keypoint correspondences between two images obtained by using
SIFT [16].

(a) True correspondences (inliers) (b) Incorrect correspondences (outliers)
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Figure 2.4: Matching scores of the keypoint correspondences in Figure 2.3.

Due to the above assumption, Guided-MLESAC [22] uses the keypoint matching scores to com-

pute the prior inlier probabilities so that the data points with higher scores are more likely to be

selected for forming minimal subsets, hence increasing the chance of hitting all-inlier samples.

In [35], PROSAC sorts the data points according to their descending matching scores. It first

generates minimal subsets within a small set of top-ranked data points, which have a high prob-

ability of being inliers, and then gradually expands this sampling set by adding data points with

lower scores. PROSAC speeds up the sampling process since all-inlier minimal subsets can be

drawn easily from top-ranked data points in the early sampling stages. Moreover, it converges

towards the traditional RANSAC if the matching scores are incorrect.

Another representative method in this group is SWIGS [52], which further assumes that each

correspondence has its own correct and incorrect matching score distributions. Given a keypoint

xi in one image, SWIGS considers the set of k highest matching scores {si,1, si,2, . . . , si,k}
between xi and the keypoints in another image. The basic idea of SWIGS is that the first

element si,1 has a high chance to be produced by a true correspondence (inlier), while the last

k − 1 matching scores {si,2, . . . , si,k} are likely to be samples from the incorrect matching

score distribution and hence used to model this distribution (i.e., with a Rayleigh distribution).
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The correct matching score distribution is then represented by the Rayleigh’s complementary

cumulative distribution function and used to predict the inlier probability of si,1. These inlier

probabilities are employed to guide the sampling process as in Guided-MLESAC.

The methods in this group are computationally efficient since they only rely on the prior match-

ing scores. However, in some applications the matching scores may not be available. Moreover,

these methods can fail if the assumption of the monotonic relationship between matching scores

and inlier probabilities is not satisfied. This situation often happens in urban scenes with repet-

itive textures, which eventually give rise to many correspondences that are well matched (i.e.,

with high scores) in terms of their local appearance but incorrect according to the geometric

structure of the scene.

2.2.1.2 Spatial information

The second group of methods [33, 34, 53, 54] explores the spatial information of the data to

guide the process of minimal subset sampling. The spatial knowledge can be the assumption

that the inliers are closer to each other (than the outliers) in the spatial domain; thus a local

region around an inlier yields a higher inlier ratio than the set of all data (e.g., [33, 34, 53]).

Alternatively, a spatial grouping structure of the data is available, where some groups have a

larger percentage of inliers than the entire set of data (e.g., [54]).

In many cases, the inliers inhabit a lower dimensional manifold than the outliers, e.g., in the case

of 2D line fitting, the inliers mostly lie on a 1D manifold whereas the outliers spread over a 2D

space. This difference in dimensionality leads to the idea that some regions of the spatial domain

are more densely populated by inliers, and these regions thus have higher inlier rates than the set

of all data. Based on this idea, in [33, 34], various proximity sampling strategies were proposed

to sample minimal subsets from a local region, which is defined as a hypersphere of radius r

centred on a randomly sampled data point. If the chosen datum (hypersphere centre) is an inlier,

its neighbouring data points are expected to be inliers; see Figure 2.5 for an example on 2D line

fitting. NAPSAC [33] uniformly selects the data points within the hypersphere to form minimal

subsets. Similarly, the method of [34] generates minimal subsets within the hypersphere, but

unlike the uniform sampling scheme in NAPSAC, it uses a weighted sampling procedure where

the weight of each datum is a Gaussian function of its distance to the hypersphere centre (thus

the data points lie closer to the centre have a higher chance of being selected).

These methods [33, 34] often have a high probability of hitting all-inlier minimal subsets. How-

ever, they can break down if the scene is ambiguous, e.g., when there are many repeated patterns

such as windows on building facades. Due to the scene ambiguities, feature detection and match-

ing algorithms produce many incorrect correspondences (outliers) which can mix closely with

the inliers. To address this issue, SCRAMSAC [53] introduces the spatial consistency check to
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Figure 2.5: High inlier ratio in the local region around an inlier on 2D line fitting.

remove mismatches from the input set of correspondences prior to the sampling process. Fig-

ure 2.6 shows an example of the spatial consistency check, where the images are taken from the

publicly available real datasets of [50]. In particular, given a reference correspondence (x1,x2)

between two images, SCRAMSAC first defines a circular region C1 around the keypoint x1, and

a similar region C2 for the corresponding keypoint x2. A particular correspondence is consid-

ered to have passed the spatial consistency test if its keypoints respectively appear inside C1 and

C2. This spatial consistency check can identify and remove incorrect matches that do not satisfy

the geometric structure of the scene, and hence it returns a smaller set of more confident corre-

spondences which has a high inlier ratio. Moreover, since the reduced set of correspondences is

used not only for generating minimal subsets but also for verifying model hypotheses, the run

time of SCRAMSAC is further decreased compared to RANSAC.

Figure 2.6: Spatial consistency check in SCRAMSAC. A reference correspondence is in magenta. The
spatially consistent correspondences are in green, and others are in red.
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Another representative method in this group is GroupSAC [54], which assumes that there exists

a spatial grouping structure of the data, in which some of the groups have a high percentage of

inliers while the others are mostly contaminated by outliers. For example, in two-view geometry

estimation, such grouping information can be obtained by clustering the set of correspondences

according to the result of image segmentation or optical flow estimation. An example of group-

ing using image segmentation is presented in Figure 2.7 (the images are taken from [54]), where

there is a clear correlation between the image segmentation and inlier/outlier classification, and

the segment colored in green has a considerably higher inlier percentage than the others. The

basic idea of GroupSAC is that if the minimal subset is drawn from a fewer number of groups,

it has a higher probability of containing only inliers. Therefore, GroupSAC focuses on drawing

minimal subsets from a single group first, and then progressively increases the number of groups

involved by adding more groups to the sampling set. Similar to PROSAC, GroupSAC has a high

chance of obtaining all-inlier minimal subsets which involve a fewer number of groups in the

early sampling steps, and it degrades to the classical RANSAC if the grouping information is

wrong.

(a) One of the two images for fundamental matrix estimation (b) Correspondences clustered based on image segmentation

Figure 2.7: Spatial grouping of correspondences by using image segmentation in GroupSAC. True cor-
respondences (inliers) are in green while incorrect correspondences (outliers) are in red.

When the spatial assumptions are correct, the guided sampling methods in this group speed up

the retrieval of all-inlier minimal subsets compared to RANSAC. However, these assumptions

are not always satisfied in practice. For instance, the neighbourhood of an inlier may unavoid-

ably include many outliers (i.e., in richly textured scenes or heavily contaminated data), or the

grouping knowledge is not available or does not provide a meaningful segmentation of the data.

In such cases, obtaining all-inlier minimal subsets becomes difficult and time-consuming.
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2.2.1.3 Local exploitation

The third group of guided sampling methods [20, 21, 55–57] exploits the good hypotheses which

were generated previously in the sampling process to increase the probability of hitting all-

inlier minimal subsets and improve the accuracy of the estimated parameters. These methods

typically consist of the two following procedures: (1) local exploitation in the parameter space

to improve the chance of finding all-inlier samples and refine the model estimate if a nearby

solution is better, and (2) global exploration in the parameter space to quickly escape from the

local minima and seek other promising solutions.

The first method that was proposed in this group is LO-RANSAC [20, 21], in which the random

sampling procedure of RANSAC is employed for global exploration. When the global explo-

ration obtains a new hypothesis that has a larger consensus set than those generated previously,

the local exploitation is triggered. In LO-RANSAC, the local exploitation first generates a fixed

number of model hypotheses by sampling the data points within the largest consensus set found

so far, and an iterative least squares process is then conducted on each generated hypothesis to

refine the model estimate. Since the consensus set usually has a larger inlier percentage than the

set of all data, many all-inlier minimal subsets can be drawn during the local exploitation steps.

In [57], an improved version of LO-RANSAC (i.e., LO+-RANSAC) was presented. In partic-

ular, the improvements in accuracy and run time are made (respectively) by using a truncated

quadratic cost function (instead of the classical 0-1 cost function of RANSAC) and a limit on

the number of data points that participate in the iterative least squares process.

The idea of LO-RANSAC is further extended in the recent work of [55, 56]. Motivated by the

methods surveyed in Section 2.2.1.1, these methods [55, 56] exploit the matching score infor-

mation to guide the global exploration. In BEEM [55], the global exploration is based on the

distance ratios of the closest to the second closest keypoint of the SIFT correspondences while

the local exploitation of LO-RANSAC is employed. Similarly, BLOGS [56] uses the similarity

weights of the SIFT correspondences to bias the global exploration while the local exploitation

is guided by the conditional probabilities of correspondences given the best hypothesis obtained

so far (i.e., computed by using the Joint Feature Distribution [58]). Both BEEM and BLOGS

aim to balance between the local exploitation and global exploration steps. More specifically,

these methods terminate the local exploitation if no better hypotheses can be found, and go

back to the global exploration to search for other possible solutions. Therefore, they can avoid

spending too much time on unpromising local minima in the parameter space.

The guided sampling methods in this group speed up the retrieval of all-inlier minimal subsets

and improve the accuracy of the estimated model. However, the success of these methods de-

pends on having an optimal inlier threshold to correctly qualify the generated hypotheses. In

practice, the inlier threshold is data-dependent and difficult to determine, due to having no prior
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knowledge of the inlier noise scale. For BEEM and BLOGS, their performance further relies

on the availability of matching scores and the correlation between matching scores and inlier

probabilities (see Section 2.2.1.1).

2.2.1.4 Conditional sampling

The last group of guided sampling methods [36, 37, 59, 60] focuses on a conditional sampling

strategy for minimal subset generation. More specifically, these methods aim to choose the

next datum for forming a minimal subset, by considering the data points that have already been

selected into the minimal subset. For instance, suppose that we have chosen two data points into

a minimal subset, then the third datum for the minimal subset is sampled conditionally on the

first and the second data points.

In BetaSAC [59], to select the next datum for a minimal subset, it first chooses k data points

(i.e., k < n, where n is the total number of data points) at pure random, and orders these

data points with respect to those that have already been selected into the minimal subset (e.g.,

by their descending distances to the first datum added to the minimal subset). The selection

of a datum among the k sorted data points is then modelled as a random variable of the Beta

distribution. The advantages of BetaSAC are that any prior information (e.g., matching scores)

can be included to order the data points and that it does not require a complete ranking of the

data points (e.g., as in PROSAC).

The most representative method in this group is Guided Sampling for Multi-Structure Model

Fitting (Multi-GS) [36, 37], which computes the conditional sampling weights based on the

pairwise data similarity. In Multi-GS, the data similarity is measured by comparing the data

preferences towards the set of hypotheses that have been generated so far in the sampling pro-

cess. In particular, the preference of a datum is obtained by sorting its residuals (to the hypothe-

ses) in the ascending order. The basic idea of Multi-GS is that the inliers have more overlaps

in their preferences (than the outliers), which yields higher similarity values (i.e., preference

correlation values) between the inliers than the outliers; see Figure 4.5 for an example. Due to

this preference-based similarity measure, Multi-GS can effectively distinguish the inliers from

the outliers.

In Multi-GS, the first datum of a minimal subset is chosen purely randomly, and the similarity

values between the remaining data points and the first datum are employed as the conditional

sampling weights to select the second datum. The third datum is then sampled based on the

conditional sampling weights which are computed by multiplying the corresponding similar-

ity values of each datum with respect to the first and the second data points, and likewise for

sampling the subsequent data points into the minimal subset. Given that the previously chosen

data points in a minimal subset are the inliers, the conditional sampling weights ensure that the
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remaining inliers have higher probabilities of being selected for the minimal subset than the

outliers. Therefore, all-inlier samples can be drawn easily, even in cases of high-dimensional

models (e.g., fundamental matrix).

Compared to the other methods presented above, Multi-GS can effectively generate all-inlier

minimal subsets without relying on any prior knowledge (e.g., matching scores, inlier thresh-

old) or data-dependent assumption (e.g., spatial information). However, it is less computation-

ally efficient than the previously discussed methods since the conditional sampling weights are

updated on-the-fly during the sampling procedure. Moreover, the conditional sampling strat-

egy in Multi-GS is only worthwhile for obtaining all-inlier samples if the first datum selected

into a minimal subset is an inlier. One solution to this issue is to sample the first datum of a

minimal subset based on the keypoint matching scores as in Guided-MLESAC/PROSAC (Sec-

tion 2.2.1.1) while the rest of the minimal subset is sampled using the conditional sampling

weights of Multi-GS.

2.2.2 Sampling minimal subsets with large span

The previous section surveyed numerous robust geometric fitting methods which rely on sam-

pling and testing model hypotheses fitted on minimal subsets of data. Many of these meth-

ods [20–22, 33] estimate the number of samples required to be drawn by using Equation (2.1)

such that with a high probability at least one all-inlier minimal subset is obtained for yielding a

satisfactory model estimate. However, it has been observed in [17, 20–23] that the number of

samples predicted by RANSAC (Equation (2.1)) is too small for receiving a good model estimate

that fits the data well. In particular, the predicted number of samples is merely a lower bound

of the number of samples required [17]. In [21], a factor ranging from two to three between

the required and the predicted number of samples was reported for models with two parameters.

Also, for models consisting of four parameters, a factor of ten was presented in [22].

The reason for the above differences is due to the fact that generating model hypotheses from

minimal subsets amplifies the noise magnitude [17]. Moreover, as described intuitively in [22],

with noisy data, it is not enough to obtain a sample containing only inliers; they should be

the inliers that span the object so that many of the remaining data points are compared with

interpolated values. In other words, in the presence of noise in the data, retrieving a single

all-inlier minimal subset is not sufficient to guarantee a satisfactory model estimate; the inliers

therein should also have a large spatial extent. Figure 1.1 illustrates an example of this principle.

Some methods [23, 61] have been proposed in the literature to tackle the problem of large span

sampling. In the following, we will review and discuss these techniques.
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The first method to address the problem of large span sampling is SURSAC [23], which aims

to sample inliers that fully cover the structure for robust geometric fitting. The common stop-

ping criterion of RANSAC (Equation (2.1)), which ensures with a high probability an all-inlier

minimal subset is obtained, is not enough; a “relatively loose” sufficient condition employed by

SURSAC is that the inliers should also fully span the inlier domain. More specifically, assum-

ing that the inlier domain is divided into m subregions, a minimal subset of m data points is

considered to have a sufficient coverage of the inlier domain if each of the subregions contains

only one data point (i.e., the inliers equally distribute over the inlier domain) [23].

The basic idea of SURSAC is to modify the predicted number of samples by RANSAC to

include the above requirement for a sufficient span of the inlier domain. We first compute the

probability of receiving a minimal subset with a sufficient coverage of the inlier domain. The

problem can be described as putting a set of m items (data points) into m bins (subregions)

where each item is placed sequentially such that the i-th item (i = 1, 2, . . . ,m) should be put

into one of the remaining m− i+ 1 empty (available) bins. In SURSAC, assuming that the first

i − 1 steps of this process are successful (i.e., there exists no two items in the same bin), the

probability of success at the i-th step is m−i+1
m , and hence the probability that the entire process

is successful can be deduced as

PC =
m∏
i=1

m− i+ 1

m
=

m∏
i=1

i

m
=

m!

mm
. (2.2)

The probability of retrieving an all-inlier minimal subset that fully covers the inlier domain

is computed by multiplying the probability PI of obtaining an all-inlier minimal subset (see

Section 2.2) and the probability PC that the minimal subset fully spans the inlier domain as

PIC = PI .PC = (1 − ε)m. m!
mm . Therefore, we can update the predicted number of samples by

RANSAC (Equation (2.1)) such that with a probability α at least one all-inlier minimal subset

with a sufficient coverage of the inlier domain is received as

N ′ =
log (1− α)

log
(
1− (1− ε)m. m!

mm

) . (2.3)

The predicted number of samples by SURSAC (Equation (2.3)) explains the discrepancies in the

required number of samples that were found empirically by [21, 22] very well. Moreover, com-

pared to RANSAC, SURSAC can retrieve all-inlier minimal subsets that fully cover the inlier

domain and hence improve the quality of the estimated parameters. However, it dramatically

raises the number of samples required for a good model estimate. In particular, with the prob-

ability of success α = 0.95, the estimated values of N ′ under different settings of the outlier

ratio ε and the minimal subset size m are presented in Table 2.2, which shows an exponential

increase compared to the corresponding values of N in Table 2.1. Thus, sampling all-inlier

minimal subsets with large span by using SURSAC is intractable in practice.
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ε = 20% ε = 35% ε = 50% ε = 65% ε = 80% ε = 90%

m = 2 8 13 23 48 149 598

m = 3 25 48 107 313 1684 13480

m = 4 77 178 510 2128 19971 319544

m = 5 237 671 2495 14853 243792 7801385

m = 6 740 2573 12423 105600 3033178 194123451

m = 7 2333 9984 62656 760820 38242719 4895068133

m = 8 7429 39119 319110 5535514 486925372 124653097953

Table 2.2: The number of samples required by SURSAC with different minimal subset sizes and outlier
ratios.

Another approach to the problem of large span sampling is RCM [61], which samples and

fits on large data clusters (instead of minimal subsets). The basic idea of RCM is that larger-

than-minimal subsets of inliers usually have a larger span of the inlier domain, and hence a

better estimate of the model parameters, compared to all-inlier minimal subsets. Figure 2.8

shows an example on 2D line fitting, in which a larger-than-minimal subset of inliers offers a

more accurate estimate of the line than a minimal subset consisting of two inliers (the data in

Figure 1.1 were used in this example).
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Figure 2.8: A minimal subset and a large-than-minimal subset with different fitting qualities on 2D line
fitting.

RCM follows the method of Swendsen and Wang [62], which is often used in statistical me-

chanics for coupled spin system simulations, to generate large data clusters. In particular, it first

builds a sparse adjacency graph on the set of all data points using Delaunay triangulation. A

random variable (bond variable) is attached to each of the graph edges, and then sampled to pro-

duce the connected components or data clusters with large span which are used for computing

the model hypotheses. Due to the spatial smoothness of the data, large clusters of inliers can be

found without an exponential increase in sampling efforts. Moreover, the pairwise data similar-

ity values (i.e., preference correlation values) of Multi-GS (Section 2.2.1.4) are employed as the
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weights for sampling the bond variables and updated on-the-fly such that meaningful clusters

can be obtained efficiently.

RCM can sample large clusters of inliers, which increases the accuracy and efficiency of robust

geometric fitting. However, it imposes spatial smoothness on the data (i.e., the inliers must form

a single coherent structure). This condition is clearly not the general case in practice (e.g., a

single line may consist of multiple distant line segments), and it is more restrictive than the

spatial assumption employed by the methods in Section 2.2.1.2 (i.e., which requires the inliers

are locally dense). In this thesis, we aim to provide a more fundamental study into the problem

of large span sampling in robust geometric fitting using minimal subsets (Chapters 3 and 4).

2.3 Deformable registration

2.3.1 The assumption of highly nonlinear correspondence manifold

We have surveyed in the previous section various methods for robust geometric fitting, where

the geometric model of interest has a fixed number of degrees of freedom. Due to the known

number of degrees of freedom, a model estimate can be computed by using a minimal subset

of data, and hence sampling and testing model hypotheses fitted on minimal subsets is often

employed to deal with outliers.

In this section, we depart from robust geometric fitting and concentrate on robust deformable

registration, which also requires the knowledge of robust parameter estimation with vision data.

The information of interest is the nonlinear transformation that aligns regions in two or more

images containing a common object that can deform smoothly (e.g., a waving flag), and is rep-

resented by a deformable model (e.g., a TPS warp). Various deformable registration methods

(e.g., [29, 30, 42]) rely on detecting and matching keypoints between the images, which are then

used to compute the transformation parameters. An important issue in such feature-based meth-

ods is the identification and rejection of outliers (incorrect correspondences), which invariably

appear due to imperfect feature detection and matching. Traditional deformable registration

methods such as [24, 63] focus on modelling the deformations and handling noise, and thus are

vulnerable to outliers.

Despite the fact that robust geometric fitting has a long history in both the statistics and computer

vision literatures, research efforts have only recently been invested in robust deformable regis-

tration. Similar to robust geometric fitting, an important part of robust deformable registration is

to tackle outliers. Common sense suggests that standard robust geometric fitting techniques such

as RANSAC are not suitable for outlier rejection in deformable registration because of the sub-

stantial nonlinearity of the correspondence manifold on which the inliers (true correspondences)
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lie; see Figure 1.2 for such impressions of the data in the literature. In particular, the underlying

transformation between the images is assumed to have an unknown and varying number of de-

grees of freedom, and hence the size of a minimal subset for yielding a model estimate can not

be determined. Moreover, it is widely assumed that many realistic deformations (e.g., a bending

piece of paper) are too nonlinear to be amendable to simple geometric modelling. Therefore, the

assumption of the highly nonlinear correspondence manifold precludes the application of robust

geometric fitting techniques for outlier rejection in deformable registration.

2.3.2 Outlier rejection with highly nonlinear correspondence manifold

The input data for deformable registration typically consist of two images corresponding to

a target object, i.e., a template in which the object deformations are negligible and an input

image in which the object is deformed nonrigidly; Figure 2.9 illustrates an example of the input

data, where the images are taken from the publicly available real datasets of [64]. Let X =

{(ui,vi)}ni=1 be a set of keypoint correspondences between the template and input image, where

point ui = [xi yi]
T in the template is matched with point vi = [x′i y

′
i]
T in the input image. From

X , the goal of deformable registration is to learn a nonlinear function f : p 7→ q that maps

point p = [x y]T in the template to point q = [x′ y′]T in the input image.

Due to the assumption of the highly nonlinear correspondence manifold described in the previ-

ous section, the function f can have a significant nonlinearity. Most of the previous approaches

to outlier rejection in deformable registration are based on optimising fully deformable models,

which are used to represent f . In the following, we will review and discuss these methods.

2.3.2.1 Triangulated mesh

The first approach [29, 30, 38] employs a triangulated mesh to explicitly model the deformations

and reject outliers. In particular, the template is modelled by a 2D triangulated mesh with

hexagonally connected vertices; see Figure 2.9 for an example of the template mesh. Each

vertex mi is specified by its image coordinates, and the mesh shape is thus controlled by a shape

vector S which is formed by stacking the coordinates of all vertices. Given an image point p

that lies in a triangle (mi,mj ,mk) of the undeformed mesh S (the template), and its barycentric

coordinates (b1, b2, b3) that are computed with respect to (mi,mj ,mk), the transformation f

that maps p in the undeformed mesh S to the deformed mesh S′ (the input image) is defined

as f(p) = b1.m
′
i + b2.m

′
j + b3.m

′
k, where (m′i,m

′
j ,m

′
k) in S′ correspond respectively to

(mi,mj ,mk) in S.

Given a set of keypoint correspondencesX = {(ui,vi)}ni=1, the goal of [29, 30, 38] is to deform

the mesh S′ such that for the subset I ⊂ X of true correspondences the sum of squared residuals
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of the correspondences in I is minimised while the deformations of S′ remain as smooth as

possible; see Figure 2.9 for an example of the deformed mesh. More specifically, S′ is deformed

by minimising the following objective function

E(S′) = Ed(S
′) + λrEr(S

′), (2.4)

where Ed is the data term that takes into account the residuals of the correspondences, Er is the

regularisation term that preserves the smoothness of the mesh, and λr > 0 is a constant.

Template mesh Deformed mesh

Figure 2.9: Examples of a template mesh and a deformed mesh.

Denote (i, j, k) as a vertex index triple such that (mi,mj ,mk) form two colinear connected

edges in the undeformed mesh S; see Figure 2.10(a). Since S has equidistant vertices, we

have mj −mi = mk −mj , ∀(i, j, k). The regularisation term Er approximates the squared

directional curvatures of the deformed mesh S′ as long as the vertices remain roughly equidistant

and increases with the length difference of every two colinear connected edges as

Er(S
′) =

1

2

∑
(i,j,k)

∥∥(m′j −m′i)− (m′k −m′j)
∥∥2
, (2.5)

where (m′i,m
′
j ,m

′
k) in S′ correspond respectively to (mi,mj ,mk) in S; see Figures 2.10(b)

and 2.10(c). Therefore, Er prevents the deformed mesh S′ from overfitting the data in the

presence of outliers.

The data term Ed tends to deform the mesh S′ so that the keypoints in the template are matched

with their correspondences in the input image. In particular,

Ed(S
′) = −

n∑
i=1

ρ(‖vi − f(ui)‖, r), (2.6)
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(a) (b) (c)

Figure 2.10: Regularisation for a 2D triangulated mesh with hexagonally connected vertices. (a) Two
colinear connected edges. (b) Two deformations that are not penalised. (c) Two penalised deformations.
Note that the deformations resulting from perspective projection in (b) are much less penalised than those
caused by outliers in (c).

where ρ is a robust estimator which is defined by

ρ(δ, r) =


3(r2−δ2)

4r3
δ ≤ r

0 δ > r
. (2.7)

Here, the parameter r acts as an inlier threshold where the data points with residuals δ greater

than r are eliminated as outliers and hence have no effects on the optimisation. When r is

large, most of the correspondences are included as inliers and as r reduces, the robust estimator

becomes narrower and more selective; see Figure 2.11.

Since the robust estimator introduced in the data term is not convex, the optimisation problem

in Equation (2.4) becomes hard to solve. In [29, 38], a deterministic annealing procedure is

proposed to tackle the optimisation. In particular, r is initialised with a large value and then pro-

gressively decayed at a constant rate. For each value of r, the objective function E is minimised

by using the semi-implicit scheme (see [29, 38] for details), and the resultant mesh is employed

as the initial state for the next iteration. The annealing procedure stops when r reaches a value

close to the expected threshold. At the beginning when r is large, the gradients of Er are com-

paratively larger than those of Ed, thus preventing the outliers from wrinkling the mesh while

allowing the inliers to choose the global deformation. As r decreases, the gradients of Ed be-

come larger hence the mesh starts bending and the influences of the outliers gradually reduce.

In [30], two contributions are made to speed up the above optimisation procedure. Unlike the

semi-implicit scheme in [29, 38] which requires a few iterations for convergence at each value
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Figure 2.11: The robust estimator ρ is zero for residuals δ larger than threshold r and quadratic for
elsewhere.

of r, the Gauss-Newton approximation in [30] takes a single iteration to achieve the convergence

at each r. Moreover, the mesh is randomly initialised in [29, 38], which requires a sufficiently

large initial value of r to avoid getting stuck at local minima. In contrast, [30] employs PROSAC

(Section 2.2.1.1) which exploits the matching score information to provide a better initialisation,

which reduces the initial value of r and hence the number of iterations.

In summary, these methods [29, 30, 38] can jointly optimise the triangulated mesh and eliminate

outliers. However, the energy function is nonconvex due to the robust estimator. Local optimi-

sation techniques such as semi-implicit scheme and Gauss-Newton approximation are employed

to solve the problem but they only guarantee a locally optimal solution and require a relatively

good parameter initialisation.

2.3.2.2 Gaussian process regression

The second approach [39] which also jointly estimates the deformations and removes outliers

models the transformation f as a Gaussian process. The problem of deformable registration is

thus formulated as a nonlinear regression problem, which aims to fit a Gaussian process f onto

the set of keypoint correspondences X = {(ui,vi)}ni=1. The keypoints {ui}ni=1 in the template

and their correspondences {vi}ni=1 in the input image are taken, respectively, as the independent

and dependent measurements for computing f , i.e., vi = f(ui) + ε; where ε is an additive

Gaussian noise with zero mean and variance σ2.

Using a Bayesian approach to regression, the posterior distribution over the latent function f is

P (f |X ) ∝ P (f)P (X|f). (2.8)
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In [39], the likelihood probability P (X|f) represents how well the function f explains the ob-

served data X , and the prior probability P (f) is specified by a Gaussian process with a mean

function m(u) = u and a covariance function k(u,u′) = exp (−1
2‖u − u′‖2). Therefore, we

can rewrite the posterior distribution in (2.8) as

P (f |X ) ∝ N
(
f |m(u), k(u,u′)

) n∏
i=1

N
(
vi|f(ui), σ

2
)
. (2.9)

Following the detailed derivations in [39], the function f that maps a point p in the template to

the input image is expressed as

f(p) = p +
n∑
i=1

αTi k(p,ui), (2.10)

where αi is the i-th row of the coefficient matrix α which is computed by

α = (WK + σ2I)−1[W(V −U)]. (2.11)

Here, V = [v1 v2 . . . vn]T , U = [u1 u2 . . . un]T , I is the identity matrix, K is the kernel

matrix with Kij = k(ui,uj), and W is the diagonal weight matrix with Wii = wi. The weight

wi is introduced to each correspondence to alleviate the influences of outliers and defined as

wi =
exp (− 1

2σ2 ‖vi − f(ui)‖2)
n∑
i=1

exp (− 1
2σ2 ‖vi − f(ui)‖2)

. (2.12)

To jointly eliminate outliers and estimate the transformation f , the deterministic annealing pro-

cedure of [29, 30, 38] is employed. The parameter σ which acts as an inlier threshold is ini-

tialised with a large value, and then progressively decayed at a constant rate. At the beginning,

all data points in X are used for initialising f . For each value of σ, the data points which have

residuals less than σ are selected into the inlier set, which is used for estimating f by using

Equation (2.10) until the inlier set no longer changes or the maximum number of iterations is

exceeded. The resultant f is employed as the initial state for the next iteration. The annealing

procedure terminates when σ reaches a value close to the expected threshold. As previously dis-

cussed in Section 2.3.2.1, this optimisation process is complicated due to the use of the robust

weight in dealing with outliers. Moreover, it only ensures a locally optimal solution while being

relatively sensitive to parameter initialisation.
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2.3.2.3 Support vector regression

The third approach [27, 40] formulates the problem of outlier detection in deformation registra-

tion as robust learning of the correspondence manifold. Unlike the previous approaches which

estimate a single function f , the correspondence manifold is represented by a pair of functions:

(1) f that maps points from the template to the input image (i.e., f : p 7→ q), and (2) f ′ that

maps points from the input image to the template (i.e., f ′ : q 7→ p) [27, 40]; see Figure 2.12 for

an illustration.

Template Input image

Figure 2.12: A pair of correspondence functions for representing the correspondence manifold.

Since both f and f ′ are computed in the same way, we will discuss estimating only f in the

following. The function f is further separated into two components fx and fy with fx : p 7→ x′

and fy : p 7→ y′. Given a set of keypoint correspondences X = {(ui,vi)}ni=1, the sets Xx =

{(xi, yi, x′i)}ni=1 and Xy = {(xi, yi, y′i)}ni=1 extracted from X are considered respectively as the

samples of fx and fy. Support vector regression is then employed separately for computing fx
from Xx and fy from Xy (see [27, 40] for details).

To robustly learn the function f (i.e., two components fx and fy) in the presence of outliers,

an iterative procedure is proposed. At the beginning, the sample sets Xx and Xy are used for

initialising the components fx and fy. At each iteration, the data points in X with residuals

greater than a threshold τ are selected into a suspect influential set (outlier set) S, and their

corresponding samples in Xx and Xy are eliminated. The remaining samples of Xx and Xy are

then used to compute the new estimates of fx and fy. The resultant fx and fy are employed

as the initial states for the next iteration. The iterative procedure stops when the difference

in the estimated data deviations according to the current and new estimates of fx and fy (i.e.,

before and after removing the suspect influential set S) is smaller than a threshold εINFL or the

computed mean squared error is less than a threshold εMSE .

After computing the functions f and f ′ by using the above iterative procedure, the data points

that have residuals larger than a threshold ξ are rejected as outliers. In practice, most of the
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outliers can be removed by using either f or f ′. However, the method involves various parame-

ters, i.e., τ , εINFL, εMSE for estimating the functions and ξ for performing outlier rejection, its

success depends critically on optimal settings of the parameters.

2.3.2.4 Local smoothness test

A more recent approach [41, 42] to outlier rejection in deformation registration relies on the

assumption that the correspondence manifold is locally smooth. Due to this assumption of

local smoothness, the local topology around a correspondence should be preserved during the

deformations between the images. The basic idea of [41, 42] is that a particular correspondence

is likely to be an inlier if it is consistent with the local transformation, which is computed by

using its neighbouring correspondences.

Let Cu = {ui}ni=1 and Cv = {vi}ni=1 be the sets of keypoints in the template and input image

respectively, where point ui ∈ Cu is matched with point vi ∈ Cv. In [41, 42], a Delaunay trian-

gulation T is first defined on the set of keypoints Cu in the template, and used as the reference

for connecting the correspondences. In particular, two correspondences (ui,vi) and (uj ,vj)

are neighbours if there exists an edge in the triangulation T that connects between the keypoints

ui and uj . For a specific correspondence (ui,vi), the set of its neighbouring correspondences

Q(ui,vi) induced by T is used to estimate the local transformation f ′Q (see [41, 42] for details),

which is then employed to measure the residual for (ui,vi) as

di =
∥∥ui − f ′Q(vi)

∥∥ , (2.13)

where f ′Q(vi) is the warped point of vi computed by using the local transformation f ′Q; see

Figure 2.13. The residual di represents how well the correspondence (ui,vi) is consistent with

the local transformation f ′Q. Due to the above assumption of local smoothness, a correspondence

is considered as an inlier if it passes the local smoothness test, i.e., its residual is less than a

threshold dTH .

The local smoothness test can easily select strong inliers which are surrounded by inliers but it

usually mislabels the inliers that are close to the outliers. The strong inliers are first obtained by

applying the local smoothness test on the sets of keypoints Cu and Cv, and an iterative procedure

is then proposed to include the inliers that are nearby to the outliers. Let Gu and Gv be the sets

of keypoints from the strong inliers, while Bu and Bv denote the sets of keypoints from the

remaining correspondences (i.e., Cu = Gu ∪ Bu and Cv = Gv ∪ Bv). For each correspondence

(ui,vi) from Bu and Bv, a new Delaunay triangulation T̃ is first defined on the extended set of

keypoints Gu ∪ {ui} in the template, and the updated residual di is then computed based on

the new triangulation T̃ . The correspondence (ui,vi) is considered as an inlier and added to Gu
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Template Input image

Figure 2.13: Local smoothness test by using a local transformation estimated on neighbouring correspon-
dences.

and Gv if the updated residual di is smaller than dTH . The iterative procedure is repeated until

Gu and Gv stop growing (no more inliers can be found).

Similar to the methods surveyed in Section 2.2.1.2, the local smoothness test is effective when

the inliers are locally dense. Compared to the above approaches which are often based on the

assumption of the highly nonlinear correspondence manifold, this approach assumes that the

correspondence manifold is locally smooth, which is equivalent to recognising that the nonrigid

deformations have low degrees of variation. In this thesis, we further show that the previously

discussed methods overestimate the difficulty of the data; and moreover, the correspondence

manifold on which the inliers lie is approximately linear (Chapters 5 and 6).

2.4 Summary

We have reviewed in this chapter numerous methods for robust geometric fitting and robust

deformable registration. In the following, we summarise the issues that we particularly address

in the next chapters of this thesis.

As presented in Section 2.2, the problem of large span sampling has been observed in a large

number of previous approaches to robust geometric fitting. However, little research has been

invested in this issue. This fact has motivated us to investigate and develop a theoretical basis

for this long-standing problem (Chapter 3), which shows how the data span affects different

minimal subsets and provides a better understanding of previous work.

None of the previous guided sampling methods for robust geometric fitting actively searches for

all-inlier minimal subsets with large span which are important to yielding a good model estimate
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that fits the data well. To address this limitation, we present a novel sampling algorithm (Chap-

ter 4) that consciously targets all-inlier samples as well as with large span for robust geometric

fitting.

As discussed in Section 2.3, due to the assumption of the highly nonlinear correspondence man-

ifold, most of the previous approaches to outlier rejection in deformable registration employ

fully nonlinear models to represent the correspondence manifold, and rely on iterative optimi-

sation procedures to remove outliers. This fact has inspired us to propose and investigate the

interesting observation of the approximately linear correspondence manifold (Chapter 5), which

facilitates the application of standard robust geometric fitting techniques for outlier rejection in

deformable registration. Our proposed methods (Chapters 5 and 6), which are based entirely on

fitting simple linear models, are significantly more efficient and at least as accurate as previous

approaches.



Chapter 3

Minimal Subset Expansion

3.1 Introduction

In Chapter 2, we described a common method for robust geometric fitting in computer vision

- RANSAC [18], which randomly generates and verifies a number of minimal subsets such

that with a high probability at least one all-inlier minimal subset is obtained. This aim, for

an all-inlier sample, stems from the assumptions that all-inlier minimal subsets have the same

intrinsic quality and that any all-inlier sample yields a good model estimate that fits the data

well. However, such assumptions are not satisfied when there exists noise in the data, which

is invariably the case in real scenarios due to imperfect data acquisition and preprocessing. As

illustrated in Figure 1.1, with noisy data, all-inlier minimal subsets are different in terms of their

spatial coverage, and hence intrinsic quality. Therefore, drawing a single all-inlier sample is not

sufficient to guarantee a good estimate of the model parameters; the inliers therein should also

have a large spatial extent.

This chapter aims to show that a more principled reasoning exists for the above intuition. We

first show that an explanation lies in a little known result relating to minimal subset expansion

for least squares regression, which expresses the least squares regression estimate as a weighted

linear combination of all possible minimal subset estimates. From this result, it is clear that the

quality of a minimal subset estimate is proportional to the span of the associated data points.

As the main contribution of this chapter, we derive an analogous minimal subset expansion for

total least squares (TLS) [31], which unlike ordinary least squares, accounts for noise in both

dependent and independent variables. Our result is of interest to the computer vision community,

since TLS is directly related to geometric estimation techniques in computer vision, such as

the direct linear transformation [32] that is frequently used in the estimation of multiple-view

geometry. Furthermore, we investigate the effect of data span on various fundamental matrix

33
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estimation algorithms, which shows a clear correlation between the span of data points used for

estimation and the quality of model estimate.

The main content of this chapter is based on the author’s publication in [65]. The rest of this

chapter is organised as follows: Section 3.2 introduces the minimal subset expansion for least

squares regression. We describe TLS in Section 3.3 and develop an equivalent minimal subset

expansion for TLS. In Section 3.4, we explore the connection between our result with geometric

fitting problems in computer vision, and analyse the influence of data span on the task of fun-

damental matrix estimation. We then draw conclusions in Section 3.5. The main content of this

chapter is based on the authors publication in [65].

3.2 Minimal subset expansion for least squares

We present in this section a little known result relating to minimal subset expansion for least

squares regression, which provides a theoretical explanation for the intuition of large span sam-

pling in robust geometric fitting. The problem of linear regression involves deducing an un-

known parameter vector β ∈ Rm such that the distance between the multiplication of β by the

design matrix X ∈ Rn×m and the observation vector y ∈ Rn is minimised. Given an overdeter-

mined system (n > m), the least squares approach assumes there is no noise in X and corrects

for errors in y by solving

β̂ = arg min
β
‖y − ŷ‖2 s.t. Xβ = ŷ, (3.1)

where β̂ is the least squares estimate and ŷ is the corrected version of y. The solution β̂ for (3.1)

can be obtained in closed form by

β̂ = (XTX)−1XTy. (3.2)

The problem in (3.1) is often called ordinary least squares (OLS) to discern it from other types

of estimation problems. A geometrical interpretation of (3.1) is that Xβ̂ is the orthogonal pro-

jection of y onto the column span of X.

It turns out that β̂ can be expanded as a linear combination of minimal subset estimates. To

derive this result, first we apply Cramer’s rule on (3.2) to write the j-th value of β̂ as

β̂j =
|(XTX)j |
|XTX|

=
|XTXj |
|XTX|

, (3.3)



Chapter 3. Minimal Subset Expansion 35

where | · | calculates the determinant of a matrix. We define (XTX)j as XTX with its j-th

column replaced by XTy, and Xj as X with its j-th column replaced by y. Via the Binet-

Cauchy formula [66, Page 29], we can expand (3.3) as

β̂j =

∑
λ |X(λ)‖Xj(λ)|∑
λ |X(λ)‖X(λ)|

, (3.4)

where λ indicates a combination of m integers from the set {1, . . . , n}, and X(λ) and Xj(λ)

are square matrices formed by the m rows of X and Xj indexed by λ. The summations in (3.4)

are taken over all
(
n
m

)
possibilities of λ.

Picking the rows of X and y according to a λ amounts to choosing a minimal subset, since m

cases are sufficient to uniquely determine β. The minimal estimate from λ is

β̂(λ) = X(λ)−1y(λ), (3.5)

where y(λ) is the vector formed by the m rows of y indexed by λ. Via Cramer’s rule again, the

j-th value of β̂(λ) is

β̂
(λ)
j =

|Xj(λ)|
|X(λ)|

. (3.6)

By substituting |Xj(λ)| = |X(λ)| β̂(λ)
j in (3.4) we obtain

β̂j =

∑
λ |X(λ)‖X(λ)|β̂(λ)

j∑
λ |X(λ)‖X(λ)|

, (3.7)

or in vectorial form for the full parameter vector

β̂ =
∑
λ

wλβ̂
(λ), wλ =

|X(λ)|2∑
λ |X(λ)|2

, (3.8)

where 0 ≤ wλ ≤ 1 and
∑

λwλ = 1. The quantity wλ is the weight or importance of min-

imal subset λ towards estimating β̂. This little known result is due to Jacobi [67], and later

rediscovered by others, e.g., [68].

Jacobi’s result provides an algebraic justification to the intuition of maximising the span of

minimal subsets. To illustrate this idea, consider the problem of 2D line fitting where we have

X =


1 x1

...
...

1 xn

 , y =


y1

...

yn

 , (3.9)



Chapter 3. Minimal Subset Expansion 36

and β contains the usual parameters of intercept and slope. The weight of the estimate corre-

sponding to a minimal subset λ = {k1, k2} is proportional to

|X(λ)|2 =

∣∣∣∣∣
[

1 xk1

1 xk2

]∣∣∣∣∣
2

= (xk1 − xk2)2, (3.10)

i.e., widely separated points provide better line estimates. More generally, |X(λ)| is the hy-

pervolume of the parallelotope whose vertices are the rows of X(λ), a quantity that is directly

related to the relative span of the data indexed by λ.

3.2.1 Generalising to non-minimal subsets

Can the weighted expansion in (3.8) be generalised to using subsets of size greater than m?

Let ν index a subset of size m + i ≤ n (i > 0), and X(ν) be the (non-square) submatrix of

X containing the m + i rows selected according to ν. The OLS estimate can actually also be

expanded as

β̂ =
∑
ν

wνβ̂
(ν), wν =

|X(ν)TX(ν)|∑
ν |X(ν)TX(ν)|

, (3.11)

where the summation is over all
(
n

m+i

)
choices of ν; we refer the reader to [69] for the proof.

Observe that (3.8) is a special case of (3.11). To gain a geometrical understanding of the weights,

applying the Binet-Cauchy formula again yields

wν ∝ |X(ν)TX(ν)| =
∑
λ

|X(λ|ν)|2, (3.12)

where λ indexes over all
(
m+i
m

)
minimal subsets of X(ν), and we define X(λ|ν) as the submatrix

of X(ν) indexed by λ. In other words, the weight of X(ν) is proportional to the sum of the

weights of all the minimal subsets from X(ν).

3.3 The case of total least squares

In this section we describe TLS and develop the main contribution of this chapter — a minimal

subset expansion for TLS. In contrast to OLS presented in the previous section, TLS (also called

errors-in-variables modelling [17] or orthogonal regression [70]) corrects for errors in both the

independent and dependent measurements (X,y). The TLS estimate is

β̆ = arg min
β

min
X̆

∥∥∥[X y]− [X̆ y̆]
∥∥∥2

F
s.t. X̆β = y̆, (3.13)
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where we use the breve accent (˘) to distinguish TLS results from those of OLS. The solution β̆

for (3.13) can be reasoned as follows [70]: Assume [X y] ∈ Rn×(m+1) to be full rank, i.e., rank

m+ 1 since n > m. To make the following system

[X y]

[
β

−1

]
≈ 0 (3.14)

compatible, we must reduce the rank of [X y] by one. Let

[X y] = AΣBT (3.15)

be the singular value decomposition (SVD) of [X y]. From the Eckart-Young Theorem the

closest rank-m matrix to [X y] in the Frobenius sense is

[X̆ y̆] = AΣ̆BT , (3.16)

where Σ̆ is obtained by setting the (m + 1)-th singular value σm+1 in Σ to zero. Let bm+1 be

the (m+ 1)-th right singular vector of [X y]. Then the optimal approximation to (3.14) is

[X̆ y̆]bm+1 = 0, (3.17)

which holds for arbitrary scalings of bm+1. The TLS estimate β̆ is obtained by scaling bm+1 as[
β̆

−1

]
= − 1

bm+1(m+ 1)
bm+1 (3.18)

such that the (m+1)-th element of the vector is−1. Here, bm+1(m+1) denotes the (m+1)-th

element of bm+1.

Clearly, for β̆ to exist the element bm+1(m + 1) can not be zero. A sufficient condition for a

nonzero bm+1(m+ 1) is that the m-th singular value sm of X to be strictly greater than σm+1:

sm > σm+1 =⇒ bm+1(m+ 1) 6= 0 and σm > σm+1. (3.19)

See [70, Chapter 2] for the proof. As argued in [71], this condition is not restrictive and is usually

satisfied. Moreover, as we will explain in Section 3.4, convenient pre- and postprocessing are

available to prevent the condition from becoming debilitating for geometric fitting problems in

computer vision.
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3.3.1 Minimal subset expansion for TLS

Following the above derivations, the eigenvector identity

[X y]T [X y]bm+1 = σ2
m+1bm+1 (3.20)

holds for bm+1 and arbitrary scalings of bm+1. We can thus rewrite and expand the eigenvector

identity as [
XTX XTy

yTX yTy

][
β̆

−1

]
= σ2

m+1

[
β̆

−1

]
. (3.21)

Multiplying through the top part and rearranging yields

β̆ = (XTX− σ2
m+1I)−1XTy. (3.22)

See also [70, Chapter 2] for the derivation of (3.22). To develop our TLS minimal subset expan-

sion we define

Z := X− σ2
m+1(XT )†, (3.23)

where (XT )† is the Moore-Penrose generalised inverse of XT , and rewrite (3.22) as

β̆ = (XTZ)−1XTy. (3.24)

We first prove the following intermediate result which appears to be novel and is of interest in

its own right.

Proposition 3.1. The solution to the following OLS problem

arg min
β

‖y − ŷ‖2 s.t. Zβ = ŷ (3.25)

coincides with the TLS estimate β̆.

Proof. If X = USVT is the SVD of X ∈ Rn×m, then

(XT )† = US−1VT (3.26)

is the SVD of (XT )†, where we define S−1 as taking the reciprocal of the diagonal elements of

S, while leaving the other elements unchanged. From (3.23) we can rewrite Z as

Z = U(S− σ2
m+1S

−1)VT := US̃VT , (3.27)
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where US̃VT is a valid SVD of Z since the diagonal values in S̃ are still in descending order;

recall that we impose condition (3.19) such that σm+1 is strictly smaller than the smallest sin-

gular value sm of X. Therefore, since X, (XT )† and Z share the same left singular vectors U,

we have

R(X) = R((XT )†) = R(Z), (3.28)

i.e., the column spans of the three matrices are equal.

If β̃ is the solution of (3.25), then by invoking the closed-form expression for the OLS estimate

β̃ = (ZTZ)−1ZTy, (3.29)

which can be further manipulated to yield

XTZβ̃ = XTy + σ2
m+1(XT )†T (Zβ̃ − y). (3.30)

Since β̃ is the solution to the OLS problem (3.25), Zβ̃ is the projection of y onto R(Z), and

consequently Zβ̃ − y is orthogonal toR(Z). Hence, the equality (3.30) reduces to

XTZβ̃ = XTy (3.31)

since Zβ̃ − y will also be orthogonal to R((XT )†). Comparing (3.24) with (3.31) yields the

result β̆ = β̃.

Proposition 3.1 states that, given the measurements [X y], the TLS estimate can be calculated

as

β̆ = (ZTZ)−1ZTy, (3.32)

where Z is as defined in (3.23). In other words, we perturb X by the amount −σ2
m+1(XT )†

to become Z, while leaving y unchanged, such that TLS on (X,y) can be solved as OLS on

(Z,y). Figure 3.1 illustrates this idea on 2D line fitting.

To exploit Proposition 3.1, we define

β̆(λ) := Z(λ)−1y(λ) (3.33)



Chapter 3. Minimal Subset Expansion 40

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

Independent measurement, x

D
ep

en
de

nt
 m

ea
su

re
m

en
t, 

y

 

 

Original data
Perturbed data
OLS estimate from original data
TLS (resp. OLS) estimate from original (resp. perturbed) data

(a) In 2D line fitting, the measurements {xi, yi}ni=1 are collected into matrix X ∈ Rn×2 and vector y ∈
Rn as defined in (3.9), where the first column of X contains the homogeneous constants 1. Following (3.23),
X is perturbed to become Z. From Proposition 3.1 the TLS estimate on (X,y) is the same as the OLS
estimate on (Z,y). The data after perturbation are plotted in red — note that the homogeneous constants
in Z would also have been perturbed away from 1, which mirrors the fact that TLS (3.13) will correct all
columns in X. To plot (Z,y) here, we “dehomogenise” each datum by dividing the measurements with the
corresponding homogeneous constant. See also panel (b) below.

(b) Line fitting on 2D data {xi, yi}ni=1 is really accomplished as 2D subspace fitting on 3D data (X,y),
where points in the subspace satisfies [c x]β − y = 0, and c is an auxiliary variable corresponding to the
homogeneous constant. Proposition 3.1 states that TLS on (X,y) is the same as OLS on (Z,y), where Z
is perturbed from X according to (3.23). Here, we plot (X,y) and (Z,y) in R3, where the homogeneous
constants in X and Z are plotted in the vertical axis. The 2D subspaces fitted on (X,y) and (Z,y) by OLS
are also plotted. The lines fitted on {xi, yi}ni=1 are 1D affine subspaces within the 2D subspaces. Panel (a)
is the projection of (b) onto the plane c = 1.

Figure 3.1: Illustration of Proposition 3.1 on the problem of 2D line fitting.
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as the minimal subset estimate for β̆ based on them rows of Z and y as indexed by λ. Applying

the steps taken in Section 3.2 on (3.32), we obtain a minimal subset expansion for β̆

β̆ =
∑
λ

wλβ̆
(λ), wλ =

|Z(λ)|2∑
λ |Z(λ)|2

, (3.34)

where againwλ is the weight of minimal subset λ, with 0 ≤ wλ ≤ 1 and
∑

λwλ = 1. Extending

(3.34) to using non-minimal subsets also follows easily from (3.11).

3.3.2 Comparing weights of minimal subsets under TLS

In many cases (e.g., in robust estimation) we are mainly interested in comparing the goodness

(from the aspect of span) of two minimal subsets and not the actual weight values. This fact

motivates the following result on weight comparison.

Proposition 3.2. Given two minimal subsets λ1 and λ2,

|X(λ1)|2 > |X(λ2)|2 =⇒ |Z(λ1)|2 > |Z(λ2)|2. (3.35)

Proof. Recall the SVD of X and Z in Proposition 3.1. Since both X and Z are of size n ×m
with n > m, they can be expanded using the first-m left singular vectors Um of X as

X = UmSmVT , Z = UmS̃mVT , (3.36)

where Sm is the first m × m submatrix of S (similarly for S̃). The determinants |X(λ)| and

|Z(λ)| can be obtained as

|X(λ)| = |Um(λ)‖SmVT |, |Z(λ)| = |Um(λ)‖S̃mVT |,

where we define Um(λ) as the m rows of Um selected according to λ. It is clear that

|X(λ)| = κ|Z(λ)|, κ := |SmVT |/|S̃mVT |, (3.37)

where κ is a constant independent of λ. Therefore, given two minimal subsets λ1 and λ2, if

|X(λ1)|2 > |X(λ2)|2 then

|X(λ1)|2/|X(λ2)|2 = |Z(λ1)|2/|Z(λ2)|2 > 1, (3.38)

or |Z(λ1)|2 > |Z(λ2)|2.

Proposition 3.2 states that the relative weights of two minimal subsets λ1 and λ2 are equivalent

under TLS and OLS; it is thus sufficient to compute |X(λ)|2 and there is no need to obtain
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|Z(λ)|2 (which requires the singular value σm+1). In fact, Proposition 3.2 implies that the

weightwλ of a minimal subset λ is equal under (3.8) and (3.34), although the associated minimal

estimates β̂(λ) and β̆(λ) may be different.

Extending Proposition 3.2 to compare the weights of non-minimal subsets is straightforward;

we refer the reader to Appendix A.

3.3.3 TLS with frozen columns

In some applications it is useful to constrain the TLS correction to occur only on some of the

columns of X while leaving the other known columns unchanged or “frozen” [72] (in Section 3.4

we explain why this case is relevant for geometric fitting problems in computer vision). The

problem is also known as mixed OLS-TLS [70]. Here we show that our result extends easily to

this case.

Let X = [X1 X2] be rearranged such that X1 ∈ Rn×m1 are the frozen columns while X2 ∈
Rn×m2 are to be corrected, and m = m1 +m2. The task is to estimate

β̆ = arg min
β,X̆2

∥∥∥[X2 y]− [X̆2 y̆]
∥∥∥2

F
s.t. [X1 X̆2]β = y̆.

We first perform the QR factorisation

[X1 X2 y] = QR with R =

[ m1 m2 1

m1 R11 R12 r1

n−m1 0 R22 r2

]
,

where R11 is an upper triangular matrix. Basic TLS is invoked on R22 and r2 to solve for the

last-m2 elements of β̆. These are then substituted back into the system to allow the first-m1

variables to be obtained using OLS.

Let σm2+1 be the smallest singular value of [R22 r2]. The mixed OLS-TLS estimate can be

expressed as [70]

β̆ = (XTX− σ2
m2+1L)−1XTy, (3.39)

where L is a “selector matrix” defined as

L :=

[
0 0

0 Im2

]
∈ Rm×m, (3.40)
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with Im2 the m2 ×m2 identity matrix. In effect, L chooses which columns of X get corrected.

Defining Z now as

Z := X− σ2
m2+1(XT )†L, (3.41)

we may also re-express (3.39) like (3.24) as

β̆ = (XTZ)−1XTy. (3.42)

Observe now that in (3.41) L chooses the columns of X that are perturbed. It turns out that

Propositions 3.1 and 3.2 also hold for mixed OLS-TLS (see Appendix A for the proof), i.e., β̆

can be obtained as the solution of the OLS in (3.25), which motivates the expansion (3.34) for

mixed OLS-TLS with minimal or non-minimal subsets.

3.3.4 Orthogonal distance fitting

We explore the consequence of our result on orthogonal distance fitting of lines onto 2D data.

Given data {xi, yi}ni=1, we wish to estimate the β = [β1 β2]T ∈ R2 that minimises

n∑
i=1

(β1 + β2xi − yi)2

β2
2 + 1

, (3.43)

i.e., the sum of squared orthogonal distances to the line β. Creating matrix X and vector y as

in (3.9), the problem is equivalent to minimising the generalised Rayleigh quotient

argmin
θ

θT [X y]T [X y]θ

θT

[
L 0

0 1

]
θ

, (3.44)

where θ = [βT − 1]T and L is as defined in (3.40) with m = 2 and m2 = 1. The solution

θ̆ = [β̆T − 1]T satisfies the generalised eigenvector equation

[X y]T [X y]

[
β̆

−1

]
= η

[
L 0

0 1

][
β̆

−1

]
, (3.45)

with η the smallest generalised eigenvalue. Multiplying through the top part and rearranging

yields

β̆ = (XTX− ηL)−1XTy, (3.46)
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which resembles (3.39). Identifying the first column in X as the frozen column (the homoge-

neous constants in X are prevented from being corrected), it turns out that orthogonal distance

fitting is an instance of mixed OLS-TLS.

Figure 3.2 illustrates the implications of Proposition 3.1 on orthogonal distance line fitting, using

the same data as in Figure 3.1. Here Z is perturbed from X following (3.41) which preserves

the values of the homogeneous constants.

It is worthwhile to clarify why the literature also calls standard TLS defined in (3.13) “orthogo-

nal regression” [70]. If there are no homogeneous constants in X (or equivalently no intercept

parameter in β), (3.13) estimates the linear subspace which minimises the sum of squared or-

thogonal distances to the points. When X contains homogeneous constants (or β involves an

intercept), the solution to (3.13) no longer minimises the sum of squared orthogonal distances.

See [73] for details.

3.4 TLS in geometric fitting problems

In this section we establish the relevance of our result in the previous section to geometric

fitting problems in computer vision. In particular, we relate TLS to the direct linear transfor-

mation (DLT) [45] technique, which is usually employed in the estimation of multiple-view

geometry [3]. The intimate connection between TLS and DLT has been established elsewhere,

e.g., [32, 74]. In the following we concentrate on the task of fundamental matrix estimation,

which is a common geometric fitting problem in computer vision, and discuss the equivalence

between TLS and DLT in that context.

3.4.1 The equivalence between TLS and DLT on fundamental matrix estimation

We first describe the epipolar geometry and the fundamental matrix. Suppose that we have two

images of a static scene taken from two different views. We may ask “How do the coordinates

of the points in one image relate to the coordinates of the points in another?”. The answer to

this question paves the way for developing many important applications in computer vision,

since it turns out that once the correspondences between two views are established, the three-

dimensional structure of the scene can be recovered from the images.

The epipolar geometry studies the intrinsic projective geometry between two views and provides

the answer to the above question. Suppose that a point X in three-dimensional space is projected

through the centre of projection C1 (of the first camera) to the point u in the first image, and

through the centre of projection C2 (of the second camera) to the point v in the second image;

see Figure 3.3 for an illustration. The plane determined by C1, C2 and X is called an epipolar



Chapter 3. Minimal Subset Expansion 45

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

Independent measurement, x

D
ep

en
de

nt
 m

ea
su

re
m

en
t, 

y

 

 

Original data
Perturbed data
OLS estimate from original data
TLS estimate from original data
Ortho. fit. (resp. OLS) estimate from original (resp. perturbed) data

(a) Comparing estimates from OLS, TLS and orthogonal line fitting. Here, Z is perturbed from X follow-
ing (3.41) which preserves the homogeneous constants at 1. Therefore, dehomogenisation of (Z,y) is not
required to plot the perturbed data here, unlike in Figure 3.1(a).

(b) Here (X,y) and (Z,y) are plotted in R3, where the homogeneous constants in X and Z are plotted in
the vertical axis. The 2D subspaces fitted on (X,y) and (Z,y) by OLS are also plotted. Unlike Figure 3.1(b),
where under standard TLS the homogeneous constants in X are not preserved in Z, here the homogeneous
constants remain at 1.

Figure 3.2: Illustration of Proposition 3.1 on the problem of orthogonal distance line fitting in 2D.
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plane. There are numerous epipolar planes according to different three-dimensional points X

but all epipolar planes will pass through the baseline which connects C1 and C2. The point of

intersection between the baseline and the image plane is called an epipole.

Assume that C1, C2 and the point u in the first image are known, we now search for the

corresponding point v in the second image to answer the above question. Recall that three-

dimensional points are projected by straight lines through the centre of projection (of the cam-

era) to points in the image, which means that the epipolar plane formed by C1, C2 and X is

co-planar with the plane formed by C1, C2 and u, and hence the epipolar plane on which X

and v must lie can be determined. Furthermore, the search for v can be restricted to the line

of intersection between that epipolar plane with the image plane of the second image, which is

called an epipolar line (i.e., l2 in Figure 3.3).

!"#"$%&'("%&)*

+&,*%#)*

!"#"$%* !"#"$%*

!"#"$%&'(%#)* !"#"$%&'(%#)*

Figure 3.3: The epipolar geometry and the fundamental matrix.

The fundamental matrix is the algebraic representation of the above constraint in epipolar ge-

ometry. In particular, let u = [p q]T and v = [p′ q′]T be a pair of matching points between two

views of a static scene, the epipolar geometric constraint between u and v is expressed as

[p q 1]F[p′ q′ 1]T = 0, (3.47)

where F is a 3× 3 matrix of rank 2, called the fundamental matrix. The constraint is linearised

by multiplying through to yield

[
p′p p′q p′ q′p q′q q′ p q 1

]
f = 0, (3.48)

where f is a column vector containing the nine elements of F. Given a set of noisy keypoint

correspondences X = {(ui,vi)}ni=1 across two images of a fixed scene, where point ui =
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[pi qi]
T in one image is matched with point vi = [p′i q

′
i]
T in another, the goal is to estimate the

F of f corresponding to the scene.

The algorithm DLT [45] computes (3.48) for each keypoint correspondence (ui,vi), and stacks

the rows to yield a matrix D ∈ Rn×9. The solution is obtained by minimising the sum of

squared algebraic errors as

f∗ = arg min
f
‖Df‖2 s.t. ‖f‖ = 1, (3.49)

where the quadratic constraint avoids the trivial solution f = 0. It can be shown that f∗ is the

least significant right singular vector of D [45]. Equating D with [X y] under TLS, it is clear

that f∗ = bm+1 in (3.17), and apart from the rescaling step (3.18) the TLS and DLT estimates

are equal. Note that since f is homogeneous it has only eight degrees of freedom, mirroring

the fact that the TLS parameter vector β has eight elements in the task of fundamental matrix

estimation. Therefore, a minimal subset of eight rows of D or [X y] corresponding to eight

keypoint matches are sufficient to instantiate f or β1.

Our derivations in Section 3.3.1, however, require that the constraint (3.47) is dehomogenised.

This amounts to fixing an element in f to −1, and moving the corresponding column in D to

the RHS of (3.47) to become the observation vector y. Such a modification is prevalent in the

literature, e.g., [76–79], and is usually applied to bring to bear the framework of regression onto

homogeneous estimation. If the element fixed to −1 in f has the true value 0, the result may

be numerically unstable. A frequent solution (e.g., see [76]) is to detect when this case occurs,

and then change another element in f to fix at −1 (see also the handling of such non-generic

collinearities under TLS [70]). In some cases preprocessing of the data is available to ensure

that an element in the homogeneous vector is nonzero [77, 79]. From (3.48), it is also clear that

one column in D consists of the homogeneous constant 1. This column should be frozen under

TLS, and not be moved to the RHS to yield the observation vector y; see [32, 80]. Our result

in Section 3.3.3 for mixed OLS-TLS is relevant to this notion. In the following experiments, we

dehomogenise by fixing the first element in f to -1.

It is important to normalise the keypoint coordinates by using the method of [75] before ap-

plying the above algorithms for computing f . This requirement is due to the fact that some

columns in D have quadratic terms in p, p′, q, and q′, while others have linear terms. Without

prior normalisation, the columns with quadratic terms in D would have much larger values than

others with linear terms, and hence are subject to proportionally smaller perturbations because

the sum of squared algebraic errors is minimised. By contrast, if normalised coordinates are

employed, the columns of D will have similar ranges of values, and hence are treated approx-

imately equally. In practice, with normalised coordinates, the dominant influence of quadratic
1Actually 7 matches are sufficient since F is rank deficient by one, but the estimation process from 7 matches is

more complicated. In any case, the rank constraint can be imposed post-estimation from 8 matches [75].
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terms in the algebraic error (i.e, heteroscedastic noise in the columns of D) is significantly re-

duced [75]. Note that mixed OLS-TLS does not aim to deal with the above issue, except for the

purpose of preventing the column with the homogeneous constant 1 in D from being rectified.

We now compare the performances of DLT, TLS and mixed OLS-TLS in the task of funda-

mental matrix estimation. On the Hartley image pair in Figure 4.8, we detect and match SIFT

keypoints [16] using the VLFeat toolbox [81] and manually identify the correct correspondences

(there are 123). The keypoint coordinates are then normalised such that they are centred at the

origin and the mean distance to the origin is
√

2 [75]. The number of keypoint matches, n,

used to compute the fundamental matrix ranges between 8 and 93. For each value of n, 100

distinct samples of size n are randomly drawn from the original set of 123 inliers, and the three

algorithms are then run respectively on these samples (as discussed above, for TLS and mixed

OLS-TLS we dehomogenise by fixing the first element in f to -1 and move the corresponding

column in D to the RHS to yield the observation vector y). The errors (i.e., algebraic error and

Sampson distance [3]) are computed using all 123 inliers, and for each value of n, the average

errors over 100 runs of the algorithms are shown in Figure 3.4. The results show that the three

algorithms have very comparable performances, which shows the equivalence between DLT and

TLS techniques. In fact, when the number of matches is small, the performances of both TLS

and mixed OLS-TLS are slightly worse than that of DLT, which is likely due to the dehomogeni-

sation step. Moreover, by constraining the constant column in D from being modified, mixed

OLS-TLS obtained slighly lower errors than TLS in cases of small number of matches.
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Figure 3.4: Performance comparison of DLT, TLS and mixed OLS-TLS on fundamental matrix estima-
tion.

Note that DLT (3.49) minimises the sum of squared algebraic errors. It is also common to min-

imise geometric errors in geometric fitting problems in computer vision, such as the Sampson

distance [3]. Such errors are typically nonlinear functions of the parameters, thus extending our

TLS expansion (3.34) to accommodate such errors is nontrivial. In some cases, geometric errors
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are minimised during the refinement stage (i.e., after robust estimation) using iterative meth-

ods (e.g., Levenberg-Marquardt), and since the error contributions of all data are considered

simultaneously, the issue of data span is not as critical.

3.4.2 The influence of data span on fundamental matrix estimation

We have spent the bulk of this chapter on quantifying the ways in which large span minimal

subsets are weighted in OLS and TLS (or equivalently DLT) techniques to solving problems (or

computer vision problems in particular). What the results in previous sections show is that such

methods automatically weight large span minimal subsets accordingly. In approaches that rely

on using a fraction of the data to derive a model estimate (e.g., RANSAC), it is obvious that

to achieve statistical efficiency one needs to look towards preferring larger span samples than

smaller span ones (this is obvious as we acknowledged at the outset). However, as intuitive as

it is, it may be perhaps overlooked as we now illustrate. In the following illustration, we take

the fundamental matrix estimation algorithms of [21, 55] which require only a few number of

keypoint matches as an example and we show that the difference in the performance is likely

due to data span. This result appears not to have been known (at the very least not stated) by the

previous work of [21, 55].

Many keypoint detectors used in multi-view geometry are really 2D region detectors. Some

of the more common detectors are designed to detect affine invariant regions [49], including

the SIFT method [16]. This fact has been exploited in [21, 55] to reduce the minimum num-

ber of keypoint matches for yielding a fundamental matrix estimate, since two unique planar

correspondences contain the sufficient degrees of freedom.

In practice, these methods [21, 55] generate extra matches from the keypoint matches to make

up the required data for estimation. Given three keypoint matches, Chum et al. [21] generate two

extra matches per keypoint match, yielding in total nine keypoint matches. Given two keypoint

matches, Goshen and Shimshoni [55] generate three extra matches per keypoint match, produc-

ing eight keypoint matches. Henceforth, we call the two methods 2- and 3-point to highlight

the number of unique keypoint matches used. The premise behind these methods is that un-

der a sampling scheme for robust estimation (e.g., RANSAC), only two or three inliers (correct

correspondences) need to be sampled to get an all-inlier sample (instead of eight or nine inliers).

To generate the extra matches, the 2- and 3-point methods exploit the scale and orientation in-

formation output by keypoint detectors. In particular, the extra keypoints are produced within

the region (of size proportional to the scale) of the original keypoint; see Figure 3.5(a) for an

illustration of this idea. However, since the keypoint regions are usually small (e.g., see Fig-

ure 3.5(b)), the 2- and 3-point methods effectively limit the span of data used for estimation.
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Here, we compare these estimation methods against those that actually use 8 or 9 unique key-

point matches (which we respectively call 8- and 9-point methods in the following).

(a) Illustration of extra keypoints produced within a keypoint
region with orientation θ and width w

(b) Extra keypoints generated on one of the Barr-Smith image
pair in Figure 4.8

Figure 3.5: Extra keypoints generated by using the 2-point method [55]. Original keypoints are in ma-
genta while extra keypoints are in green.

On the Barr-Smith image pair in Figure 4.8, we detect and match SIFT keypoints [16] using

the VLFeat toolbox [81] and manually identify the correct correspondences (there are 75). The

keypoint coordinates are also normalised by using the method of [75]. We randomly draw

10,000 samples of sizes 2, 3, 8 and 9 over the set of 75 inliers. For each sample, a fundamental

matrix is estimated using DLT, where extra matches are produced for the 2- and 3-point methods

by following [21, 55]. We calculate the consensus size (for a tuned inlier threshold) and weight

for each sample, based on the following rules:

• For the 8- and 9-point methods, we simply compute the weight as |X(ν)TX(ν)|, where ν

indexes a subset of 8 or 9 rows sampled from the data matrix X ∈ Rn×8.

• For the 2- and 3-point methods, we calculate the weight as |X̄T X̄|, where X̄ contains a

subset of 2 or 3 rows sampled from X and the rows corresponding to the extra generated

matches.

We plot consensus size versus weight of the samples. Figure 3.6(a) contains the results of the 2-

and 8-point methods, while Figure 3.6(b) presents the results of the 3- and 9-point methods. We

separated these plots since the subset weights calculated from using 8 and 9 rows of data have

different units. For clearer comparisons, Figures 3.6(c) to 3.6(f) show the same results using

kernel density estimates of weight and consensus size.

From the results, we can see that the 2- and 3-point methods do have a tendency to produce

data with smaller span. Furthermore, there is a clear correlation between the subset span and

the quality of model estimate, indicating the danger posed by using data with small span for
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(b) Clusters of sampled subsets
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Figure 3.6: Performance comparison of fundamental matrix estimation algorithms. First column: 2- and
8-point methods. Second column: 3- and 9-point methods. Note that in (a)–(d), the horizontal (weight)
axis is in logarithmic scale.
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estimation. Goshen and Shimshoni [55] have experimentally shown that the model estimates

from the 2- and 3-point methods are usually inferior to those from the 8- and 9-point methods.

Our results conclusively show that this phenomenon is due, in a large part, to data span.

Note that another common estimation approach is the 7-point method [3]. In theory, F has only

7 degrees of freedom since it is homogeneous and only rank-2, thus 7 unique keypoint matches

are actually sufficient. However, the estimation of the 7-point method involves solving nonlinear

equations whereby the rank constraint is imposed during computation. This approach is unlike

the 2-, 3-, 8- and 9-point methods whose estimation (via DLT) is linear and where the rank

constraint is imposed afterwards. Therefore, we did not test the 7-point method from the aspect

of span. In any case, Goshen and Shimshoni [55] have shown that the 7-point method is usually

inferior to the 8- or 9-point methods (see [55, Figure 5]).

3.5 Summary

When sampling minimal subsets for robust geometric fitting, it is commonly known that obtain-

ing an all-inlier sample is not sufficient to guarantee a good model estimate; the points therein

should also have a large spatial coverage. We started this chapter by showing that a theoreti-

cal explanation for this principle lies in a result by Jacobi, where the least squares regression

estimate can be expanded as a weighted sum of all possible minimal subset estimates. It turns

out that the weight of a minimal subset estimate is a function of the span of the associated data

points. Our main contribution in this chapter is to show that an analogous minimal subset ex-

pansion can be developed for total least squares. We also highlighted the equivalence between

total least squares and the direct linear transformation, which is a common geometric estimation

technique in computer vision. Moreover, we studied the influence of data span on various fun-

damental matrix estimation algorithms. The results showed a clear correlation between the span

of data points used for estimation and the quality of model estimate.



Chapter 4

Large Span Sampling for Robust
Geometric Fitting

4.1 Introduction

The previous chapter provided a theoretical basis for large span sampling in robust geometric

fitting, and showed that the span of data points used for estimation is highly related to the quality

of model estimate. In Chapter 2, we reviewed a variety of guided sampling methods [20–23, 33–

37] which aim to accelerate the retrieval of all-inlier minimal subsets. However, none of those

methods actively searches for all-inlier samples with large span which are important to yielding

a good model estimate that fits the data well.

In this chapter, we first investigate the true performance of distance-based guided sampling that

is frequently employed to speed up the generation of all-inlier minimal subsets. In particular,

we highlight the danger posed by proximity sampling [33, 34] which actually limits the span of

all-inlier minimal subsets produced, and we explain why sampling based on distances alone is

not a generally reliable strategy for generating all-inlier samples with large span. Based on these

insights, we develop the main contribution of this chapter — a novel sampling algorithm which,

unlike previous approaches, consciously targets all-inlier minimal subsets with large span for

robust geometric fitting.

It is also vital to avoid degeneracies in robust geometric fitting, specifically, in two-view ge-

ometry estimation [82, 83] when some scenes contain a dominant plane on which most of the

keypoints lie. Degenerate parameters are estimated from a minimal subset containing entirely

keypoint matches from the dominant plane. Previous research efforts have tackled this issue by

detecting when a degenerate estimate is produced, then recovering from the degenerate estimate

53
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by using the plane-and-parallax method [82, 83]. Theoretically, degenerate minimal subsets cor-

respond to data with very small span or insufficient degrees of freedom. Since our new sampling

algorithm directly targets samples with large spatial extent, it actively prevents degeneracies; see

results in Section 4.3. Our sampling method can also be complemented with the degeneracy de-

tection and recovery techniques of [82, 83].

The rest of this chapter is organised as follows: Section 4.2 explains why naive distance-based

sampling fails as a strategy to maximise the span of all-inlier minimal subsets produced, and

presents our novel sampling scheme for all-inlier samples with large span. In Section 4.3, we

benchmark the effectiveness of our proposed method against state-of-the-art approaches on syn-

thetic and real datasets, and analyse the performance under degeneracies. We then summarise

this chapter in Section 4.4. The main content of this chapter is based on the author’s publication

in [65].

4.2 Guided sampling with large span

We develop in this section a new guided sampling algorithm that consciously seeks all-inlier

minimal subsets with large span for robust geometric fitting. Following Chapter 3, we focus on

the task of robust fundamental matrix estimation (see Section 3.4.1), and use minimal subsets of

size eight to avoid limiting the data span (see Section 3.4.2).

4.2.1 Distance-based sampling

First, we study the performance of distance-based guided sampling (Section 2.2.1.2) which

exploits distances between data points in the spatial domain to increase the chance of hitting

all-inlier minimal subsets. Given a set of keypoint correspondences X = {(ui,vi)}ni=1, the

keypoint coordinates are first normalised by using the method of [75]. The linearisation (3.48)

is then performed to yield the data matrix D, which we partition into [X y] ∈ Rn×9; see Sec-

tion 3.4.1. Note that each row of [X y] is a “datum”, which consists of dependent measurements

xi ∈ R8 and an independent measurement yi arising from the keypoint correspondence (ui,vi).

Distance-based guided sampling algorithms such as [33, 34] require a notion of distance be-

tween two data points. For example, NAPSAC [33] uses the Euclidean distance of the keypoint

coordinates prior to linearisation as

dij =
∥∥[pi qi p

′
i q
′
i]
T − [pj qj p

′
j q
′
j ]
T
∥∥ , (4.1)
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while the method of [34] simply uses the distance in the first view

dij =
∥∥[pi qi]

T − [pj qj ]
T
∥∥ . (4.2)

Here, to be consistent with our results in Section 3.3.1, we use the Euclidean distance of the

dependent measurement vectors as

dij = ‖xi − xj‖, (4.3)

since it is the span of the rows of the design matrix X that matter. In any case, we have verified

that using (4.3) gives similar results as (4.1) and better results than (4.2).

As discussed in Section 2.2.1.2, the inliers establish a lower dimensional manifold than the

outliers. In particular, for robust fundamental matrix estimation, the inliers lie on a 3D manifold

which can be parameterised by using the coordinates of the keypoint u in the first view and

the location of the corresponding keypoint v on the epipolar line l2 in the second view; see

Figure 3.3. By contrast, the outliers mostly spread over the 4D joint image space which is

modelled by using the coordinates of the keypoints u and v in both views. Due to this distinction

in dimensionality, some regions of the spatial domain are more densely populated by inliers, and

the inlier rates of these regions are thus higher than the global inlier rate of the set of all data.

Based on this observation, proximity sampling [33, 34] focuses on sampling neighbouring data

points within local regions to increase the probability of obtaining all-inlier minimal subsets.

Algorithm 4.1 summarises proximity sampling.

Figure 4.1(a) shows 100 synthetic point matches (inliers) arising from an underlying funda-

mental matrix generated by using Torr’s SfM Toolkit1, on top of which we add 100 uniformly

sampled outliers; in total n = 200 matches. To show the benefit of proximity sampling, we

calculate the percentage of inliers that are within a radius r of every inlier, where r is varied by

changing a multiplier k in

r =
k

n

n∑
i=1

min
j 6=i
‖xi − xj‖, (4.4)

i.e., r is k times the average nearest neighbour distance. Figure 4.1(b) shows the average inlier

rate within a radius r of all inliers. The results show that as k is small, the inlier rate is much

higher than the global inlier rate of 50%, and as k increases, the inlier rate decreases gradually

and approaches the global inlier rate. Note that when k = 1, within distance r there are only a

few data points, which makes the inlier rate lower than the highest inlier rate at k = 2. Moreover,

a randomly selected inlier is highlighted in Figure 4.1(c), where the data X are projected to 2D

using PCA for visualisation, and the set of data points within distance r of the chosen inlier is
1Obtained from http://cms.brookes.ac.uk/research/visiongroup/

http://cms.brookes.ac.uk/research/visiongroup/
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(a) Synthetically generated point matches with 100 inliers aris-
ing from an underlying fundamental matrix, and 100 outliers
sampled uniformly within the image domain.
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(b) The average inlier rate within a radius r of all inliers (r is
varied by changing a multiplier k as in (4.4)).
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(c) An inlier (highlighted with a square) is chosen as the first
datum for a minimal subset (the data X are projected to 2D using
PCA for visualisation).
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(d) Zoom-in of (d) showing data (circled) within a radius r of
the chosen inlier (r is 2 times the average nearest neighbour dis-
tance), and 10 out of 12 (83.3%) are inliers.

Figure 4.1: Proximity sampling for fundamental matrix estimation.

Algorithm 4.1: Proximity sampling

Input: Design matrix X = [x1 · · · xn]T , radius r.
1: d1 ← a row of X sampled randomly.
2: for j := 2, . . . ,m do
3: dj ← a row of X sampled based on the weights

P (xi) ∼ exp
(
−‖xi − d1‖2/2r2

)
. (4.5)

4: end for

identified in Figure 4.1(d), where r is 2 times the average nearest neighbour distance. Observe

that within distance r of the chosen inlier, the inlier percentage is 83.3%, which is much higher

than the global inlier percentage. Figure 4.2 shows the sampling weights (4.5) centred on the

chosen inlier in Figure 4.1(c), where r is also 2 times the average nearest neighbour distance. It

can be seen that inliers have a higher probability of being selected than outliers.

However, it is clear that proximity sampling does not encourage minimal subsets with large

span. One may use a larger radius r to increase the data span, but this change impacts the ability

to retrieve all-inlier samples. Figure 4.3 illustrates the effects of increasing r on the number of

all-inlier minimal subsets and maximum consensus (for a suitably tuned inlier threshold) achiev-

able within 300 iterations of Algorithm 4.1. These are median results over 100 synthetic data

generated à la Figure 4.1(a), and radius r is varied by changing a multiplier k as in (4.4). It can

be seen that as k increases, the ability to find all-inlier minimal subsets decreases exponentially,
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(a) Inlier weights
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Figure 4.2: Weights for the data in Figure 4.1(a) computed according to (4.5) (Algorithm 4.1) when it is
centred on the inlier chosen in Figure 4.1(c). The data are first sorted in increasing distance to the chosen
inlier. Radius r is 2 times the average nearest neighbour distance.
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Figure 4.3: Performance of proximity sampling and proximity sampling with offset as a function of
multiplier k (radius r).

without a commensurate increase in maximum consensus. Note that due to the possibility of

further refinement, it is not necessary for the algorithm to obtain all 100 inliers for yielding a

good model estimate. However, the algorithm still probably needs to achieve around 80% of

the inliers, but it can not obtain that. Moreover, in some cases where efficiency is important

and further refinement is not available, the algorithm should achieve as close as possible to 100

inliers to guarantee a satisfactory model estimate.

Instead of placing the mode of the sampling distribution on the first datum of the minimal subset,

one might suggest offsetting the distribution to favour data points that are farther away. This

method is summarised in Algorithm 4.2, which requires an extra offset parameter t. Ideally

t should be proportional to the maximum achievable span among all the inliers in the data.

We repeat the above experiment using Algorithm 4.2 for increasing k. The offset t is set as 2

times the average pairwise distance among the inlier portion of the data (this knowledge is not

available in practice). Figure 4.3 shows that the performance (median over 100 unique datasets)

of Algorithm 4.2 is not better than Algorithm 4.1. In fact the ability to retrieve all-inlier minimal

subsets is significantly decreased.
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Algorithm 4.2: Proximity sampling with offset

Input: Design matrix X = [x1 · · · xn]T , radius r, offset t.
1: d1 ← a row of X sampled randomly.
2: for j := 2, . . . ,m do
3: dj ← a row of X sampled based on the weights

P (xi) ∼ exp
(
−(‖xi − d1‖ − t)2/2r2

)
. (4.6)

4: end for
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(a) Inlier weights
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Figure 4.4: Weights for the data in Figure 4.1(a) computed according to (4.6) (Algorithm 4.2) when it is
centred on the inlier chosen in Figure 4.1(c). The data are first sorted in increasing distance to the chosen
inlier. Radius r is 2 times the average nearest neighbour distance, while offset t is 2 times the average
pairwise distance among all the inliers.

One might suspect that the offset t is not properly tuned. Figure 4.4 plots the weights (4.6) of

the data in Figure 4.1(a) with the inlier chosen in Figure 4.1(c) as the first datum. Again t is 2

times the average pairwise distance among all the inliers. Observe that the distribution favours

the inliers which are as far away as possible, i.e., t is optimal in this case (in the general case the

optimal offset is a priori unknown). However equally favoured are many outliers, rendering the

distribution ineffective in generating all-inlier minimal subsets.

Contrary to popular opinion, the results indicate that simple distance-based sampling can not be

relied upon to retrieve all-inlier minimal subsets with large span. For Algorithm 4.2 to work,

the inliers have to form a single tight cluster, a condition that can not be guaranteed in general

(cf. Algorithm 4.1 only requires that inliers are locally dense). In Section 4.3 we provide further

results on synthetic and real data that support the findings in this section.

4.2.2 Combining Multi-GS with distance-based sampling

We employ the recently proposed conditional sampling algorithm Guided Sampling for Multi-

Structure Model Fitting - Multi-GS (Section 2.2.1.4) as the basis of our new method. Instead

of analysing distances between data points as distance-based sampling, Multi-GS [36, 37] rep-

resents each datum using a preference and analyses data preferences to increase the chance of
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hitting all-inlier minimal subsets. Preferences (or rankings) have been widely used in our ev-

eryday lives. For example, for many prizes and awards such as the Nobel prize and Oscars

award, committee members are asked to rank nominated candidates based on their preferences,

and these preferences are then analysed for selecting recipients. Various nonparametric sta-

tistical methods [84, 85] have made use of preferences for analysing data since obtaining and

comparing preferences does not require any data-dependent knowledge. Based on this observa-

tion, Multi-GS has applied nonparametric analysis using preferences for solving the problem of

geometric fitting.

Preferences (or rankings) arise when judges evaluate a set of objects and rank them based on

their preferences. In Multi-GS, data points and model hypotheses are considered respectively as

judges and objects, and the preference of a datum towards a set of hypotheses is derived from

sorting its residuals (to the hypotheses) in ascending order, since the residual is essentially the

fitting error, i.e., the smaller the residual is, the better the datum fits the hypothesis. In particular,

let {β1, . . . ,βN} be a set of N model hypotheses generated thus far, and for each datum xi, its

residuals to the hypotheses are computed as

r(i) =
[
r

(i)
1 r

(i)
2 . . . r

(i)
N

]
, (4.7)

where r(i)
l = ‖yi − βlxi‖ is the residual of datum xi to hypothesis βl. The residuals are then

sorted in increasing order to yield the permutation

a(i) =
[
a

(i)
1 a

(i)
2 . . . a

(i)
N

]
, (4.8)

where r(i)

a
(i)
u

≤ r
(i)

a
(i)
v

, ∀ u < v. The permutation a(i) is called the preference of datum xi towards

the set of hypotheses {β1, . . . ,βN}. To examine the similarity/dissimilarity of data preferences,

the preference correlation between two data points xi and xj is defined as

f(xi,xj) =
1

h

∣∣∣a(i)
1:h ∩ a

(j)
1:h

∣∣∣ , (4.9)

where a
(i)
1:h are the first-h elements of a(i), and ∩ is set intersection. The bandwidth h is typically

set as d0.1Ne [36, 37]. Intuitively, the preference correlation (4.9) measures the degree of

overlaps among the top-h most preferred hypotheses of xi and xj .

In Multi-GS, preference correlations are employed to compute the conditional sampling weights

for generating all-inlier minimal subsets. Algorithm 4.3 summarises Multi-GS2. Figure 4.5

shows the pairwise matrix of preference correlation values for the data in Figure 4.1(a), based on
2Note that unlike Algorithms 4.1 and 4.2, Algorithms 4.3 and 4.4 update the sampling distribution (Step 5)

according to the data available so far in the minimal subset. This modification can also be done for Algorithms 4.1
and 4.2, e.g., by recentring (4.5) and (4.6) on the datum last sampled. However our experiments suggest that this
produces worse performance.
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Figure 4.5: Pairwise matrix of preference correlation values (4.9) for the data in Figure 4.1(a), where the
first-100 rows/columns correspond to inliers and the rest to outliers. The preferences are based on 150
fundamental matrix hypotheses.

Algorithm 4.3: Multi-GS

Input: Design matrix X = [x1 · · · xn]T , preferences {a(i)}ni=1 towards a set of model
hypotheses {βl}Nl=1.

1: d1 ← a row of X sampled randomly.
2: Initialise w = [f(x1,d1) . . . f(xn,d1)].
3: for j := 2, . . . ,m do
4: Sample a row dj from X based on the weights

P (xi) ∼ w(i). (4.10)
5: w = w � [f(x1,dj) . . . f(xn,dj)].
6: /* � means element-wise product.*/
7: end for

150 previously generated fundamental matrix hypotheses. It can be seen that inliers have higher

preference correlations than outliers. Figure 4.6 illustrates the sampling weights when (4.9) is

centred on the inlier chosen in Figure 4.1(c) (these would be taken from the row corresponding

to the chosen inlier in Figure 4.5). Observe that inliers generally have much higher sampling

weights than outliers. Moreover, this effect was achieved without having a model hypothesis in

{β1, . . . ,βN} fitted on an all-inlier minimal subset; see [36, 37] for details.

Although it does not favour all-inlier minimal subsets with small spatial extent (observe that the

inlier weights in Figure 4.6 are evenly distributed), Multi-GS does not explicitly aim for large

inlier span either. This fact is a source of inefficiency. Furthermore, the experiments in [36, 37]

only examined the ability of Multi-GS to retrieve all-inlier minimal subsets, and not the actual

quality of the fitted model hypotheses.
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Figure 4.6: Weights for the data in Figure 4.1(a) computed according to (4.9) (Algorithm 4.3) when it is
centred on the inlier chosen in Figure 4.1(c). The data are first sorted in increasing distance to the chosen
inlier. Preferences are induced from 150 previously generated fundamental matrix hypotheses.

We propose an extension to Multi-GS to rectify this inadequacy. Our idea is to combine Multi-

GS with distance-based sampling. Specifically, we multiply the preference correlations with the

distance-based distribution (4.6) to yield

P (xi) ∼ f(xi,d). exp
(
−(‖xi − d‖ − t)2/2r2

)
, (4.11)

where d is the current centre of the distribution (e.g., the datum previously added to the minimal

subset). Our method is summarised in Algorithm 4.4. Figure 4.7 illustrates the idea by multi-

plying the weights in Figures 4.6 and 4.4; the outlier weights are severely attenuated, while the

weights corresponding to inliers with maximum distances remain high.

A practical difficulty is determining the appropriate value for the offset t. In our experiments

we obtain t as 2 times the average pairwise distance among the consensus set of the model

hypothesis β∗, which has the largest consensus S∗ thus far, i.e.,

t =
4

|S∗|(|S∗| − 1)

∑
xi,xj∈S∗

‖xi − xj‖, (4.12)

where S∗ = {xi | xi ∈ X, r
(i)
∗ = ‖yi − β∗xi‖ ≤ θ}, and θ is the inlier threshold. The idea is

to iteratively gauge the maximum span based on the evidence available on-the-fly.

4.3 Experimental results

In this section we evaluate the performance of our proposed method (Algorithm 4.4, henceforth,

Multi-GS-Offset) on synthetic and real datasets. We benchmark Multi-GS-Offset against the

following state-of-the-art approaches:

1. Pure random sampling [18] (Random);
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Algorithm 4.4: Multi-GS with offset

Input: Design matrix X = [x1 · · · xn]T , preferences {a(i)}ni=1 towards a set of model
hypotheses {βl}Nl=1, radius r, offset t.

1: d1 ← a row of X sampled randomly.
2: Initialise w = [f(x1,d1) . . . f(xn,d1)].
3: for j := 2, . . . ,m do
4: Sample a row dj from X based on the weights

P (xi) ∼ w(i). exp
(
−(‖xi − dj−1‖ − t)2/2r2

)
. (4.13)

5: w = w � [f(x1,dj) . . . f(xn,dj)].
6: /* � means element-wise product.*/
7: end for
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Figure 4.7: Weights for the data in Figure 4.1(a) computed according to (4.11) (Algorithm 4.4) when it is
centred on the inlier chosen in Figure 4.1(c). The data are first sorted in increasing distance to the chosen
inlier. Radius r is 2 times the average nearest neighbour distance, while offset t is 2 times the average
pairwise distance among all inliers.

2. Proximity sampling [33, 34] (Proxim);

3. Proximity sampling with offset (Proxim-Offset);

4. Multi-GS [36, 37];

5. LO-RANSAC [20, 21];

6. Guided-MLESAC [22]; and

7. PROSAC [35].

As surveyed in Chapter 2, LO-RANSAC [20, 21] introduces the local exploitation steps, which

generate model hypotheses from the largest consensus obtained thus far. This method bears

some similarity with Multi-GS-Offset, which iteratively estimates the maximum span of the

inliers within the largest consensus received so far. State-of-the-art methods like PROSAC [35]

and Guided-MLESAC [22] employ the matching score information to bias the sampling process.

These matching scores are difficult to simulate realistically for synthetic data. Therefore, we

only evaluate PROSAC and Guided-MLESAC on real data.
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4.3.1 Stopping criterion

For all methods, we use the common RANSAC stopping criterion which estimates the number

of samples by using Equation (2.1). This stopping criterion requires an estimate of the outlier

ratio, which is progressively decreased based on the largest consensus found thus far. Although

this stopping criterion assumes pure random sampling, following [20–22, 33] we also apply it in

the guided sampling methods. Under guided sampling, the stopping criterion overestimates the

number of samples to retrieve. This does not necessarily mean that guided sampling will take

as long as pure random sampling, since guided sampling methods increase the consensus size

(hence decrease the outlier ratio) faster.

In theory, given a sufficient amount of time, any sampling method (including pure random sam-

pling) can obtain the maximum achievable consensus. An objective performance measure is

therefore how soon the method hits a sufficiently high consensus to satisfy the stopping crite-

rion. A lower run time thus reflects a higher accuracy in generating minimal subsets with good

model estimates. Consequently, we will use run time as the main benchmark in our experiments.

4.3.2 Synthetic data

We first test on synthetic data generated by using Torr’s SfM Toolkit; a sample of the synthetic

data is in Figure 4.1(a). For each data instance, a unique fundamental matrix is generated, from

which 100 inlying point matches are sampled and then contaminated with additive Gaussian

noise of standard deviation of 5 pixels. A number of outliers are created by randomly sampling

points in the image domain (500× 500 pixels). The points are normalised by using the method

of [75].

Parameter settings for all methods are as follows: Offset t for Proxim-Offset and Multi-GS-

Offset is computed as in (4.12), while radius r (used also in Proxim) is set as t/2. The inlier

threshold θ is set as 0.0005; this parameter is used in calculating the consensus size, the consen-

sus set in the local exploitation steps of LO-RANSAC, and in evaluating (4.12) for t. Finally,

for Multi-GS and Multi-GS-Offset, the preferences {a(i)}ni=1 are updated only after every 10

hypotheses; see [36, 37] for details.

We set the number of outliers as 50, 100, 150 and 200 (respectively, 33%, 50%, 60% and 67%

outlier rates). For each outlier rate we generate 100 unique data instances and run each method.

For each run we record the following measures:

1. The number of minimal subsets sampled;

2. The number of all-inlier minimal subsets sampled;
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3. The maximum and median span among all-inlier minimal subsets sampled, where the

span of a minimal subset λ is measured as |X(λ)|2;

4. The maximum consensus among all hypotheses;

5. The number of true inliers within the consensus set of the maximum consensus hypothe-

sis;

6. The classification error (number of mislabelled data points, i.e., inliers labelled as outliers

and vice versa) of the maximum consensus hypothesis;

7. The run time based on the common RANSAC stopping criterion.

Note that LO-RANSAC involves the local exploitation steps that generate larger-than-minimal

subsets (following [20, 21], the subset size for the local exploitation steps is 14). To allow all

sampled subsets from LO-RANSAC to be accounted for, we count a local exploitation subset as

a “minimal subset” so as to standardise notations. Furthermore, we also approximate the span

of a local exploitation subset ν as

max
λ
|X(λ|ν)|2, (4.14)

where λ ranges over all minimal subsets in ν, i.e., the largest span among all minimal subsets

within ν. Although (3.12) is theoretically more justified, the value from (4.14) is more useful

for comparisons with spans from other minimal subsets.

Table 4.1 illustrates the median results over 100 repetitions for each outlier rate. Note that

although only 100 inliers were generated, it is possible that a few randomly produced outliers

may align closely with the underlying model, thus contributing to consensus sizes above 100.

A common trend is that all methods deteriorate with the increase in outlier rates. The top-

3 methods are LO-RANSAC, Multi-GS and Multi-GS-Offset. At low outlier rates, the three

methods give comparable sampling accuracy, although Multi-GS and Multi-GS-Offset appear

to stop later due to their more involved computations. Nonetheless, as the outlier rate increases,

Multi-GS and Multi-GS-Offset become much faster than the other methods, indicating their

significant accuracy in sampling minimal subsets with good model estimates (see Section 4.3.1).

The crux of this chapter, however, is the maximisation of the span of all-inlier minimal subsets.

Table 4.1 shows that Multi-GS-Offset is the most successful in this respect, as it consistently

obtains all-inlier minimal subsets with the highest span. This result also translates into better

sampling accuracy and run time compared to the closest competitor (Multi-GS), which does not

deliberately maximise span.
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Table 4.1: Performance comparison of sampling algorithms on synthetic data. The best score on each
measure is bolded.

Data
Random Proxim Proxim LO-RAN Multi-GS Multi-GS

-Offset SAC -Offset

100 inliers
50 outliers

(33% outliers)

# min. subsets 268 326 248 211 252 232
# all-inlier min. subsets 10 13 8 23 101 90
Max. all-inlier span 1.58e0 4.93e-1 1.76e0 6.17e+1 8.01e0 7.33e+1
Med. all-inlier span 1.08e-2 5.67e-4 1.16e-2 7.08e-2 3.25e-2 1.97e-1
Max. consensus 93 90 94 100 99 100
# of true inliers 91 88 92 98 98 99
Classification error 11 14 10 4 3 2
Run time 0.41 0.59 0.43 0.28 0.76 0.73

100 inliers
100 outliers

(50% outliers)

# min. subsets 2395 2295 2319 1087 1031 929
# all-inlier min. subsets 7 11 7 14 255 252
Max. all-inlier span 5.68e-1 2.48e0 2.13e0 2.41e+1 3.84e+1 6.94e+1
Med. all-inlier span 1.71e-3 4.53e-3 3.22e-3 2.79e-2 2.94e-2 1.36e-1
Max. consensus 93 96 94 99 100 101
# of true inliers 88 92 91 96 97 99
Classification error 17 12 12 7 6 3
Run time 4.43 5.11 5.06 2.71 7.38 7.24

100 inliers
150 outliers

(60% outliers)

# min. subsets 11,339 13,425 10,256 5545 1056 934
# all-inlier min. subsets 5 10 6 12 116 120
Max. all-inlier span 5.97e-1 3.61e-1 7.27e-1 3.59e0 4.32e0 3.89e+1
Med. all-inlier span 1.63e-2 5.17e-3 1.89e-2 2.64e-2 2.90e-2 1.50e-1
Max. consensus 96 94 97 99 100 102
# of true inliers 91 89 92 96 97 99
Classification error 14 16 13 7 6 4
Run time 26.95 31.37 24.46 13.09 8.14 7.82

100 inliers
200 outliers

(67% outliers)

# min. subsets 46,622 51,694 62,870 36,527 1152 947
# all-inlier min. subsets 4 9 5 16 74 77
Max. all-inlier span 9.37e-2 5.61e-3 4.78e-4 5.92e0 7.40e0 1.90e+1
Med. all-inlier span 4.16e-3 9.94e-4 7.24e-5 3.16e-2 5.54e-2 2.08e-1
Max. consensus 95 94 92 97 98 100
# of true inliers 90 89 87 93 94 98
Classification error 15 16 18 11 10 4
Run time 115.75 126.89 156.47 92.37 16.15 14.53

4.3.3 Real data

We now test on real data. Given two views of a static scene, SIFT keypoints [16] are first detected

and matched across the views (using VLFeat toolbox [81]). These keypoint correspondences are

manually identified as true correspondences (inliers) and false correspondences (outliers). The

keypoint coordinates are also normalised by using the method of [75]. Parameter settings follow

from the experiments on synthetic data, except for inlier threshold θ which is manually tuned

for each dataset. The same threshold is given to all methods. SIFT matching scores are provided

for PROSAC and Guided-MLESAC.

The datasets used are shown in Figure 4.8. We use a subset of the publicly available real dataset

of [50], where the more difficult datasets (e.g., higher outlier rates, larger inlier noise magni-

tudes) are chosen (the methods perform similarly on the other easier datasets). Each method is
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(a) Physics, 58 inliers, 48 outliers (45% outliers) (b) Sene, 132 inliers, 118 outliers (47% outliers)

(c) Elder Hall, 133 inliers, 122 outliers (48% outliers) (d) Hartley, 123 inliers, 197 outliers (62% outliers)

(e) Napier, 112 inliers, 190 outliers (63% outliers) (f) Barr-Smith, 75 inliers, 166 outliers (69% outliers)

(g) Bonython, 52 inliers, 146 outliers (74% outliers) (h) Union House, 78 inliers, 254 outliers (77% outliers)

Figure 4.8: Real datasets used in the experiments. Features are detected and matched across the two
views using SIFT [16]. True matches (inliers) are in blue while incorrect matches (outliers) are in red
(correspondence lines are not drawn for clarity).

given 100 runs on each dataset. We record the same performance measures used in the synthetic

data experiments. Table 4.2 shows the median results over 100 runs. Due to space constraints

we omit the results from pure random sampling.

On datasets with low outlier rates, PROSAC and Guided-MLESAC are the fastest due to the

benefits of SIFT matching scores. On datasets with higher outlier rates (> 60%), the substantial

run time (and hence sampling accuracy) of Multi-GS and Multi-GS-Offset become apparent —

on the three hardest datasets, Multi-GS and Multi-GS-Offset are almost 6 times faster than the

other methods. In terms of maximising the span of all-inlier minimal subsets, it is clear that

Multi-GS-Offset is the most successful in all datasets. This allows it to achieve a faster run time

than Multi-GS.
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Table 4.2: Performance comparison of sampling algorithms on real data. The best score on each measure
is bolded.

Data
Proxim Proxim- LO-RAN Guided- PROSAC Multi-GS Multi-GS

Offset SAC MLESAC -Offset

P
hy

si
cs

(F
ig

ur
e

4.
8(

a)
)

# min. subsets 571 572 504 500 498 522 504

# all-inlier min. subsets 18 11 25 14 26 215 188

Max. all-inlier span 2.27e-7 2.40e-8 5.53-6 3.12e-6 1.34e-6 1.49e-5 2.46e-5

Med. all-inlier span 3.37e-10 4.78e-11 5.88e-8 4.25e-8 2.90e-8 1.57e-6 2.90e-6

Max. consensus 58 58 59 59 59 60 60

# of true inliers 56 56 57 57 57 58 58

Classification error 4 4 3 3 3 2 2

Run time 0.89 0.91 0.70 0.70 0.68 1.85 1.81

Se
ne

(F
ig

ur
e

4.
8(

b)
)

# min. subsets 614 666 564 562 559 652 615

# all-inlier min. subsets 8 5 31 48 143 206 185

Max. all-inlier span 1.51e-8 5.76e-7 1.28e-6 1.85e-6 3.75e-6 1.35e-6 8.75e-5

Med. all-inlier span 2.07e-11 1.13e-10 5.32e-9 8.13e-8 9.29e-8 1.45e-7 3.39e-6

Max. consensus 133 133 134 134 134 134 135

# of true inliers 129 130 130 131 131 131 132

Classification error 7 5 6 4 4 4 3

Run time 1.67 1.77 1.43 1.42 1.39 5.30 5.12

E
ld

er
H

al
l

(F
ig

ur
e

4.
8(

c)
) # min. subsets 662 675 595 592 589 630 585

# all-inlier min. subsets 9 4 26 44 143 188 172

Max. all-inlier span 7.12e-9 6.13e-10 2.82e-7 4.22e-7 1.30e-6 4.62e-7 4.91e-5

Med. all-inlier span 1.52e-11 2.40e-12 2.26e-8 3.24e-8 1.14e-7 1.19e-8 1.37e-6

Max. consensus 132 131 132 132 132 132 134

# of true inliers 127 126 128 131 131 131 133

Classification error 11 12 9 3 3 3 1

Run time 1.90 1.93 1.68 1.60 1.56 6.20 5.71

H
ar

tle
y

(F
ig

ur
e

4.
8(

d)
)

# min. subsets 4078 4325 3632 3850 3848 474 446

# all-inlier min. subsets 5 2 15 19 66 84 79

Max. all-inlier span 9.39e-9 4.53e-10 4.15e-7 3.81e-7 5.56e-7 7.36e-7 2.47e-6

Med. all-inlier span 1.11e-10 2.31e-12 1.02e-8 1.13e-8 2.48e-8 4.04e-7 1.07e-6

Max. consensus 127 127 128 128 128 128 129

# of true inliers 118 118 120 121 121 121 123

Classification error 14 14 11 9 9 9 6

Run time 12.92 14.02 11.67 12.47 12.22 3.73 3.67

N
ap

ie
r

(F
ig

ur
e

4.
8(

e)
)

# min. subsets 15,277 13,145 6491 7409 8774 724 688

# all-inlier min. subsets 7 4 18 12 16 119 107

Max. all-inlier span 4.62e-7 7.48e-7 5.98e-6 1.46e-6 9.71e-6 9.92e-6 5.15e-5

Med. all-inlier span 8.77e-11 4.55e-10 1.75e-8 2.59e-9 6.35e-8 7.51e-8 8.31e-7

Max. consensus 112 114 119 118 119 120 121

# of true inliers 104 106 110 109 110 111 112

Classification error 16 14 11 12 11 10 9
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Table 4.2: continue from the previous page.

Data
Proxim Proxim- LO-RAN Guided- PROSAC Multi-GS Multi-GS

Offset SAC MLESAC -Offset

Run time 44.39 38.54 18.35 21.19 24.26 6.45 5.90

B
ar

r -
Sm

ith
(F

ig
ur

e
4.

8(
f)

) # min. subsets 47,453 54,462 42,178 39,423 38,578 639 583

# all-inlier min. subsets 8 5 24 19 22 85 88

Max. all-inlier span 2.42e-10 4.19e-11 6.09e-8 7.25e-8 8.86e-8 1.21e-7 2.84e-7

Med. all-inlier span 6.22e-11 8.82e-12 5.15e-9 6.07e-9 6.89e-9 3.29e-8 7.23e-8

Max. consensus 76 75 78 78 78 79 80

# of true inliers 71 70 72 73 73 74 75

Classification error 9 10 9 7 7 6 5

Run time 80.45 91.87 70.75 66.18 64.53 4.28 4.09

B
on

yt
ho

n
(F

ig
ur

e
4.

8(
g)

)

# min. subsets 462,871 470,628 330,352 394,366 388,741 830 713

# all-inlier min. subsets 7 5 33 21 35 113 118

Max. all-inlier span 5.92e-15 1.12e-15 5.35e-13 7.82e-14 8.77e-14 9.35e-13 1.62e-11

Med. all-inlier span 2.89e-17 1.25e-17 3.09e-15 3.37e-16 4.59e-16 4.01e-15 4.94e-13

Max. consensus 47 47 49 48 48 49 51

# of true inliers 44 43 46 46 46 47 50

Classification error 11 13 9 8 8 7 3

Run time 911.32 927.68 650.64 778.16 765.29 5.48 5.19

U
ni

on
H

ou
se

(F
ig

ur
e

4.
8(

h)
)

# min. subsets 374,852 415,178 307,632 286,186 277,379 696 584

# all-inlier min. subsets 5 4 17 26 48 73 76

Max. all-inlier span 6.31e-13 2.05e-13 4.41e-12 9.22e-12 7.83e-11 1.47e-9 4.32e-9

Med. all-inlier span 7.28e-15 3.13e-15 2.83e-14 6.19e-14 5.35e-13 1.39e-11 9.61e-10

Max. consensus 81 80 83 84 84 85 86

# of true inliers 73 72 74 75 75 76 78

Classification error 13 14 13 12 12 11 8

Run time 1096.52 1213.76 900.35 837.74 811.72 6.98 5.51

4.3.4 Performance under degeneracies

We also examine the benefits of sampling with large span for avoiding degeneracies. For the

8-point fundamental matrix estimation algorithm, a degenerate estimate is obtained when more

than six keypoint matches among eight in the minimal subset lie on the same plane. This case

occurs frequently when there exists a dominant plane in the scene [82, 83]. Theoretically, a

degenerate minimal subset has a very small span or insufficient degrees of freedom (|X(λ)| is

close to zero). It is crucial for sampling methods to avoid degenerate minimal subsets.

We follow the experimental methodology of [37]. Scenes with two large planes are chosen,

specifically Sene in Figure 4.8 and Dinobooks in [37]. We detect and match SIFT keypoints

which we then manually categorise into inliers and outliers. On each dataset, we keep the
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(a) Sene, Set A: 86 inlier matches (blue), Set B: 46 inlier
matches (magenta), and 118 outlier matches (red).

(b) Dinobooks [37], Set A: 49 inlier matches (blue), Set B:
29 inlier matches (magenta), and 155 outlier matches (red).

Figure 4.9: Image pairs of a static scene (thus supporting one fundamental matrix structure) where the
inlier matches lie on two distinct planes.

outliers and separate the inliers into two sets (Set A and Set B) based on the plane on which

they lie; see Figure 4.9. We then create different levels of degeneracies by maintaining Set A

(the dominant plane inliers) while controlling the number of inliers in Set B (the “off-plane”

inliers). This yields the ratio between the dominant plane inliers and the total inliers as

γ = |Set A|/(|Set A|+ |Set B|). (4.15)

First, we focus on comparing Multi-GS and Multi-GS-Offset. The ratio γ is fixed at 0.7, and

for each method, 10,000 minimal subsets are drawn from the set Set A ∪ Set B. The distribu-

tions (obtained via kernel density estimation) of the weights |X(λ)|2 and consensus sizes of the

minimal subsets are illustrated in Figure 4.10. Observe that in both datasets, the consensus size

distributions of Multi-GS tend to peak at |Set A|, indicating that Multi-GS tends to fit the dom-

inant plane — this trend has been observed in [37]. In contrast, the peak of the consensus size

distributions of Multi-GS-Offset is close to |Set A ∪ Set B|, indicating that Multi-GS-Offset is

more capable of capturing all of the inliers in the scene. This result represents a clear evidence

of the ability of Multi-GS-Offset to avoid degeneracies by sampling minimal subsets with large

span.

Next, we analyse with different levels of degeneracies. The ratio γ is varied within [0.7, 0.9], For

each γ, 100 instances of the data are generated; here, besides Set A and Set B we also include

all the outliers. Each sampling method in Section 4.3 is invoked using the common RANSAC

stopping criterion. We record the number of all-inlier minimal subsets, and the number of non-

degenerate all-inlier minimal subsets achieved — the latter is calculated by checking the plane

on which each inlier lies. Figure 4.11 shows the median results of Multi-GS and Multi-GS-

Offset, with Random also included as the baseline (the performances of the other methods are

significantly worse than Multi-GS and Multi-GS-Offset, so we did not plot them in the figure).

Expectedly all methods deteriorate with the increase in γ, since this entails the increase in out-

lier rates. Although obtaining fewer all-inlier minimal subsets than Multi-GS, Multi-GS-Offset

achieves more non-degenerate all-inlier minimal subsets; see the dashed lines in Figures 4.11(a)
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(d) Distribution of consensus sizes

Figure 4.10: Performance comparison of Multi-GS and Multi-GS-Offset on degenerate configurations
with γ = 0.7. Row 1: Sene, Row 2: Dinobooks. Note that in (a) and (c), the horizontal (weight) axis is
in logarithmic scale.

and 4.11(c). This naturally leads to a higher percentage of non-degenerate all-inlier samples

over all-inlier samples produced; see Figure 4.11(b) and 4.11(d). Note that since Random hits

very few all-inlier minimal subsets, its percentage of non-degenerate all-inlier minimal subsets

is sometimes high by chance.

4.4 Summary

The previous chapter presented a theoretical basis for large span sampling in robust geomet-

ric fitting, and suggested that sampling all-inlier minimal subsets with large span is important

to yielding a satisfactory model estimate. Our main contribution in this chapter is to develop

a novel guided sampling algorithm that can retrieve all-inlier minimal subsets with large span

for robust geometric fitting. We showed that simple distance-based sampling is not effective

for seeking all-inlier samples with large span. In contrast, our proposed algorithm consciously
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(a) Number of all-inlier minimal subsets (solid lines) and non-
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(b) Percentage of non-degenerate all-inlier minimal subsets.
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(c) Number of all-inlier minimal subsets (solid lines) and non-
degenerate all-inlier minimal subsets (dashed lines).
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(d) Percentage of non-degenerate all-inlier minimal subsets.

Figure 4.11: Performance comparison of sampling algorithms on degenerate configurations with γ ∈
[0.7, 0.9]. Row 1: Sene. Row 2: Dinobooks.

targets minimal subsets with large span without a decreased accuracy in finding all-inlier sam-

ples. This also permits an ability to avoid sampling degenerate minimal subsets. The significant

performance of our proposed method is demonstrated on synthetic and real datasets.





Chapter 5

Outlier Rejection in Deformable
Registration with RANSAC

5.1 Introduction

So far we have discussed various methods for robust geometric fitting, where the geometric

model of interest has a fixed number of degrees of freedom; and sampling and testing model hy-

potheses from minimal subsets is often employed in dealing with outliers. The last two chapters

provided a theoretical basis and algorithmic solution to the problem of maximising the span of

all-inlier minimal subsets for robust geometric fitting.

In this chapter, we depart from robust geometric fitting and focus on robust deformable regis-

tration. Similar to robust geometric fitting, an important part of robust deformable registration

is to tackle outliers. If no outliers exist, estimating the deformable model of interest is trivial,

e.g., by solving a linear system for a TPS warp [24]. As illustrated in Figure 1.2, common sense

suggests that the correspondence manifold is of unknown and varying complexity, and hence

the size of a minimal subset can not be determined. This assumption precludes the application

of standard robust geometric fitting techniques for outlier rejection in deformable registration.

As we can see from our survey in Chapter 2, most of the current approaches that are capable

of outlier rejection in deformable registration [27, 29, 30, 38–42] represent the correspondence

manifold by using fully nonlinear models, and employ iterative optimisation procedures whose

success depends critically on good parameter initialisations.

This chapter explores the use of standard robust geometric fitting techniques such as RANSAC

for a simple outlier rejection method in deformable registration. We introduce a surprising

view that, in practice, the scale of errors of the mismatches (outliers) is orders of magnitude

larger than the effects of the curvature of the correspondence manifold containing the correct

73
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(a) Template (b) Input image
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(c) Keypoint correspondences from (a) and (b) plotted us-
ing the first-3 principal components.
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(d) Another view of (c) with the fitted hyperplane shown
in its “side view”.

(e) TPS estimated using keypoint matches lying within the
hyperplane bounds in (d).

(f) TPS estimated using the true correspondences identi-
fied manually.

Figure 5.1: Robust deformable registration using RANSAC. In (a) and (b), true matches (inliers) are in
green while incorrect matches (outliers) are in red (correspondence lines are not drawn for clarity).

matches (inliers). Figure 5.1 illustrates what we mean, with images showing a bending sheet

of paper — this kind of data is typically used in the literature, e.g., see [29, 30, 42]. SIFT [16]

is first invoked on the template (Figure 5.1(a)) and input image (Figure 5.1(b)) to yield a set

of keypoint correspondences X = {xi}ni=1 with xi = [xi yi x
′
i y
′
i]
T ∈ R4, i.e., point [xi yi]

T

in the template is matched with point [x′i y
′
i]
T in the input image. Projecting the data onto the

first-3 principal components reveals that the inliers are actually distributed compactly on a 2D

affine hyperplane, relative to the gross errors of the outliers; see Figures 5.1(c) and 5.1(d). This

means that we can robustly fit a linear hyperplane onto the data to dichotomise the inliers and

outliers; Figure 5.1(e) shows the TPS warp estimated using the keypoint matches returned by
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Figure 5.2: Data remaining after RANSAC, shown in the “local” scale of the manifold.

RANSAC, which models the underlying deformations quite well. As we show later, this is the

characteristic of many realistic physical deformations examined in the literature.

Our observation motivates the conclusion that, for many types of deformations, a linear hy-

perplane is adequate to model the correspondence manifold for outlier rejection in deformable

registration. After the outliers are removed, a fully nonlinear warp (e.g., a TPS warp) can be

fitted easily on the remaining inliers to achieve the registration result. Most outliers that remain

after outlier rejection (i.e., false positives) are relatively benign rather than outright mismatches,

and can usually be smoothened out by the warp’s regulariser; see Figure 5.2. Observe that the

TPS in Figure 5.1(e) is very similar to the “ground truth” TPS in Figure 5.1(f) estimated using

only the true inliers1.

In a sense our observation is not surprising, since PROSAC has been used as preprocessing

to remove egregious mismatches and provide affine initialisations for warp estimation in [30]

(although it was not used in [29, 38], there are few obstacles to initialise with PROSAC there);

see Section 2.3.2.1. However, it has always been assumed that due to the unknown complexity of

the inlier distribution, significant outliers will remain and it is vital to further optimise the warp

robustly, e.g., by a deterministic annealing procedure. Our aim is to show that such procedures

overestimate the difficulty of the data, and basic RANSAC followed directly by (non-robust)

warp estimation is sufficient.

The main content of this chapter is based on the author’s publication in [86]. The rest of this

chapter is organised as follows: Section 5.2 describes our observation of the approximately

linear correspondence manifold. We then present in Section 5.3 our RANSAC-based approach

to outlier rejection in deformable registration. Section 5.4 evaluates the performance of our
1It is worth noting that without further pixel-based refinement [42], warps estimated from keypoint matches alone

can not extrapolate well to correspondence-poor or occluded regions; see the bottom right corner of Figure 5.1(f).
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method on synthetic and real datasets, and investigates its application in retexturing deformable

surfaces. Finally, we draw conclusions in Section 5.5.

5.2 The correspondence manifold

Radial basis function (RBF) warps have been applied extensively to model the deformations of

various kinds of deformable objects [24]. For deformations of 2D image features, it is common

to use two separate RBF components fx, fy that share the same centres {ck}Kk=1 as

fx : [x y]T 7→ x′ = aT1 [x y 1]T + wT
1 l(x, y)

fy : [x y]T 7→ y′ = aT2 [x y 1]T + wT
2 l(x, y)

, (5.1)

where l(x, y) is a lifting function containing the centres

l(x, y) =
[
φ(‖[x y]T − c1‖) φ(‖[x y]T − c2‖) . . . φ(‖[x y]T − cK‖)

]T
, (5.2)

and φ(·) is the RBF, e.g., Gaussian or TPS [24]. Given a set of keypoint matches X =

{(ui,vi)}ni=1, the centres are taken as {ui}ni=1. Learning an RBF warp (5.1) involves estimat-

ing the affine parameter vectors a1,a2 and the coefficient vectors w1,w2 with regularisation to

control the warp’s bending energies νx, νy, where νx, νy denote the bending energies of fx, fy
respectively. For a TPS warp, the solution can be achieved by solving a linear system [24].

By regarding each keypoint correspondence as a single point xi = [xi yi x
′
i y
′
i]
T ∈ R4, it can be

shown that X = {xi}ni=1 are samples from a smooth manifold [40]. Furthermore, the manifold

is 2D due to the two degrees of freedom of xi and yi. Assuming that the underlying warp is a

TPS warp, we can express each point on the manifold as

xi =


1 0

0 1

a11 a12

a21 a22


[
xi

yi

]
+


0

0

a13

a23


︸ ︷︷ ︸

2D affine subspace

+


0

0

wT
1 l(xi, yi)

wT
2 l(xi, yi)


︸ ︷︷ ︸
Nonlinear deviation

, (5.3)

where apq is the q-th component of the p-th affine parameter vector. In other words, the corre-

spondence manifold “undulates” around a 2D affine subspace, and the deviation of each xi from

the subspace is due to the data-dependent nonlinear terms wT
p l(xi, yi).

Since outliers invariably appear in X , the task is thus to robustly estimate the mapping function.

Let X be divided into an inlier set I and outlier set O. Our premise is that the deviations of

I from the affine component of the correspondence manifold are quite small compared to the
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Figure 5.3: Distribution of distances of the keypoint matches in Figures 5.1(a) and 5.1(b) to the RANSAC-
fitted 2D affine hyperplane in Figure 5.1(d).

distances of O. To illustrate this point, Figure 5.3 plots the distribution of orthogonal distances

of the keypoint matches in Figures 5.1(a) and 5.1(b) to the RANSAC-fitted 2D affine hyper-

plane in Figure 5.1(d). It is apparent that a clear separation exists between the inlier and outlier

distribution.

5.3 Outlier rejection as robust hyperplane fitting

Our observations suggest that RANSAC (Section 2.2) is sufficient for outlier rejection in de-

formable registration. The goal of our RANSAC-based approach is to robustly fit a 2D affine

subspace onto the dataX . An estimate of the affine subspace can be derived from a minimal sub-

set of three data points randomly sampled from X (recall that each datum xi = [xi yi x
′
i y
′
i]
T ∈

X is a particular keypoint correspondence). Let S = [xs1 xs2 xs3 ] ∈ R4×3 be a randomly

drawn minimal subset with the data concatenated horizontally. First, the mean of the sample µS

is subtracted from each column to yield Ŝ, whose the first-2 left singular vectors AŜ ∈ R4×2 are

then obtained. The pair (µS,AŜ) is sufficient to characterise the affine subspace. The residual

of each datum xi is defined as its orthogonal distance to the fitted subspace

d(xi|µS,AŜ) =
∥∥∥xi − [AŜAT

Ŝ
(xi − µS) + µS

]∥∥∥ . (5.4)

Following Section 2.2, RANSAC iteratively generates a set ofN 2D affine subspace hypotheses,

where each hypothesis is fitted on a randomly drawn minimal subset of data. The consensus of a

hypothesis is the number of data with residuals less than a threshold θ from the associated affine

subspace, and the hypothesis with the maximum consensus is returned for outlier rejection. The

inliers of the best hypothesis are then used to estimate the TPS warp for aligning the images.

A crucial parameter in RANSAC is the threshold θ. Firstly, to allow the use of a constant θ for

all datasets, we normalise the data such that the centroid of {ui}ni=1 lies at the origin and the

mean distance of all points to the origin is
√

2 (the same normalisation is applied on the points

{vi}ni=1) [75]. The threshold parameter is then manually tuned and used for input images. Note
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that an equivalent threshold on the error is also required in the other methods [27, 29, 30, 38–42];

see Section 2.3.2.

A second important parameter is the number of samples N . Following the common stopping

criterion of RANSAC, N is estimated by using Equation (2.1) with the minimal subset size

m = 3. For instance, for the probability of success α = 0.99 and the outlier ratio ε = 0.5 (50%

outliers), the predicted number of samples N is approximately 35. In practice, the required

number of samples is much larger than the predicted N . In our experiments, we consistently set

N = 100 for all datasets; as we show in Section 5.4 our method is still at least as accurate as

current approaches.

The threshold θ can be estimated automatically by using scale estimation techniques or the

number of samples N can be reduced by using guided sampling methods. However, these

options are considered as future directions since our intent is not to complicate the message of

this chapter (i.e., a simple outlier rejection method for deformable registration). We will discuss

these directions of future work in Section 7.2.

5.4 Experimental results

5.4.1 Synthetic data

We first test the performance of RANSAC (Section 5.3) on synthetic data. In the following,

we describe the procedure for generating synthetic data, and then benchmark RANSAC against

current approaches for outlier rejection in deformable registration.

5.4.1.1 Data generation

A rectangular mesh is created with control points (TPS centres) distributed on a grid. Using

the control points, a TPS warp is randomly generated following the method proposed in [87].

Inliers are produced by randomly sampling 100 positions on the template mesh and mapped

using the synthesised warp. The mapped points are then perturbed with additive Gaussian noise

of standard deviation of 5 pixels. We cover the warped mesh with the smallest rectangular hull,

which is then surrounded by a margin of d pixels to construct the input “image”. This yields the

ratio between the areas of the added margin and the entire input “image” as

rd = (AI −AR)/AI , (5.5)

where AR and AI are respectively the areas of the rectangular hull containing the warped mesh

and the input “image”. We then randomly sample positions on the template and input “image”
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(a) Template mesh

margin d

rectangular hull

(b) Input “image”

Figure 5.4: Example of a synthetically generated TPS warp.

to form outliers. Figure 5.4 shows an example of data generated in this manner, with rd = 0.68

(d = 150 pixels) and ε = 0.5 (50% outliers).

Parameter ν in the random warp generator controls the warp’s bending energies (see [87] for

details). We use the same bending energies for both components fx, fy of the synthesised warp,

i.e., νx = νy = ν. The effects of different values of ν are illustrated in Figure 5.5 (in all these

images, rd = 0.68 and ε = 0.5). Observe that for ν ≥ 2.0 the mesh is deformed seriously with

self-occlusions. Note that this does not affect our experiments, since our synthetic keypoints will

not be occluded or “unmatched”. Our purpose is to highlight that the deformations synthesised

are visually highly nonlinear.

5.4.1.2 Comparison of methods

We benchmark RANSAC (Section 5.3) against state-of-the-art outlier rejection methods for

deformable registration: Iterative local smoothness test [42, Section 3] and SVM regression

with resampling [27]. We also compare against the class of Annealed M-estimation meth-

ods [29, 30, 38, 39]; since these methods are comparable in accuracy, it is sufficient to compare

against [30] which offers the most efficient algorithm. Note that [29, 30, 38, 39] can simulta-

neously optimise the warp and identify outliers; here we concentrate on the aspect of outlier

rejection/identification; see Section 2.3.2.

The ROC curve of each method is obtained by varying the threshold parameter and recording

the resultant true positive rate (number of true inliers recovered over all true inliers) and false

positive rate (number of true outliers misidentified as inliers over all true outliers). We set

ν = 0.5, 1.0, 2.0 and 5.0, and for each ν, the outlier rate ε is set as 0.33 and 0.5 (in all these

cases, the margin ratio rd = 0.68). For each combination of ν and ε, 100 random (and distinct)

TPS warps are generated, and the ROC curves for each method are averaged over the 100 warps.

Figure 5.6 presents the results.
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(a) νx = νy = ν = 0.5 (b) νx = νy = ν = 1.0

(c) νx = νy = ν = 2.0 (d) νx = νy = ν = 5.0

Figure 5.5: Examples of warped meshes using randomly generated TPS warps with increasing bending
energies.

ε = 0.33 (total 150 matches) ε = 0.5 (total 200 matches)

RANSAC 0.04 0.04

Local smoothness [42] 0.26 0.29

SVM regression [27] 0.06 0.09

Annealed M-estimation [30] 1.15 0.29

Table 5.1: Average run time (in seconds) for outlier rejection on synthetic data.

An apparent and expected trend is that as ν and ε increase, the accuracies of all methods de-

crease, with the method of [27] deteriorating the fastest, followed by [42]. The other two

methods, Annealed M-estimation [30] and RANSAC, provide very comparable accuracies. The

strength of RANSAC, however, lies in its simplicity and efficiency. Table 5.1 presents the aver-

age running time of all methods for ε = 0.33 and 0.5, where RANSAC is clearly the fastest —

all methods were implemented and run in Matlab, while the subroutines svmtrain, svmpredict

in [27] and selectentries in [30] were implemented in C++2. The major factors affecting the

speed of RANSAC are the outlier rate ε and the minimal subset size m — since only three data

are required for a minimal solution, RANSAC can tolerate large ε’s without significant sampling

efforts. On the other hand, the algorithms of [27, 30, 42] are more complicated and their run

times scale faster with the data size.
2Code of all methods can be obtained from http://cs.adelaide.edu.au/˜huy/

http://cs.adelaide.edu.au/~huy/
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(a) ν = 0.5, ε = 0.33
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(b) ν = 0.5, ε = 0.5
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(c) ν = 1.0, ε = 0.33
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(d) ν = 1.0, ε = 0.5
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(e) ν = 2.0, ε = 0.33
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(f) ν = 2.0, ε = 0.5
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(g) ν = 5.0, ε = 0.33
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(h) ν = 5.0, ε = 0.5

Figure 5.6: Outlier rejection results on synthetic data.
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Sequence name Bedsheet Tshirt Cushion

Frame number 140 160 178 407 720 784 160 175 190

RANSAC 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

Local smoothness [42] 0.26 0.29 0.28 0.21 0.17 0.19 0.28 0.26 0.22

SVM regression [27] 0.06 0.06 0.08 0.06 0.04 0.05 0.12 0.10 0.06

Annealed M-estimation [30] 0.13 0.15 0.33 0.17 0.14 0.13 0.31 0.24 0.17

Table 5.2: Average run time (in seconds) for outlier rejection on real data.

5.4.2 Flat surface deformations

We now test our method (Section 5.3) on real images. We used the publicly available image se-

quences previously used for nonrigid structure from motion (e.g., see [64]). In this experiment

we chose three representative frames from the three hardest sequences (Bedsheet, Tshirt and

Cushion) as input images for outlier rejection. A subimage which encapsulates a large portion

of the surface was cropped from the first image of each sequence to form the template image;

see Figure 5.7. SIFT [16] was first invoked on the images to produce keypoint correspondences,

which we then manually categorised as true inliers and outliers. For RANSAC, 100 repeti-

tions were performed on each input image and the average results (ROC curves) are reported.

Figures 5.8, 5.9 and 5.10 illustrate the results.

(a) Bedsheet (b) Tshirt (c) Cushion

Figure 5.7: Templates of the Bedsheet, Tshirt and Cushion sequences.

The low-dimensional visualisations of all data show that again, relative to the outliers, the inliers

are distributed compactly within a 2D affine hyperplane. Based on the ROC curves, a similar

conclusion can be made on the accuracy of outlier rejection, i.e., Annealed M-estimation [30]

and RANSAC are the most accurate, followed by Iterative local smoothness test [42]3 and SVM

regression with resampling [27]. The run times of all methods are depicted in Table 5.2. Again,

RANSAC is the fastest method, with almost constant run times across all images.

The data in which the gap in accuracy between Annealed M-estimation [30] and RANSAC is the

largest is Frame 190 of Cushion (Figure 5.10). In the next section we investigate the practical

difference due to this disparity in accuracy. We provide outlier rejection results on all frames of

the sequences (and on other sequences) at http://cs.adelaide.edu.au/˜huy/.
3The non-monotonicity of the ROC curve of [42] is most likely due to using an iterative method. Similar curves

were observed in [42].

http://cs.adelaide.edu.au/~huy/
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Figure 5.8: Outlier rejection results on Frame 140 (145 matches, 41.38% outliers), Frame 160 (152
matches, 31.58% outliers) and Frame 178 (196 matches, 19.90% outliers) from the Bedsheet sequence.
Column 1: SIFT matches. Column 2: Data after PCA. Column 3: ROC curves.

5.4.3 Retexturing deformable surfaces

We also investigate the application of our method in retexturing deformable surfaces. Fig-

ures 5.11, 5.12 and 5.13 provide the comparison results of the two best performing methods in

the previous section. The warps for the meshes (for images used in Section 5.4.2) are obtained

by first using RANSAC and Annealed M-estimation [30] to remove outliers, and then using the

remaining matches to estimate a TPS warp. The ground truth warp is obtained by estimating a

TPS warp using only true inliers. The threshold value for RANSAC and Annealed M-estimation

is optimised using the ROC curves in Section 5.4.2. Note that Annealed M-estimation can jointly

identify outliers and estimate warps, however to yield comparable parameters (a different kind

of warp and bending energy are used in [30] — see Section 2.3.2.1) we simply estimate a TPS

warp using the inliers returned.

Both methods yield very close results to the ground truth, including Frame 190 of Cushion in

which the disparity in outlier rejection accuracy between RANSAC and Annealed M-estimation
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Figure 5.9: Outlier rejection results on Frame 407 (154 matches, 19.48% outliers), Frame 720 (127
matches, 18.90% outliers) and Frame 784 (136 matches, 19.85% outliers) from the Tshirt sequence.
Column 1: SIFT matches. Column 2: Data after PCA. Column 3: ROC curves.

is the largest (see Row 3 of Figure 5.10). As mentioned in Section 5.1, false positives pro-

duced by RANSAC are normally benign outliers which can be smoothened out by the warp’s

regulariser.

We further compute the goodness of each estimated warp as the number of vertices in the warped

mesh which are within 3 pixels away from the corresponding vertices in the ground truth mesh.

The results in Table 5.3 show that on several images Annealed M-estimation is better than

RANSAC in this measure — however, [30] imposes local smoothness constraints which help

to “pin down” the position of each vertex relative to the others and this is beneficial for the

goodness measure. This additional information is not provided to RANSAC. In any case, as

shown in Figures 5.11, 5.12 and 5.13, the practical differences between the two methods are

minuscule.

A general problem for feature-based methods however is the lack of keypoint correspondences

in certain areas of the surface. To deal with this issue, we track and propagate features in an

image sequence. First, the template is divided into rectangular regions (e.g., 5 × 5 grid). If the
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Figure 5.10: Outlier rejection results on Frame 160 (234 matches, 10.68% outliers), Frame 175 (205
matches, 13.17% outliers) and Frame 190 (163 matches, 20.25% outliers) from the Cushion sequence.
Column 1: SIFT matches. Column 2: Data after PCA. Column 3: ROC curves.

Sequence name Bedsheet Tshirt Cushion

Frame number 140 160 178 407 720 784 160 175 190

RANSAC 603 728 810 667 660 653 667 666 649

Local smoothness [42] 400 518 675 475 339 217 667 552 645

SVM regression [27] 17 146 702 294 138 220 659 564 473

Annealed M-estimation [30] 648 810 810 667 667 663 667 666 667

Table 5.3: Quantitative retexturing results on real data.

number of keypoint matches in a region between the current frame and the template falls below

a threshold, Mean Shift [88, 89] is initiated to track (pre-matched) features from the previous

frame. All keypoint matches are then vetted by RANSAC before TPS warp estimation. Note

that feature tracking and propagation benefits all feature-based methods [27, 29, 30, 38–42]. The

warp estimation results on all frames of the sequences (and on other sequences) can be obtained

at http://cs.adelaide.edu.au/˜huy/.

http://cs.adelaide.edu.au/~huy/


Chapter 5. Outlier Rejection in Deformable Registration with RANSAC 86

(a) Frame 140, ground truth (b) Frame 140, RANSAC (c) Frame 140, Annealed M-est. [30]

(d) Frame 160, ground truth (e) Frame 160, RANSAC (f) Frame 160, Annealed M-est. [30]

(g) Frame 178, ground truth (h) Frame 178, RANSAC (i) Frame 178, Annealed M-est. [30]

Figure 5.11: Qualitative retexturing results on the Bedsheet images.

5.5 Summary

We provided in this chapter substantial results supporting RANSAC as a viable and simple

alternative for outlier rejection in deformable registration, compared to more sophisticated ap-

proaches. Our premise and observation is that, relative to the extreme scale of the gross mis-

matches, the distribution of the inliers usually resembles a low-dimensional affine subspace.

While we focus in this chapter on RANSAC, there are many approaches to robust fitting of

linear manifolds. Some may have advantages over RANSAC and, in that regard, an important

message of this chapter is that outlier detection with nonlinear warping can likely be done with

relatively cheap schemes.
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Original mesh

Ground truth mesh

(a) Frame 407, ground truth

Original mesh

Transformed mesh

(b) Frame 407, RANSAC

Original mesh

Transformed mesh

(c) Frame 407, Annealed M-est. [30]

Original mesh

Ground truth mesh

(d) Frame 720, ground truth

Original mesh

Transformed mesh

(e) Frame 720, RANSAC

Original mesh

Transformed mesh

(f) Frame 720, Annealed M-est. [30]

Original mesh

Ground truth mesh

(g) Frame 784, ground truth

Original mesh

Transformed mesh

(h) Frame 784, RANSAC

Original mesh

Transformed mesh

(i) Frame 784, Annealed M-est. [30]

Figure 5.12: Qualitative retexturing results on the Tshirt images.



Chapter 5. Outlier Rejection in Deformable Registration with RANSAC 88

(a) Frame 160, ground truth (b) Frame 160, RANSAC (c) Frame 160, Annealed M-est. [30]

(d) Frame 175, ground truth (e) Frame 175, RANSAC (f) Frame 175, Annealed M-est. [30]

(g) Frame 190, ground truth (h) Frame 190, RANSAC (i) Frame 190, Annealed M-est. [30]

Figure 5.13: Qualitative retexturing results on the Cushion images.



Chapter 6

Outlier Rejection in Deformable
Registration with Moving Least
Squares

6.1 Introduction

The previous chapter established that, in practice, the scale of errors of the outliers usually

dwarfs the nonlinear effects of the correspondence manifold. Therefore, relative to the outliers,

the inliers lie very close to a linear hyperplane that corresponds to an affine warp. Furthermore,

it suggested the use of RANSAC to robustly fit a linear hyperplane onto the data and separate

the outliers. It was shown in the previous chapter that this simple outlier rejection method is at

least as accurate as current approaches [27, 29, 30, 38–42] which are often based on optimising

fully nonlinear warps in the presence of outliers.

Our observation paves the way for using simple linear models for outlier rejection in deformable

registration. Compared to optimising fully nonlinear warps with outlier-contaminated data, the

robust fitting of linear models is less cumbersome and can be implemented by many effective

algorithms [17, 28]. However, there is a weakness in the simple RANSAC-based approach

(Section 5.3): although the inliers do mostly lie within a “band” around the linear hyperplane,

estimating the thickness of this band (i.e., inlier threshold) can be nontrivial since the complexity

of the correspondence manifold is data-dependent. In particular, if the threshold is too large the

estimate is affected by outliers, whereas a too small threshold may accidentally remove valid

inliers.

89
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(a) Template (b) Input image

(c) Linear M-estimation (d) Nonlinear surface approximation with MLS

Figure 6.1: Overview of our two-step approach to outlier rejection in deformable registration. First row
shows the template (a) and input image (b) with SIFT correspondences. True matches (inliers) are in
green while incorrect matches (outliers) are in red (correspondence lines are not drawn for clarity). Sec-
ond row shows the stages of our approach: linear M-estimation (c) and nonlinear surface approximation
with MLS (d), where the fitted function (fx : [x y]T 7→ x′) is refined to better model the inliers (the same
procedure is applied for fy : [x y]T 7→ y′).

In this chapter, we seek to alleviate the above weakness. We introduce an approach that actually

pushes the linear approximation idea further, so as to leverage on the effectiveness and compu-

tational ease of linear models. More specifically, we propose the following two-step method:

1. we first perform linear M-estimation [28] to quickly capture the correspondence manifold;

2. we then tweak the hyperplane using nonlinear surface approximation with moving least

squares (MLS) [90–92] to refine the fit.
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Outlier rejection is performed by thresholding the distances of keypoint matches to the fitted

nonlinear warp; Figure 6.1 illustrates the proposed algorithm. As we will show in the experi-

ments, this two-step method leads to significant improvements in accuracy. Being a well-known

technique in computer graphics, MLS has received relatively little attention in computer vision.

At their core, M-estimators and MLS solve a sequence of weighted linear least squares problems.

Our two-step approach exploits this commonality such that outlier rejection for deformable reg-

istration can be accomplished as a sequence of simple linear least squares problems.

The rest of this chapter is organised as follows: Section 6.2 presents our two-step approach

to outlier rejection in deformable registration, from linear initialisation to nonlinear refinement.

Section 6.3 analyses our observation of the approximately linear correspondence manifold (Sec-

tion 5.2), and benchmarks our two-step method against current approaches on various kinds of

deformable objects. Finally, we summarise this chapter in Section 6.4. The main content of this

chapter is based on the author’s work in [93].

6.2 Outlier rejection as a sequence of linear least squares problems

We present in this section an effective outlier rejection method for deformable registration

whoses core computation is a sequence of simple linear least squares problems.

6.2.1 Robust hyperplane fitting with M-estimators

Following our observation of the approximately linear correspondence manifold (Section 5.2),

we first conduct robust hyperplane fitting to quickly capture the overall linear trend of the inliers.

Due to the random sampling heuristic, the RANSAC-based approach in Section 5.3 does not

guarantee good solutions unless a large number of samples are generated. In this section, we

instead rely on M-estimators [28], which have good convergence properties and ensure at least

locally optimal solutions given a fixed number of samples.

Given a set of keypoint matches X = {(ui,vi)}ni=1, we adopt the standard regression set-

ting by taking {ui}ni=1 as the independent measurements, and {x′i}ni=1 and {y′i}ni=1 separately

from {vi}ni=1 as the dependent measurements. Due to the two dependent measurements, our

technique robustly estimates two linear hyperplanes θx and θy (i.e., θx for {x′i}ni=1 and θy for

{y′i}ni=1). Note that with a slight abuse of terminology, we will use the “shorthand” 2D linear

hyperplane/nonlinear manifold as a description for the entire warp when we really mean for each

component of the warp.

Since both θx and θy are computed in the same way, we will discuss estimating only θx in the

following. Denote ũi = [xi yi 1]T as the homogeneous point of ui. The M-estimate is defined
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as

θ̂x = argmin
θx∈R3

n∑
i=1

ρ(ũTi θx − x′i), (6.1)

where ũTi θx − x′i is the residual of the i-th datum according to θx, and ρ(u) is the robust loss

function which is nonnegative, even symmetric, and nondecreasing with |u| [28].

Differentiating (6.1) with respect to θx and setting to zero yields the system of equations

n∑
i=1

ũiψ(ũTi θx − x′i) = 0, (6.2)

where ψ(u) = ρ′(u) is the first-order derivative of ρ(u). It is customary to use robust loss

functions with derivatives of the form ψ(u) = w(u) · u, where w(u) is the weight function. In

our work, we use Tukey’s biweight function [28], which gives rise to the weight function

w(u) =


[
1−

(
u
τ

)2]2
u ≤ τ

0 u > τ
, (6.3)

where τ is the error scale.

Defining wi = w(ũTi θx − x′i) allows us to rewrite (6.2) as

n∑
i=1

ũiwiũ
T
i θx =

n∑
i=1

ũiwix
′
i, (6.4)

which has the equivalent matrix form

XTWXθx = XTWy, (6.5)

where X = [ũ1 ũ2 . . . ũn]T , y = [x′1 x
′
2 . . . x′n]T , and W = diag ([w1 w2 . . . wn]T ) is the

weight matrix (diag () yields a diagonal matrix from a given vector).

Given W, solving for θx based on (6.5) is a weighted linear least squares problem which can be

accomplished using singular value decomposition (SVD). Given θx, W can be computed using

wi = w(ũTi θx−x′i). This gives rise to the procedure known as iterative reweighted least squares

(IRLS), which alternates the computation of θx and W until convergence. The quality of the

final estimate, however, depends on the initialisation. We perform multiple initialisations of θx
by randomly generating hypotheses in the manner of RANSAC. Each generated hypothesis is

updated by IRLS until convergence, and the best hypothesis that minimises (6.1) is selected for

the final estimate. In practice, the number of random hypotheses and IRLS iterations required
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are relatively small (respectively about 100 and 20 in our experiments). Figure 6.1(c) shows a

sample result of linear M-estimation on the data in Figures 6.1(a) and 6.1(b).

At convergence, data with larger weights are more likely to be inliers, and vice versa; see (6.3).

As we will explain next, the M-estimator weights will be utilised to construct a robust version

of MLS for outlier rejection in deformable registration.

6.2.2 Tweaking the hyperplane with MLS

The M-estimation in the previous section yields two sets of weights, {wxi }ni=1 and {wyi }ni=1,

which arose respectively from the estimation of θx and θy. We combine the two sets into a

single one by multiplying the corresponding weights between the two sets as

wi = wxi .w
y
i . (6.6)

Therefore, for a keypoint correspondence (ui,vi) to be an inlier, both its weights wxi and wyi
according to θx and θy must be high. Henceforth, we regard W to contain the combined weights

wi from the estimation of θx and θy.

Unlike the RANSAC-based approach in Section 5.3 where outlier rejection is performed after

linear hyperplane fitting (i.e., by thresholding the weights in W), we further tweak the hyper-

plane to produce a nonlinear manifold that better respects the correspondence data. Mismatch

removal is then performed by thresholding the distances of keypoint matches to the fitted non-

linear warp. As we will show in Section 6.3, this modification leads to significant improvements

in accuracy with a slight increase in computational cost.

Given a set of keypoint correspondences X = {(ui,vi)}ni=1, for each point p∗ in the template,

MLS [90] approximates the warp f at point p∗ as the affine transformation

A∗ = argmin
A∈R2×3

n∑
i=1

vi∗‖vi −Aũi‖2. (6.7)

The weights vi∗ have the following form

vi∗ = exp
(
−‖ui − p∗‖2/σ2

)
, (6.8)

where σ is the neighbourhood scale. Intuitively, since (6.8) assigns higher weights to data closer

to p∗, the affine transformation A∗ better respects the local structure around p∗. Furthermore,

as p∗ is moved continuously in its domain (the template), the parameters A∗ also vary smoothly.

Asymptotically this produces a smooth nonlinear warp [91] that adapts flexibly to the manifold

represented by the samples X .
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The problem (6.7) is also a weighted linear least squares problem which has the matrix form

XTV∗XAT = XTV∗Y, (6.9)

where X = [ũ1 ũ2 . . . ũn]T , Y = [v1 v2 . . . vn]T , and V∗ = diag ([v1∗ . . . vn∗]
T ).

To account for outliers, we incorporate the (converged) weights from M-estimation. Specifically,

we modify (6.9) to become

XTWV∗XAT = XTWV∗Y, (6.10)

where W reduces the influence of outlying data. In effect, this robust form of MLS tweaks

the linear hyperplane fitted by M-estimation to yield a nonlinear manifold that better respects

the nonlinearity of the true manifold and improves the separation between inliers and outliers.

Again the solution can be obtained by means of SVD. Figure 6.1(d) illustrates the refined fitted

function by MLS on the data in Figures 6.1(a) and 6.1(b).

6.2.3 Outlier rejection with MLS

Since we focus on mismatch removal, there is no need to solve (6.10) for every location p∗

in the template. Instead, for each tentative match (ui,vi) in X , we estimate the warped point

v̄i = Aiũi, where Ai is computed from (6.10) with p∗ = ui. The residual of the pair (ui,vi)

is defined as the Euclidean distance between v̄i and vi

ri = ‖v̄i − vi‖. (6.11)

Finally, outliers are identified and removed by thresholding the residuals of keypoint matches in

X . Hence, the number of instances of (6.10) to solve is equal to the number of keypoint matches

in X . Moreover, the affine parameters of all keypoint matches can be estimated independently, a

straightforward way to speed up the algorithm is to solve multiple instances of (6.10) in parallel

or multi-threads. Our method is summarised in Algorithm 6.1.

6.3 Experimental results

In this section we analyse our observation of the approximately linear correspondence mani-

fold (Section 5.2) and evaluate the performance of our two-step method on various kinds of

deformable objects ranging from synthetic to real datasets.
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Algorithm 6.1: Outlier rejection with MLS
Input: set of correspondences X = {(ui,vi)}ni=1, error scale τ , neighbourhood scale σ, inlier

threshold γ.
Output: set of inliers I ⊆ X .

1: /* Linear M-estimation */
2: Construct X = [ũ1 ũ2 . . . ũn]T , yx = [x′1 x

′
2 . . . x

′
n]T , yy = [y′1 y

′
2 . . . y

′
n]T .

3: Estimate θx and θy respectively from (X,yx) and (X,yy) (Section 6.2.1).
4: Compute {wxi }ni=1 and {wyi }ni=1 according to θx and θy (Equation (6.3)).
5: Form W = diag ([w1 w2 . . . wn]T ) with wi = wxi .w

y
i , i = 1, 2, . . . , n.

6: /* Outlier rejection with MLS */
7: Initialise I = ∅.
8: for each (ui,vi) in X do
9: Estimate Ai with p∗ = ui (Section 6.2.2).

10: Compute ri (Equation (6.11)).
11: If ri ≤ γ then I = I ∪ {(ui,vi)}.
12: end for

6.3.1 Synthetic data

6.3.1.1 Data analysis

We first investigate our observation of the approximately linear correspondence manifold (Sec-

tion 5.2) on synthetic data. More specifically, we aim to test the conditions under which the

linear hyperplane approximation is effective. To this end, we vary the margin d in [25, 225]

pixels (or the margin ratio rd in [0.21, 0.78]) and the bending energy ν in [0.5, 5.0]; see Sec-

tion 5.4.1.1 for the generation procedure. For each pair of rd and ν, we generate 100 random

synthetic image pairs, and compute for each image pair the maximum inlier deviation (over 100

random inliers) and the average outlier distance (over 100 random outliers) to the randomly gen-

erated TPS warp’s affine component. If the maximum of inlier deviations is less than the mean

of outlier distances, we consider the test successful. The success rate over 100 random image

pairs for each rd and ν combination is illustrated in Figure 6.2(a). In addition, Figure 6.2(b)

presents the results in which the distances of keypoint matches are computed with respect to the

nonlinear MLS warp obtained using our two-step technique.

Unsurprisingly, the results show that for high ν (high bending energy), the linear hyperplane ap-

proximation is not effective; this is because the correspondence manifold will be highly distorted

and the inliers will be “mixed” closely with the outliers. Interestingly, however, for ν ≤ 2.0 the

linear hyperplane approximation is quite valid. The question is therefore what kind of bending

energies are exhibited by real-life objects. Figure 6.3 shows TPS warps estimated using (man-

ually annoted) true inliers and (manually added) extra inliers on deformable objects typically

examined in the literature (we use the publicly available real datasets of [64] that were used in

Section 5.4.2, and our real datasets in Section 6.3.2). In each video sequence of [64], we select
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(b) Our novel MLS method

Figure 6.2: Success rate with different bending energies and margin ratios.

the frame corresponding to the object under the highest estimated bending energies. The warps

in Figure 6.3 all show bending energies less than 2.0, hence justifying the proposed method.

Note that without extra inliers, the estimated bending energies in Figure 6.3 will be slightly

decreased.

Another factor influencing the results in Figure 6.2 is the margin ratio rd. More specifically, the

validity of the linear hyperplane approximation reduces as rd decreases. This has the simple

explanation in that, since the outliers are randomly sampled points in the template and input im-

age, if the margin ratio is small the outliers will be sampled mostly from the same image regions

as the inliers, thus decreasing the average distance of the outliers to the true correspondence

manifold.

We further analyse the data as follows. For each random synthetic image pair, we consider the

randomly generated TPS warp as the ground truth warp. To obtain a warp resulting purely from

a linear hyperplane approximation, we first set the inlier threshold as the maximum deviation

of the true inliers to the RANSAC-fitted linear hyperplane (obtained using the RANSAC-based

approach in Section 5.3). All keypoint matches having distances larger than this threshold are

removed and a TPS warp is estimated using the remaining matches. We compute the root mean

squared error (RMSE) on pixel coordinates (sampled at the mesh vertices) between the warped

“image” (mapped by the estimated warp) and the ground truth “image” (mapped by the ground

truth warp). The average RMSE over 100 random image pairs for each rd and ν combination

is shown in Figure 6.4(a). Similarly, Figure 6.4(b) presents the results in which the MLS warp

estimated by our two-step method is used instead for outlier rejection. An expected trend in

both figures is that the registration error increases with the increasing bending energy and is

less sensitive to the margin ratio. Furthermore, we obtain the baseline warp by estimating a

TPS warp on the true inliers (note that the baseline warp may differ from the ground truth

warp since the inliers are contaminated with additive Gaussian noise). Figure 6.4(c) shows the
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(a) ν(0.08, 0.14),rd = 0.85 (b) ν(0.22, 0.21),rd = 0.60 (c) ν(0.25, 0.21),rd = 0.63

(d) ν(0.27, 0.38),rd = 0.59 (e) ν(0.39, 0.33),rd = 0.71 (f) ν(0.54, 0.57),rd = 0.62

(g) ν(0.36, 0.15),rd = 0.60 (h) ν(0.55, 0.32),rd = 0.53 (i) ν(0.63, 0.53),rd = 0.34 (j) ν(0.66, 0.39),rd = 0.42

(k) ν(0.46, 0.37),rd = 0.59 (l) ν(0.55, 0.20),rd = 0.67 (m) ν(0.24, 0.14),rd = 0.68 (n) ν(0.18, 0.12),rd = 0.63

(o) ν(0.90, 0.32),rd = 0.51 (p) ν(0.53, 0.36),rd = 0.60 (q) ν(0.93, 0.47),rd = 0.69 (r) ν(0.35, 0.20),rd = 0.62

Figure 6.3: Examples of bending energies and margin ratios on publicly available real datasets of [64]
(first and second rows) and our real datasets in Section 6.3.2 (third, forth and fifth rows). Under each
image are the estimated bending energies ν(νx, νy) and margin ratio rd.
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(b) Our novel MLS method
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(d) Zoom-in view of (b) for ν ≤ 2.0
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(e) Zoom-in view of (c) for ν ≤ 2.0

Figure 6.4: RMSE with different bending energies and margin ratios.

average RMSE between the baseline “image” (mapped by the baseline warp) and the ground

truth “image”. Note that, comparing Figure 6.4(b) with Figure 6.4(c), there is just a small

difference for ν ≤ 2.0 (see zoom-in views in Figures 6.4(d) and 6.4(e)).

The above results justify our ideas that outlier rejection on deformable objects can likely be

accomplished using simple linear models.

6.3.1.2 Comparison of methods

We benchmark our method in Section 6.2, namely ME+MLS, against the following state-of-

the-art outlier rejection methods for deformable registration: Iterative local smoothness test [42,

Section 3], SVM regression with resampling [27] and Annealed M-estimation [30]. We also

compare against the RANSAC-based approach in Section 5.3. For ME+MLS, following pre-

vious methods, e.g., [29, 30, 38, 39], we normalise the data (using [75]) to allow the use of

a constant error scale τ and neighbourhood scale σ for all datasets. These parameters were

manually tuned and then used for input images (note that σ acts as a regularisation coefficient,

however following previous methods, we fixed σ in our experiments). As we show later, our

method still provides the best overall accuracy. The ROC curve of each method is obtained by

varying the inlier threshold and recording the resultant true positive rate and false positive rate.

We set ν = 0.5, 1.0, 2.0, 5.0, and for each ν, the outlier rate ε is set as 0.33 and 0.5 (in all these

cases, the margin ratio rd = 0.68). For each combination of ν and ε, 100 random TPS warps
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Outlier rate ε = 0.33 (total 150 matches) ε = 0.5 (total 200 matches)

RANSAC 0.04 0.04

Local smoothness [42] 0.26 0.31

SVM regression [27] 0.06 0.09

Annealed M-estimation [30] 0.15 0.29

ME+MLS 0.06 0.06

Table 6.1: Average run time (in seconds) for outlier rejection on synthetic data.

are generated, and the ROC curves for each method are averaged over the 100 warps. Figure 6.5

presents the results.

An apparent and expected trend is that as ν and ε increase, the accuracies of all methods de-

crease, with the method of [27] deteriorating the fastest, followed by [42]. RANSAC and An-

nealed M-estimation [30] provide very comparable results, and both outperform the methods

of [27, 42]. ME+MLS provides the best overall accuracy. Comparing RANSAC (pure linear

hyperplane fitting) and ME+MLS shows the advantage of the nonlinear refinement using MLS

after linear hyperplane fitting.

Table 6.1 presents the average running time of all methods for ε = 0.33 and 0.5. From the

results, RANSAC and ME+MLS are the most efficient methods, owing to taking advantage of

the overall linear trend of the inliers. In particular, RANSAC is the fastest due to its lowest

complexity. ME+MLS has a small increase in run time compared to RANSAC due to the MLS

surface approximation. On the other hand, the methods of [27, 30, 42] are relatively much

slower, and their run times also scale faster with the data size.

6.3.2 Flat surface deformations

We now test the performance of ME+MLS (Section 6.2) on real surfaces. All methods were

run on 3 different datasets, namely Graffiti, Paper and Model, which we created by physically

deforming the template images; see Figure 6.6 for the templates. The template of Graffiti has

size of 640× 800 pixels, while the Paper’s and Model’s templates are of size 480× 600 pixels.

Each dataset contains 4 input images of size 1500× 2000 pixels. The datasets are considered to

be more difficult than the publicly available real datasets of [64] that were used in Section 5.4.2,

due to strong deformations and background clutter. SIFT matches [16] were obtained using

VLFeat toolbox [81], and we then manually categorised them as true inliers and outliers. For

RANSAC and ME+MLS, 100 repetitions were performed on each input image, and the average

results (ROC curves) are reported in Figures 6.7, 6.8 and 6.9. To observe the correspondence

manifold, we project the joint keypoint matches xi = [xi yi x
′
i y
′
i]
T to 3D space using PCA.

The low-dimensional visualisations of all data indicate that the inliers do mostly lie within a

“band” around a linear hyperplane. However, by explicitly modelling the deviations of inliers
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(a) ν = 0.5, ε = 0.33
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(b) ν = 0.5, ε = 0.5
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(c) ν = 1.0, ε = 0.33
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(d) ν = 1.0, ε = 0.5
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(e) ν = 2.0, ε = 0.33
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(f) ν = 2.0, ε = 0.5
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(g) ν = 5.0, ε = 0.33
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(h) ν = 5.0, ε = 0.5

Figure 6.5: Outlier rejection results on synthetic data.
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(a) Graffiti (b) Paper (c) Model

Figure 6.6: Templates of the Graffiti, Paper and Model datasets.
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Figure 6.7: Outlier rejection results on the Graffiti dataset. Column 1: Input images (top to bottom): G1
(599 matches, 17.53% outliers), G2 (853 matches, 33.65% outliers), G3 (826 matches, 35.23% outliers),
and G4 (989 matches, 25.08% outliers). Column 2: Data after PCA. Column 3: ROC curves.
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Figure 6.8: Outlier rejection results on the Paper dataset. Column 1: Input images (top to bottom): P1
(572 matches, 56.12% outliers), P2 (571 matches, 63.92% outliers), P3 (573 matches, 50.09% outliers),
and P4 (563 matches, 49.73% outliers). Column 2: Data after PCA. Column 3: ROC curves.

within the linear band, ME+MLS achieves the highest accuracy. This is followed by Annealed

M-estimation [30] and RANSAC, which usually give comparable results. The methods of [27]

and [42] give the lowest accuracies. Note that the accuracy of [27] seems to improve when the

inliers are dense, such as in Graffiti. Also, the accuracy of [42] shows a marked decrease as the

outlier rate increases. Table 6.2 depicts the run times of all methods, which are similar to the

results in Table 6.1.
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Figure 6.9: Outlier rejection results on the Model dataset. Column 1: Input images (top to bottom):
M1 (547 matches, 53.02% outliers), M2 (563 matches, 46.36% outliers), M3 (515 matches, 57.67%
outliers), and M4 (612 matches, 28.76% outliers). Column 2: Data after PCA. Column 3: ROC curves.

Dataset name Graffiti Paper Model

Input image G1 G2 G3 G4 P1 P2 P3 P4 M1 M2 M3 M4

RANSAC 0.09 0.11 0.11 0.13 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.10

Local smoothness [42] 2.44 3.74 3.92 4.56 2.14 2.27 1.98 1.83 1.86 1.74 1.56 2.64

SVM regression [27] 0.70 1.05 1.09 1.28 0.59 0.64 0.53 0.49 0.55 0.49 0.39 0.78

Annealed M-est. [30] 0.87 1.32 1.37 1.62 0.81 0.84 0.79 0.77 0.77 0.75 0.71 0.89

ME+MLS 0.16 0.19 0.19 0.21 0.15 0.15 0.15 0.15 0.15 0.15 0.14 0.17

Table 6.2: Average run time (in seconds) for outlier rejection on the Graffiti, Paper and Model datasets.
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6.3.3 Medical images, facial expressions and human actions

We also test the performance of our method (Section 6.2) on medical images. Brain MRI images

from [94, 95] are used in this experiment, where the brain deforms due to artificial deformations

which resemble different intra-subject and inter-subject mapping behaviours in the real world;

see Figure 6.10 for the template. VLFeat library was first used to produce SIFT correspondences,

which we then manually labelled as true inliers or outliers. The ROC results of all methods

are illustrated in Figure 6.11, while the run times are reported in Table 6.3. From the results,

ME+MLS outperforms all other methods in term of accuracy and is also the second fastest.

(a) Brain (b) Face (c) Walk

Figure 6.10: Templates of the Brain, Face and Walk datasets.

We also applied the methods on images involving deformations due to facial expressions and

human actions. Four different expressions (fear, happiness, sadness and surprise) of the sample

person taken from the Japanese Female Facial Expression Database [96], namely Face, and four

video frames capturing a walking man taken from the Collective Activity Dataset [97], namely

Walk, are input images for this experiment; see Figure 6.10 for the templates of these datasets.

Outlier rejection results on these datasets are illustrated respectively in Figures 6.12 and 6.13

while the run times of all methods are presented in Table 6.3. The results show that ME+MLS

is again the most accurate and the second fastest.

Dataset name Brain Face Walk

Input image B1 B2 B3 B4 F1 F2 F3 F4 W1 W2 W3 W4

RANSAC 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

Local smoothness [42] 0.38 0.35 0.36 0.36 0.46 0.45 0.41 0.43 0.27 0.22 0.23 0.25

SVM regression [27] 0.09 0.08 0.08 0.08 0.12 0.11 0.09 0.10 0.08 0.07 0.07 0.08

Annealed M-est. [30] 0.25 0.21 0.22 0.23 0.37 0.34 0.30 0.32 0.18 0.11 0.12 0.15

ME+MLS 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

Table 6.3: Average run time (in seconds) for outlier rejection on the Brain, Face and Walk datasets.
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Figure 6.11: Outlier rejection results on the Brain dataset. Column 1: Input images (top to bottom): B1
(204 matches, 20.59% outliers), B2 (198 matches, 17.17% outliers), B3 (167 matches, 50.90% outliers)
and B4 (179 matches, 27.37% outliers). Column 2: Data after PCA. Column 3: ROC curves.

6.3.4 Performance with decreasing number of matches

We now examine the performance of our method with decreasing number of matches. Two

datasets (G3 andP3) with different outlier ratios (respectively, 35.23% and 50.09%) are selected

from the datasets in Section 6.3.2. For each chosen dataset, the number of inliers is decreased by

25%, 50% and 75% respectively, and we then control the number of outliers to keep the original

outlier ratio (by randomly sampling inliers and outliers from the original data). Therefore, the

total number of matches is reduced by 25%, 50% and 75% respectively, while fixing the outlier

ratio. The ROC curves of all methods on these new datasets are plotted in Figure 6.14. The
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Figure 6.12: Outlier rejection results on the Face dataset. Column 1: Input images (top to bottom):
F1/fear (160 matches, 47.50% outliers), F2/happiness (170 matches, 47.65% outliers), F3/sadness (155
matches, 55.48% outliers) and F4/surprise (168 matches, 44.64% outliers). Column 2: Data after PCA.
Column 3: ROC curves.
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Figure 6.13: Outlier rejection results on the Walk dataset. Column 1: Input images (top to bottom): W1
(161 matches, 24.84% outliers),W2 (134 matches, 35.07% outliers),W3 (137 matches, 45.26% outliers)
and W4 (153 matches, 50.98% outliers). Column 2: Data after PCA. Column 3: ROC curves.
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(a) Reduced by 25%
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(b) Reduced by 25%
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(c) Reduced by 50%
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(d) Reduced by 50%
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(e) Reduced by 75%
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(f) Reduced by 75%

Figure 6.14: Performance with decreasing number of matches. First column: G3 (initially, 826 matches,
35.23% outliers). Second column: P3 (initially, 573 matches, 50.09% outliers).

results show that the performances of Annealed M-estimation [30], RANSAC, and ME+MLS

are stable under decreasing number of matches. In contrast, the accuracy of [27] improves when

there are a large number of matches (inliers), while the accuracy of [42] seems to increase in

cases of small number of matches (outliers). These results are consistent with our comments in

Section 6.3.2.
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6.3.5 Failure cases on real data

Figure 6.15 shows failure cases of our method on real data. As discussed in Section 6.3.1.1,

our method relies on the observation of the approximately linear correspondence manifold,

which becomes less effective in the presence of strong deformation and self-occlusion; see Fig-

ure 6.15(a) for an example. Under these conditions, the correspondence manifold is distorted

significantly, and outliers are mixed easily among inliers; see Figure 6.15(c). Moreover, our

method may fail due to changes in object topology; see Figure 6.15(b) for an example of a flat

surface being torn. In this case, the correspondence manifold is likely to be broken into various

segments, and outliers are blended easily among these segments; see Figure 6.15(d). Finally,

although we have not tested on Laparoscopic images, it is predictable for our method to find

them challenging since the objects involved in those images are not inextensible flat surfaces.

Note that the above situations also affect other methods [27, 30, 42].

(a) Input image (b) Input image
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Figure 6.15: Examples of failure cases on real data. First column: strong deformation and self-occlusion.
Second column: strong variation in object topology.

6.4 Summary

Motivated by the interesting observation of the approximately linear correspondence manifold in

the previous chapter, we have presented in this chapter an effective method for outlier rejection
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in deformable registration, which is based entirely on fitting simple linear models: first, linear

M-estimation is employed for quickly capturing the correspondence manifold, and to better

fit the inliers, MLS is then conducted as a sequence of simple linear least squares problems.

Outliers are robustly removed by thresholding the distances of keypoint matches to the fitted

nonlinear warp. Comparisons against state-of-the-art approaches on synthetic and real datasets

have illustrated the effectiveness of our method. Most importantly, the significant results of our

method on various kinds of deformable objects empirically validate our message that outlier

rejection on deformable objects can be accomplished using simple linear models.



Chapter 7

Conclusion and Future Directions

Parameter estimation underpins a variety of applications in computer vision, including three-

dimensional reconstruction, image stitching, image registration and shape matching to name a

few. Due to imperfect data acquisition and preprocessing, it is usually unavoidable that vision

data are contaminated by noise and outliers. Traditional parameter estimation methods mostly

deal with noise and are vulnerable to outliers. To facilitate computer vision applications, ro-

bust parameter estimation techniques are thus necessary for effectively rejecting outliers and

accurately estimating the model parameters.

7.1 Summary of contributions of this thesis

In this thesis we concentrated on single structure parameter estimation and made a direct contri-

bution to two specific branches under that topic: geometric fitting and deformable registration.

7.1.1 Geometric fitting

It has been observed in numerous previous approaches to robust geometric fitting that retrieving

a single all-inlier minimal subset is not sufficient to guarantee a satisfactory model estimate that

fits the data well; the inliers therein should also have a large spatial extent. We investigated

in Chapter 3 a theoretical basis behind this long-standing principle. The starting point was a

result by Jacobi relating to minimal subset expansion for least squares regression, where the

quality of a minimal subset estimate is proportional to the span of the associated data points. We

then developed a similar minimal subset expansion for total least squares, and highlighted the

equivalence between total least squares and the direct linear transformation, a commonly used

geometric fitting technique in computer vision. Moreover, we analysed the influence of data

111
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span on various fundamental matrix estimation algorithms, which showed a clear correlation

between the span of data points used for estimation and the quality of model estimate.

So far, a number of sampling methods have been proposed in the literature to speed up the

retrieval of all-inlier minimal subsets. However, none of them actively searches for all-inlier

minimal subsets with large span which are important to yielding a good model estimate. We

developed in Chapter 4 a novel sampling algorithm, which unlike previous approaches, con-

sciously targets all-inlier minimal subsets as well as with large span. Thanks to this ability,

the proposed method can also avoid sampling degenerate minimal subsets. Experimental re-

sults on synthetic and real datasets for robust fundamental matrix estimation have illustrated the

significant performance of our method.

7.1.2 Deformable registration

Most of the previous approaches to outlier rejection in deformable registration employ fully

deformable models to represent the correspondence manifold, and rely on iterative optimisation

procedures to remove outliers. This prevalent use of fully deformable models stems from the

assumption of the highly nonlinear correspondence manifold. In contrast, we made in Chapter 5

the interesting observation that, for many realistic physical deformations tested in the literature,

the errors of the outliers are usually so extreme that they dwarf the nonlinear effects of the

correspondence manifold. Therefore, relative to the outliers, the distribution of inliers often

resembles a low-dimensional affine subspace.

Our observation motivates the view that standard robust geometric fitting techniques are appli-

cable to model the approximately linear correspondence manifold. Furthermore, we developed

in Chapters 5 and 6 two novel outlier rejection methods for deformable registration, which

are based entirely on fitting simple linear models. Experimental results on synthetic and real

datasets demonstrated that the proposed methods are considerably more efficient but at least as

accurate as previous approaches. Most importantly, the substantial results of our methods on

various kinds of deformable objects empirically validated our message that outlier detection in

deformable registration can be accomplished using simple linear models rather than optimising

fully deformable models.

7.2 Directions of future work

We presented in Chapter 5 a simple RANSAC-based approach to outlier rejection in deformable

registration. Although this method achieves the state-of-the-art performance, there are some

issues that may be explored in future studies. Firstly, the performance of the method relies
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on having an optimal setting of the inlier threshold. Methods for scale estimation [98, 99]

can be applied to automatically estimate the inlier threshold and alleviate the dependence on

an optimal threshold. Secondly, random sampling (RANSAC) becomes inefficient in cases of

highly contaminated data. To reduce the number of minimal subsets required to be drawn,

guided sampling methods which either speed up the generation of all-inlier minimal subsets

(Section 2.2) or maximise the span of all-inlier minimal subsets produced (Section 4.2) can be

employed.

As we mentioned at the outset, this thesis focused on parameter estimation of a single structure.

However, vision data can contain multiple structures of a model, e.g., multiple motions of rigid

objects often give rise to multiple fundamental matrices. In multiple-structure data, the inliers

of a particular structure behave as pseudo-outliers to the other structures and the number of

structures is usually a priori unknown. Another avenue for future research is to extend both our

work on geometric fitting and deformable registration to handle data with multiple structures. A

natural solution is to apply our methods sequentially [34, 100], i.e., estimate one single structure

first, remove its corresponding inliers and continue on the remaining data until no more struc-

tures can be found. A major drawback of this simple approach is that the errors in the estimation

of earlier structures will be propagated and amplified in the estimation of subsequent structures.

Methods that simultaneously estimate the number of structures and the parameters of each struc-

ture [101, 102] have been recently proposed in the literature. However, these methods do not

consider the role of data span and are used for estimating multiple geometric structures only.

Thus, it is desirable to develop new methods that can exploit the benefits of large span sampling

in multiple-structure geometric estimation and investigate the application of these methods in

multiple-structure deformable estimation.





Appendix A

Proof of Propositions 3.1 and 3.2

A.1 Proof of Proposition 3.2 for TLS with non-minimal subsets

From Sec. 3.2.1, the weight of a non-minimal subset ν is proportional to |X(ν)TX(ν)| which,

from (3.36), is equal to

|X(ν)TX(ν)| = |VSTmUm(ν)TUm(ν)SmVT | (A.1)

= |Um(ν)TUm(ν)||SmVT |2. (A.2)

Similarly,

|Z(ν)TZ(ν)| = |Um(ν)TUm(ν)||S̃mVT |2. (A.3)

Therefore, |X(ν)TX(ν)| = κ|Z(ν)TZ(ν)| where κ is a constant which does not depend on ν.

This proves that

|X(ν1)TX(ν1)| > |X(ν2)TX(ν2)| (A.4)

=⇒ |Z(ν1)TZ(ν1)| > |Z(ν2)TZ(ν2)|. (A.5)

A.2 Proof of Propositions 3.1 and 3.2 for mixed OLS-TLS

We aim to prove that Proposition 3.1 holds for the mixed OLS-TLS problem (Sec.3.3.3), i.e.,

the solution to the OLS problem

arg min
β

‖y − ŷ‖2 s.t. Zβ = ŷ (A.6)
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coincides with the mixed OLS-TLS estimate

β̆ = (XTX− σ2
m2+1L)−1XTy = (XTZ)−1XTy (A.7)

where

Z := X− σ2
m2+1(XT )†L. (A.8)

See Sec. 3.3.3 for the definition of the other symbols involved.

Let β̃ be the solution to (A.6). Then

β̃ = (ZTZ)−1ZTy (A.9)

which, following the proof of Proposition 3.1, can be rearranged to become

XTZβ̃ = XTy + σ2
m+1L

T (XT )†T (Zβ̃ − y). (A.10)

As shown in the proof of Proposition 3.1, the column spans of Z and (XT )† are equal. Since

vector (Zβ̃ − y) is orthogonal to R(Z), it is also orthogonal to R((XT )†), thus the second

component on the RHS of (A.10) equates to zero, yielding

XTZβ̃ = XTy. (A.11)

Comparing (A.11) to (A.7) proves β̃ = β̆, i.e., the mixed OLS-TLS estimate β̆ coincides with

the solution of the OLS (A.6).

To prove that Proposition 3.2 also holds for mixed OLS-TLS, it is sufficient to show that, given

a non-minimal data subset ν of size m+ i ≤ n (i ≥ 0),

|X(ν)TX(ν)| ∝ |Z(ν)TZ(ν)|. (A.12)

To begin, let X = USVT be the SVD of X. Then (XT )† = US−1VT is the SVD of (XT )†.

Also, since n > m

X = UmSmVT (XT )† = UmS−1
m VT . (A.13)

Then, from (A.8)

Z = Um(SmVT − σ2
m2+1S

−1
m VTL) = UmΓ (A.14)
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where we define the square matrix

Γ := (SmVT − σ2
m2+1S

−1
m VTL). (A.15)

Also, observe that

Z(ν) = Um(ν)Γ. (A.16)

In (A.2), the following determinant has been established

|X(ν)TX(ν)| = |Um(ν)TUm(ν)||SmVT |2. (A.17)

The determinant |Z(ν)TZ(ν)| is then

|Z(ν)TZ(ν)| = |Um(ν)TUm(ν)||Γ|2 (A.18)

which implies |X(ν)TX(ν)| ∝ |Z(ν)TZ(ν)|. Note that this result also holds for minimal sub-

sets by setting i = 0.
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