

Outdoor Navigation: Time-critical
Motion Planning for Nonholonomic

Mobile Robots

Mohd Sani Mohamad Hashim

School of Mechanical Engineering
The University of Adelaide

South Australia 5005
Australia

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy in

Mechanical Engineering
on February 2014

 Table of Contents

 i

TABLE OF CONTENTS

TABLE OF CONTENTS.. i

LIST OF FIGURES... iv

LIST OF TABLES.. x

ABSTRACT ... xi

STATE OF ORIGINALITY..xii

PUBLICATIONS...xiii

ACKNOWLEDGEMENTS... xv

1. INTRODUCTION .. 1

1.1 MOTIVATION ... 2

1.2 RESEARCH AIMS.. 4

1.3 LAYOUT OF THESIS.. 5

2. LITERATURE REVIEW .. 7

2.1 MOTION PLANNING ALGORITHMS.. 7

2.1.1 Roadmap path planning .. 9

2.1.2 Cell decomposition path planning .. 11

2.1.3 Potential field path planning... 12

2.1.4 Other path planning approaches ... 16

2.1.5 Geometric approach for trajectory planning... 22

2.2 NAVIGATION ENVIRONMENTS ... 25

2.2.1 Outdoor navigation... 26

2.3 OBSTACLE AVOIDANCE ... 27

2.4 MULTIPLE ROBOTS COORDINATION... 30

2.5 SUMMARY AND GAP STATEMENT... 32

3. METHODOLOGY ... 35

3.1 STAGE 1: DEVELOPMENT OF ALGORITHMS FOR TIME-CRITICAL MOTION PLANNING 36

3.2 STAGE 2: OBSTACLE AVOIDANCE APPROACH... 36

3.3 STAGE 3: SIMULATION WORKS... 37

3.4 STAGE 4: HARDWARE PREPARATION AND EXPERIMENTAL WORKS...................................... 38

3.5 CONCLUDING REMARKS.. 39

4. DEVELOPMENT OF TIME-CRITICAL MOTION PLANNING ALGORI THMS........... 40

4.1 K INEMATIC MODEL OF NONHOLONOMIC MOBILE ROBOT... 42

4.2 BOUNDARY CONDITIONS... 43

 Table of Contents

 ii

4.3 COORDINATE-X EQUATION.. 44

4.4 COORDINATE-Y EQUATION.. 45

4.5 ORIENTATION (θ) EQUATION ... 48

4.6 STEERING ANGLE (φ) EQUATION.. 48

4.7 ANGULAR VELOCITY (1u) EQUATION.. 49

4.8 OBSTACLE AVOIDANCE APPROACH... 49

4.8.1 Avoiding static obstacles .. 50

4.8.2 Avoiding moving obstacles .. 51

4.9 CONCLUDING REMARKS.. 54

5. SIMULATION RESULTS AND DISCUSSIONS ..56

5.1 SIMULATION ARCHITECTURE... 57

5.2 SIMULATED VEHICLE ... 59

5.3 MATLAB FRAMEWORKS... 60

5.4 TRAJECTORY OPTIMIZATION.. 63

5.4.1 Replanning approach .. 69

5.5 SIMULATION RESULTS AND DISCUSSIONS.. 72

5.5.1 Navigation in static and open-space environments... 73

5.5.2 Navigation in dynamic and open-space environments ... 83

5.5.3 Navigation in the city-like environments.. 93

5.6 CONCLUDING REMARKS..106

6. DEVELOPMENT OF A NONHOLONOMIC MOBILE ROBOT 107

6.1 ROBOT CONTROLLER... 110

6.2 WHEEL ENCODER.. 111

6.3 DETECTION SENSORS... 114

6.4 COMMUNICATION .. 114

6.5 CALIBRATION OF STEERING ANGLE AND VELOCITY... 115

6.5.1 Steering angle ... 115

6.5.2 Velocity .. 117

6.6 OBSTACLE DETECTION.. 119

6.7 WIRELESS COMMUNICATION... 120

6.8 CONCLUDING REMARKS..120

7. EXPERIMENTAL RESULTS AND DISCUSSIONS.. 122

7.1 EXPERIMENT ARCHITECTURE.. 123

7.2 EXPERIMENT SETUP... 124

7.3 CASE 1: NAVIGATION IN AN OBSTACLE-FREE ENVIRONMENT.. 125

7.4 CASE 2: NAVIGATION IN A KNOWN STATIC ENVIRONMENT.. 130

7.5 CASE 3: NAVIGATION IN AN UNKNOWN STATIC ENVIRONMENT... 135

 Table of Contents

 iii

7.5.1 Scenario 1: One unknown static obstacle ... 135

7.5.2 Scenario 2: Two unknown static obstacles ... 140

7.6 CASE 4: NAVIGATION IN AN UNKNOWN DYNAMIC ENVIRONMENTS 145

7.6.1 Scenario 1: Opposite direction of mobile robot.. 145

7.6.2 Scenario 2: From left-hand side of mobile robot .. 149

7.6.3 Scenario 3: From right-hand side of mobile robot.. 153

7.7 CONCLUDING REMARKS..156

8. CONCLUSIONS AND FUTURE WORKS.. 158

CONTRIBUTIONS... 159

FUTURE WORKS.. 161

REFERENCE ... 163

APPENDIX A ... 167

APPENDIX B.. 172

 List of Figures

iv

LIST OF FIGURES

Figure 2.1 Path generation (a) Path constraints made of four required postures

(b) Generated path (Delingette et al., 1991). ...8

Figure 2.2 Roadmap approach (a) Visibility Graph (Jiang et al., 1997). (b)

Voronoi diagram (Siegwart and Nourbakhsh, 2004).9

Figure 2.3 Cell decomposition method (a) A fixed-resolution grid. (b) A

triangulation (Ge and Lewis, 2006). ..11

Figure 2.4 Simulation results by using (a) trapezoidal decomposition and (b)

triangular decomposition (Ghita and Kloetzer, 2012).12

Figure 2.5 Potential field method (Safadi, 2007)...13

Figure 2.6 Path generated by the navigation algorithm (Cosio and Castaneda,

2004). ...14

Figure 2.7 Implementation of the proposed algorithm by Koh and Cho (Koh and

Cho, 1999)..17

Figure 2.8 Results from the information- based method (Mihaylova et al., 2003)18

Figure 2.9 Cell mapping model (a) with 305 cells. (b) with 405 cells (Li and

Wang, 2003)...18

Figure 2.10 (a) Generated trajectory (b) Velocity profile (c) Acceleration profile

(Prado et al., 2003)...19

Figure 2.11 Neuro-fuzzy approach (Hui et al., 2006)..20

Figure 2.12 Generated trajectory with several control points (Haddad et al.,

2007). ...21

Figure 2.13 Simulation results in (a) a complex scenario, and (b) a long corridor

(Ma et al., 2013)...21

Figure 2.14 Different types of curves used to connect four postures for path

generation (Shin and Singh, 1990)...22

Figure 2.15 An optimal path (a) minimum energy, (b) minimum travel distance,

and (c) minimum travel time (Liu and Sun, 2011).25

Figure 2.16 Outdoor navigation (a) Pioneer3-AT with URG and SICK (Chang

et al., 2009) (b) The Cycab used in the experimental works (Zhang et

al., 2006). ...26

 List of Figures

v

Figure 2.17 Plan view of the observer moving in dynamic environment (a)

Exocentric reference frame (b) Egocentric reference frame (Fajen

and Warren, 2003). ..28

Figure 2.18 Avoiding a dynamic obstacle (Jolly et al., 2008).....................................30

Figure 2.19 A group of robots in hunting operation (Yamaguchi, 2003).31

Figure 2.20 Subtasks of construction task (Stroupe et al., 2005).31

Figure 2.21 Overview of the system (Klancar et al., 2004)...32

Figure 3.1 Stages for proposed methodology ..35

Figure 3.2 Generalized steps for avoiding an obstacle ..37

Figure 3.3 The modified mobile robot used in the experimental works......................38

Figure 4.1 Flowchart of the proposed algorithms..41

Figure 4.2 A car-like mobile robot ..42

Figure 4.3 Avoiding a detected static obstacle which is unknown in priori50

Figure 4.4 Avoiding a moving obstacle (a) perpendicular direction to the mobile

robot and (b) in opposition to the mobile robot. ..52

Figure 4.5 Collision prediction approach (a) before detection of the obstacle, (b)

first detection, (c) predicted position falls inside the collision radius,

and (d) obstacle avoidance approach implemented.53

Figure 5.1 Simulation process flowchart. ..58

Figure 5.2 Geometric model of a mobile robot..59

Figure 5.3 Simulated Laser Range Finder. ..61

Figure 5.4 Simulation map with static and moving obstacles.62

Figure 5.5 The Graphical User Interface (GUI) for simulation framework (a)

Input GUI, (b) Output GUI ..63

Figure 5.6 Original trajectory plan...64

Figure 5.7 Final result of the trajectory. ..65

Figure 5.9 Steering angle profiles (a) Planned steering angle (red line) against

adjusted steering angle (red dashed), and (b) adjusted steering angle

(red dashed) against actual steering angle (blue line).66

Figure 5.10 Velocity profiles (a) Planned velocity (red line) against adjusted

velocity (red dashed), and (b) adjusted velocity (red dashed) against

actual velocity (blue line)...67

Figure 5.11 Adjusted trajectory (red dashed) against actual trajectory (blue line)......68

Figure 5.12 Prior map with two waypoints connecting the initial and final point.......70

 List of Figures

vi

Figure 5.13 Simulation results with replanning approach. ..71

Figure 5.14 A complicated obstructed environment..73

Figure 5.15 One mobile robot navigates in the environment.......................................75

Figure 5.16 Robot 1: Planned (red) against actual (blue) plot for (a) orientation,

(b) steering angle, (c) velocity, and (d) location..76

Figure 5.17 Two mobile robots navigate in the environment......................................78

Figure 5.18 Robot 2: Planned (red) against actual (blue) plot for (a) orientation,

(b) steering angle, (c) velocity, and (d) position..79

Figure 5.19 Three mobile robots navigate in the environment....................................81

Figure 5.20 Robot 3: Planned (red) against actual (blue) plot for (a) orientation,

(b) steering angle, (c) velocity, and (d) position..82

Figure 5.21 Simulated environment for Case 4 ...83

Figure 5.22 One mobile robot navigates in a dynamic environment...........................85

Figure 5.23 Robot 1: Planned (red) against actual (blue) plot for (a) orientation,

(b) steering angle, (c) velocity, and (d) position..86

Figure 5.24 Simulated environment for Case 5 ...87

Figure 5.25 Two mobile robots navigate in a dynamic environment.88

Figure 5.26 Robot 2: Planned (red) against actual (blue) plot for (a) orientation,

(b) steering angle, (c) velocity, and (d) position..89

Figure 5.27 Simulated environment for Case 6. ..90

Figure 5.28 Three mobile robots navigate in a dynamic environment91

Figure 5.29 Robot 3: Planned (red) against actual (blue) plot for (a) orientation,

(b) steering angle, (c) velocity, and (d) position..92

Figure 5.30 (a) A simplified city-like map, (b) Multiple waypoints trajectory

planning..95

Figure 5.31 Initial trajectories in a city-like map...96

Figure 5.32 (a) Before detecting an obstacle. (b) Obstacle detected at the 9th

second. (c) Starts to move along new trajectory. (d) Reaches the first

waypoint at the 30th second..97

Figure 5.33 (a) Before detecting an obstacle. (b) Obstacle detected at the 67th

sec. (c) Starts to move along new trajectory. (d) Passes through

moving obstacle safely...98

 List of Figures

vii

Figure 5.34 (a) Before detecting an obstacle. (b) Obstacle detected at the 68th

sec. (c) Starts to move along new trajectory. (d) Passes through

moving obstacle safely...99

Figure 5.35 Final result at the 120th second. ..100

Figure 5.36 Second scenario with two mobile robots and one moving obstacle.101

Figure 5.37 Final result at the 120th second for second scenario.102

Figure 5.38 Third scenario with three mobile robots and two moving obstacles.104

Figure 5.39 Final result at 100th second for third scenario.105

Figure 6.1 The modified car-like robot used in experimental works.........................108

Figure 6.2 Mobile robot platform. ...109

Figure 6.3 Sensor platform ..109

Figure 6.4 Sensor platform attached to the mobile robot platform............................110

Figure 6.5 Robot controller..111

Figure 6.6 (a) Magnets mounting attached at the wheel (b) Hall Effect sensors

attached at the rear axle..112

Figure 6.7 Hall effect sensor..112

Figure 6.8 Location of the wheel encoder ...113

Figure 6.9 Magnet mounting of encoder..113

Figure 6.10 (a) Ultrasonic range sensors (b) Sensor attached to the sensor base.114

Figure 6.11 Wireless communication (a) Router (b) Coordinator.............................115

Figure 6.12 Calibration work for establishment of steering angle.............................116

Figure 6.13 Relation between PWM values and steering angle.117

Figure 6.14 Calibration work for establishment of velocity117

Figure 6.15 Relation between PWM values and speed..118

Figure 6.16 Obstacle detection range for experimental works.119

Figure 6.17 Wireless communication between the operator and the router

(robot). ...120

Figure 7.1 Experimental work flow...123

Figure 7.2 Testing arena ..124

Figure 7.4 Mobile robot navigated in an obstacle-free environment (simulation)126

Figure 7.5 Mobile robot navigated in an obstacle-free environment (experiment) ...127

Figure 7.6 Case 1: Trajectory planning without an obstacle128

Figure 7.7 Experimental setup for Case 2..130

Figure 7.8 Mobile robot navigated in a known static environment (simulation).......131

 List of Figures

viii

Figure 7.9 Mobile robot navigated in a known static environment (experiment).132

Figure 7.10 (a) Case 2: Trajectory planning with a known static obstacle, (b)

Experimental results...133

Figure 7.11 (a) Plan view (b) Actual experimental setup for Scenario 1136

Figure 7.12 Initial collision-free trajectory for Case 3 ..136

Figure 7.13 Mobile robot navigates in the unknown static environment

(simulation) ..137

Figure 7.14 Mobile robot navigates in the unknown static environment

(experiment)...138

Figure 7.15 Theoretical and actual trajectory for Case 3...139

Figure 7.16 Experimental setup for Scenario 2 ...140

Figure 7.17 Mobile robot navigates through two unknown obstacles

(simulation) ..142

Figure 7.18 Mobile robot navigates through two unknown obstacles

(experiment)...143

Figure 7.19 Theoretical and actual trajectory for Case 4...144

Figure 7.20 Moving obstacle coming from the opposite direction of the mobile

robot ...145

Figure 7.21 Scenario 1: Moving obstacle from the opposite direction of the

mobile robot (simulation) ..146

Figure 7.22 Scenario 1: Moving obstacle from the opposite direction of the

mobile robot (experiment) ...147

Figure 7.23 Theoretical and actual trajectory for scenario 1148

Figure 7.24 Moving obstacle coming from left-hand side of the mobile robot.........149

Figure 7.25 Scenario 2: Moving obstacle from the left-hand side of the mobile

robot (simulation)...150

Figure 7.26 Scenario 2: Moving obstacle from the left-hand side of the mobile

robot (experiment) ...151

Figure 7.27 Theoretical and actual trajectory for scenario 2152

Figure 7.28 Moving obstacle coming from right-hand side of the mobile robot.......153

Figure 7.29 Scenario 3: Moving obstacle from the right-hand side of the mobile

robot (simulation)...154

Figure 7.30 Scenario 3: Moving obstacle from the right-hand side of the mobile

robot (experiment) ...155

 List of Figures

ix

Figure 7.31 Theoretical and actual trajectory for scenario 3156

 List of Tables

x

LIST OF TABLES

Table 2.1 Intrinsic splines’ family (Delingette et al., 1991)..24

Table 5.1 Input data for replanning approach scenario..69

Table 5.2 Actual collected data of simulation without replanning approach70

Table 5.3 Actual collected data with replanning approach..72

Table 5.4 Input data for simulation Case 1. ...74

Table 5.5 Actual data collected at the final point for Case 1.......................................76

Table 5.6 Input data for simulation Case 2. ...77

Table 5.7 Actual data collected at the final point for Case 2.......................................79

Table 5.8 Input data for simulation Case 3. ...80

Table 5.9 Actual data collected at the final point for Case 3.......................................82

Table 5.10 Input data for simulation Case 4..84

Table 5.11 Actual data collected at the final point for Case 4.....................................86

Table 5.12 Input data for simulation Case 5..87

Table 5.13 Actual data collected at the final point for Case 5.....................................89

Table 5.14 Input data for simulation Case 6..90

Table 5.15 Actual data collected at the final point for Case 6.....................................93

Table 5.16 Parameters for the first mobile robot (R1)...94

Table 5.17 Parameters for the second mobile robot (R2) ..94

Table 5.18 Table 3 Errors for Case 1 at final point. ..100

Table 5.19 Parameters for second simulation case ..102

Table 5.20 Errors for Case 2 at the final point...103

Table 5.21 Parameters for third simulation case..104

Table 5.22 Errors for Case 3 at the final point...105

Table 6.1 Steering angles under different PWM values ..116

Table 6.2 Velocities under different PWM values...118

Table 7.1 Actual initial and final positions for Case 1 ..129

Table 7.2 Actual initial and final positions for Case 2 ..134

Table 7.3 Actual initial and final positions for Case 3 ..140

Table 7.4 Actual initial and final positions for Case 4 ..144

 Abstract

xi

ABSTRACT

The question of timing in mobile robot navigation still remains an area of research not

thoroughly investigated. In certain situations, a mobile robot may need not only to

reach a desired location safely, but to arrive at that location at a specified time. Such a

situation may have significant ramifications for applications to which a robot is

tasked, for example patrolling large areas, delivering goods or coordinating multiple

mobile robots. Thus, it is important for a mobile robot to be able to plan its

trajectories and movements in order to navigate from initial location to a final

destination whilst considering timing, orientation and velocity. Furthermore, it should

also be able to detect and avoid any obstacles encountered in its path during

navigating through the environment.

The aim of this research is therefore to develop a time-critical motion planning

algorithm, which includes planning the trajectory, position and orientation of a mobile

robot, with obstacle avoidance capability for a single or multiple nonholonomic

mobile robots. In addition, the mobile robot should be able to replan its original

trajectories in order to ‘make up’ any loss of time caused by avoiding obstacles. An

Ackermann car-like robot has been considered specifically during the development

stage, with consideration given to the kinematic and dynamic constraints of

nonholonomic mobile robot in general. The resultant algorithm is based on the

geometric approach.

In achieving the research objectives, this study is conducted in four stages.

The first stage deals with the development of a new algorithm for time-critical motion

planning in order to navigate safely in an environment, to reach the specified location

at the specified time, with the required orientation, velocity and with the consideration

of the kinematic and dynamic constraints of the mobile robot. In the second stage, the

algorithm should have the capability to avoid any unknown static and dynamic

obstacles when the mobile robot starts to move from its initial point. The algorithm

should have the ability to replan its original trajectory to compensate for time loss due

to avoiding obstacles. Prior to experimental works, the simulations will be carried out

to ascertain the effectiveness of the algorithm. In the final stage, experimental works

will be undertaken to validate the algorithms utilising an Ackermann car-like robot.

 State of Originality

xii

STATE OF ORIGINALITY

To the best of my knowledge, except where otherwise referenced and cited,

everything that is presented in this thesis is my own original work and has not been

presented previously for the award of any other degree or diploma in any university. If

accepted for the award of the degree of Doctor of Philosophy in Mechanical

Engineering, I consent that this thesis be made available for loan and photocopying.

Mohd Sani Mohamad Hashim

Date

 Publications

xiii

PUBLICATIONS

Conference papers (Main author)

1. Mohd Sani Mohamad Hashim and Tien-Fu Lu, “Time-dependent motion planning
for nonholonomic mobile robot”, The 9th International IFAC Symposium on Robot
Control (SYROCO’09), Gifu, Japan, 9-12 September 2009.

2. Mohd Sani Mohamad Hashim and Tien-Fu Lu, “Multiple waypoints trajectory
planning with specific position, orientation, velocity and time using geometric
approach for a car-like robot”, 2009 Australasian Conference on Robotics and
Automation (ACRA ’09), Sydney, Australia, 2-4 December 2009.

3. Sani Hashim and Tien-Fu Lu, “A new strategy in dynamic time-dependent motion
planning for nonholonomic mobile robots”, 2009 IEEE International Conference on
Robotics and Biomimetics (ROBIO’09), Guilin, China, 18-22 December 2009.

4. Mohd Sani Mohamad Hashim and Tien-Fu Lu, “Performance of a time-dependent
motion planning for a car-like robot in static environments”, 2012 International
Conference on Man Machine System (ICoMMS ’12), Penang, Malaysia, 27-28
February 2012.

5. Mohd Sani Mohamad Hashim, Tien-Fu Lu and Hassrizal Hassan Basri, “Dynamic
Obstacle Avoidance Approach for Car-like Robots in Dynamic Environments”, 2012
IEEE Symposium on Computer Applications and Industrial Electronics (ISCAIE
2012), Kota Kinabalu, Sabah, Malaysia, 3-4 December 2012.

6. Mohd Sani Mohamad Hashim and Tien-Fu Lu, “Time-critical Trajectory Planning
for a Car-like Robot in Unknown Environments”, IEEE Business, Engineering and
Industrial Applications Colloquium 2013 (BEIAC 2013), Langkawi, Malaysia, 8-9
April 2013.

Conference papers (Co-author)

1. Zhiyong Zhang, Dongjian He, Tien-Fu Lu and Sani Hashim, “Study on Steering
Actuator Transfer Function of Picking Mobile Robot”, 2010 International Conference
on Communications and Mobile Computing (CMC 2010), Shenzhen, China, 12-14
April 2010.

Journal papers

1. Mohd Sani Mohamad Hashim and Tien-Fu Lu, “Real-time Control of Time-Critical
Trajectory Planning for a Car-like Robot in Unknown Environments”, International
Journal of Engineering Research and Technology (IJERT), ISSN: 2278-0181,
February - 2013 (Vol.2, Issue 2), 2013.

 Publications

xiv

2. Mohd Sani Mohamad Hashim and Tien-Fu Lu, “Time-dependent Motion Planning
for a Car-like Robot in Dynamic Environments using Geometric Approach”,
International Journal of Imaging and Robotics (IJIR), Revised, 2012.

 Acknowledgements

xv

ACKNOWLEDGEMENTS

This work would not have been possible without the assistant of a number of people. I

would initially like to thank my father, Mohamad Hashim and my mother, Norriah

Salleh as well as my family who have continuous support and motivate me throughout

my PhD study in Australia.

I wish to thank my principal supervisor Dr. Tien-Fu Lu for his help, patient guidance

and encouragement throughout the period of this project. I would also like to thank

my co-supervisor Dr Lei Chen for his valuable suggestions. Special thanks also go to

my colleagues; ZhenZhang, Tommie, Xinrui, Guntur, Kuan and Sukri.

The help and support from people in School of Mechanical Engineering have also

been invaluable. I would like to thank colleague from the electronics and mechanical

workshop; Philip Schmidt, Norio Itsumi and Billy Constantine. I would also like to

thank Ms. Karen Adams for her helpful language support research and to who involve

directly and indirectly throughout my PhD.

 Introduction

1

1. INTRODUCTION

Mobile robotics has become a significant research field over the past few decades.

This field has experienced a major evolution in design, control, application and other

aspects which make the mobile robot useful for human activities. Mobile robots come

in many shapes and types such as car-like robots, two- or three-wheel robots, omni-

directional robots and mobile manipulators. One of the must-have basic capabilities of

mobile robots is navigation. With a decent navigation system, a mobile robot is able

to move and explore the environment autonomously, accurately and safely.

Furthermore, the mobile robot is also able to go to any selected places without human

intervention. There are two types of environments for mobile robot navigation, which

are indoor environments and outdoor environments. Indoor environment mostly deals

with navigation inside buildings, while outdoor environment deals with navigation

outside buildings. Outdoor navigation can become more complex and sophisticated

than indoor navigation due to the unknowns of the environments and dynamically-

changed ambience of outdoor environments. So far, most of the researches have

attempted to develop the most reliable navigation systems that meet certain criteria

such as ability to choose the shortest path, minimum time path or minimum energy

 Introduction

2

usage. Thus the variation of criteria will reflect the selection of navigation strategies

and approaches for the mobile robot.

1.1 Motivation

Nowadays, there are many types of mobile robots which have been developed to

assist and to ease human workforce in real-world environments. These mobile robots

are used in indoor or outdoor environments for varieties of tasks and applications such

as factory automation, underground mining, military surveillance and even space

exploration. In most cases, the mobile robots often work in unknown and dynamic

environments. Thus it is needed to ensure that the mobile robots are able to navigate

and execute the tasks safely and successfully. Furthermore, they should also be able to

react reasonably to the environments in the presence of obstacles.

One of the fundamental issues in mobile robot navigation is motion planning. Motion

planning can be understood as how a mobile robot plans and chooses its path and

moves along that path. In motion planning, the main problem is to determine a

collision-free and smooth path in order to reach the final location from its initial

location. In general, motion planning can be divided into two steps (Delingette et al.,

1991; Tounsi and Corre, 1996). The first step is path planning, which is defined as a

step to generate a geometric curvature to connect the initial and final position of the

mobile robot. Once the path is known, the second step is to determine the motion

control. Motion control is defined as a step to determine the velocity of the mobile

robot by using linear velocity law, with which the mobile robot will follow the path.

As mentioned earlier, mobile robots have been used in a wide range of applications in

various working environments. For outdoor environments, it is very common for the

mobile robots to face unexpected conditions such as uneven terrain, unknown and

dynamic obstacles as well as polluted air (dust and smoke). These conditions may

cause trouble to the mobile robot’s control and sensor systems as the system error

may increase. Furthermore, the mobile robots may also accumulate errors from within

the robot systems themselves such as friction and wheel slippage. In contrast, indoor

environments are more ideal conditions with some information may be known

beforehand, which serves as prior information. Prior information does not necessarily

 Introduction

3

give an accurate knowledge of the environments but sufficient knowledge will ensure

the mobile robot is able to navigate effectively. For outdoor environments, prior

information may also be available such as topological map which can be useful for

mobile robots. Although prior information for outdoor environments is not as accurate

or as extensive compared to prior information for indoor environments, the mobile

robots need to take advantage of this prior information in order to navigate safely and

to reduce the uncertainties and errors in outdoor environments.

Projects such as military surveillance and social security patrol are useful to monitor

and maintain safety in the private areas such as cities and buildings. Such projects can

prevent or reduce the rate of criminal activities, monitor social activities and traffics.

Most surveillance systems are using cameras, which are installed at specific locations

and these cameras are monitored by automated computer programs. For aerial

surveillance system, unmanned aerial vehicles (UAVs) are usually being used. The

UAVs will capture images or videos of the covered area and the captured visual will

be processed and interpreted to gather information about the area. Likewise,

unmanned ground vehicles (UGVs) are used for actions engaged on the ground. The

capability of UAVs and UGVs usually depend on the sensors used and their ability to

move around.

This study focuses only on UGVs for a ground-based surveillance. Thus a basic task

for this application is to ensure the UGV is being able to navigate autonomously from

one point to another point in its environment with capability of avoiding the obstacles.

Furthermore, in certain situations such as large area patrol and goods delivery, timing

is crucial as the mobile robot needs to arrive at the desired place with not only to the

right location but also to the right orientation, exactly at the specified time. In a large

area patrol, usually the mobile robot needs to arrive at every checkpoint with the

correct orientation exactly at the desired time, to ensure the whole patrolling area can

be covered within the specified time. In such case, the mobile robot should be able to

plan its motion and complete patrolling the whole area within the specified time and

also cover the angle of views for each checkpoint. For multiple mobile robot

applications, especially in soccer robot competition, if robot timing can be controlled

in addition to its position and orientation, the soccer robot does not need to wait for its

teammate for a long time in order to receive the ball. If the robot waits at the certain

 Introduction

4

location for quite some time, perhaps it has already been detected by the opponent

team and has been man-marked, which makes it difficult to the robot to receive the

ball from its teammate. Furthermore in multiple mobile robot applications, two

mobile robots may deliver and exchange goods at a desired meeting point at the

specified time. If the journey time can be controlled for each of the robots, they do not

need to wait for each other for a long time at the meeting point. Both robots can arrive

at the meeting point at the specified time, exchange goods and then continue their

journey to their separate final locations.

For the aforementioned examples, timing is crucial to the mobile robot to achieve its

task. This situation is advantageous for a task-based mission, not only for a single

mobile robot but also for multiple mobile robots which requires the mobile robot

reach the final location at the specified time.

1.2 Research aims

In brief, the aim of this study is to develop a new motion planning for unmanned

ground vehicles. The vehicle is a nonholonomic mobile robot navigating in a partially

known and dynamic 2D environment with kinematic and dynamic constraints are

taken into account during development stage. Thus, the primary objectives are:

1. To develop time-critical motion planning algorithm for nonholonomic mobile

robots by associating new parameters such as position, velocity, orientation

and time

2. To develop a dynamic obstacle avoidance algorithm that is able to avoid both

static and moving obstacles safely. Furthermore, the dynamic obstacle

avoidance algorithm needs to be able to catch up the time lost due to the

mobile robot avoiding the obstacles in order to reach the final point at the

specified time and orientation

3. To incorporate the newly developed time-critical motion planning algorithm

for multiple robots and multiple waypoints planning and

 Introduction

5

4. To develop a real autonomous mobile robot using an Ackermann car-like

robot and to conduct experimental works in order to validate the newly

developed time-critical motion planning and obstacle avoidance algorithms.

1.3 Layout of thesis

The rest of this thesis is organized as follows:

Chapter 2: Literature Reviews

 This chapter introduces the general background of this study. The related

works on mobile robots, motion planning and obstacle avoidance approach are

reviewed. At the end of the chapter, all the findings are summarized and gaps and

contributions from this study are pointed out.

Chapter 3: Methodology

 In order to achieve the primary objectives, this study is divided into four

stages. The first stage deals with the development of time-critical motion planning

algorithm for nonholonomic mobile robot. The second stage deals with the

development of dynamic obstacle avoidance algorithm. In the third stage, an

autonomous mobile robot will be developed. Lastly, the newly developed time-critical

motion plannning and obsatcle avoidance algorithms will be validated through

experimental works using the developed autonomous mobile robot.

Chapter 4: Development of Time-critical Motion Planning Algorithms

 The fundamentals and the detail mathematics of the algorithms are discussed

in this chapter. The development of the time-critical motion planning algorithm is

based on geometric approach with cubic and quintic polynomials are adopted to

generate motion trajectories. Furthermore, detail development of dynamic obstacle

avoidance algorithm, multiple waypoints planning and multiple robots planning are

also presented in this chapter.

Chapter 5: Simulation Results and Discussions

 This chapter presents the development of a simulation framework using

Matlab. The nonholonomic mobile robot and the developed algorithms are tested

 Introduction

6

using this simulation framework. A series of simulations are conducted to investigate

the effectiveness and practicality of the algorithms. The algorithms are tested in the

static and dynamic enviroments with a single and multiple mobile robots.

Chapter 6: Development of a Non-holonomic Mobile Robot

 In this chapter, the development of an autonomous mobile robot is presented.

A remote control car are modified to be used for the experimental works.

Furthermore, the development of the autonomous mobile robot needs to overcome

several issues such as the capability of steering wheels to turn for desired angles and

the mobile robot requires to speed up and slow down at specified velocities within

seconds. Hence the kinematic and dynamic constraints of the mobile robot such as

steering angle and velocity limitation are also considered during development of this

mobile robot. In addition, the calibration works have been conducted to establish the

PWM-steering angle and PWM-speed relationships for the mobile robot.

Chapter 7: Experimental Results and Discussions

The experimental architecture and results from experimental works are

presented and discussed in this chapter. The developed algorithms are tested through a

series of experimental enviroments using the developed autonomous mobile robot.

Then the experiment results are compared to the simulation results in order to validate

the algorithms.

.

Chapter 8: Conclusions and Future Works

 The findings of this study are summarized in this chapter. The

recommendation for the future works are also given at the end of this chapter.

 Literature Review

7

2. LITERATURE REVIEW

In this chapter, the main areas of related research have been reviewed, which are

mobile robots, motion planning, obstacle avoidance and multiple robots coordination.

All these reviewed areas of research will contribute to the main objectives of this

study. At the end of this section, all the findings are summarised and gap statement is

given.

2.1 Motion planning algorithms

For the past few decades, navigation problems have been extensively studied. One of

the fundamental issues for navigation is to plan the robot’s motion in the working

environment without human intervention. This issue is commonly known as motion

planning. Earlier works in mobile robot motion planning concentrated on how to

determine the collision-free path in order to reach the final location (Salichs and

Moreno, 2000). One common problem in motion planning for mobile robots is to

determine the control input which the mobile robot requires to achieve a goal position

(x, y), pose (x, y, θ) or posture (x, y, θ, κ) (Nagy and Kelly, 2001). Figure 2.1 shows

the path constraints made of four postures, which each posture consists of position in

 Literature Review

8

Cartesian coordinates (x, y), orientation (θ) and curvature (κ) (Delingette et al.,

1991). Generally, an autonomous mobile robot has to be able to extract information

from on-board sensors in order to “know” the environment and plan its motion. Once

the path has been planned, the mobile robot is expected to follow the path whilst

considering velocity, position, orientation and other requirements for the mobile robot

to achieve smooth motions. In addition to such considerations, it also might be able to

both detect and avoid the obstacles presented during navigation. Typically, motion

path is planned based on known obstacles’ positions in the environment in prior (Hui

et al., 2006).

Figure 2.1 Path generation (a) Path constraints made of four required postures (b)

Generated path (Delingette et al., 1991).

Generally, path is planned to meet several main requirements such as shortest path,

safe path and smooth path. Shortest path could be the shortest distance to arrive at the

final location or the shortest travel time. While navigating in the environment, the

robot also needs to consider safety issues. This means the path needs to be collision

free and the robot also needs to be able to detect and avoid the obstacles. Lastly the

path should be smooth in order to satisfy the kinematic constraints. The path should

not have a sharp turn that is impossible for the robot to turn in smooth movement.

However, the optimal path is normally a compromise among the three requirements.

In a known environment, there are well known and widely used methods for path

planning such as roadmap approaches, cell decomposition methods and potential field

methods.

 Literature Review

9

2.1.1 Roadmap path planning

The roadmap path planning is based on connectivity in a network of robot’s free space

by using lines. Once the roadmap has been constructed, the path is determined by

searching the series of road that are connecting the initial and final state. Visibility

graph (Jiang et al., 1997), Voronoi diagram and Visibility-Voronoi diagram are the

well known roadmap approaches as shown in Figure 2.2. They have been used to

compute the shortest collision free path. In this approach, the obstacles are

represented by convex polygons. Then every two nodes between initial state and goal

state in this free space are connected by line and this line does not intersect the

interior of the obstacles. Visibility graph consist of straight lines that join all the

polygons’ edges including the initial and final points.

(a) (b)

Figure 2.2 Roadmap approach (a) Visibility Graph (Jiang et al., 1997). (b) Voronoi

diagram (Siegwart and Nourbakhsh, 2004).

Jiang et al. (1997) presented three stages to solve the time-optimal problem by using

visibility graph. Firstly, the reduced visibility graph is obtained. Then it is converted

into a feasible reduced visibility graph accounting the robot size and kinematic

constraints. Lastly, a new algorithm is used to search the feasible reduced visibility

graph in order to obtain a safe, time-optimal and smooth path. They have used an A*

algorithm to search the shortest path. However, this method only considered

kinematic constraints, but not dynamic constraints such as the velocity of the mobile

robot. The dynamic constraints are important to be considered as the mobile robot

may need to slow down during turning and accelerate as fast as possible during

moving at the straight line.

 Literature Review

10

Sridharan and Priya (2004) presented a parallel algorithm for constructing the reduced

visibility graph in a convex polygonal environment. They aimed to reduce the

computational complexity and space and implemented the algorithm in FPGA. Their

algorithm consists of two steps. Firstly, binary code is assigned to the vertices of the

objects to determine supporting segments between every pair of polygon. Then the

next step is to eliminate the supporting segments that are hidden by the obstacles in

order to obtain the final graph. From the results, the hardware-based approach is

approximately 1000 times faster than using a PC. However, the major drawback of

this visibility graph approach is that the path is very close to the obstacles and it is not

practically safe in real applications.

On the other hand, Voronoi graph is able to overcome the problem caused by

visibility graph aforementioned. Nagatani et al. (2001) proposed mobile robot

navigation using generalized Voronoi graph (GVG). In the paper, they introduced a

local smooth path planning algorithm for car-like mobile robot which is bounded by

kinematic constraints. In addition, they used Bezier curve to generate a smooth path in

order to satisfy the limitation of minimum turning radius. The algorithm is executed

through simulations only and the computational time cost higher than the

conventional approach. This means it takes more time to generate the path and it is

not practical in the real-time control of the mobile robot.

Victorino et al. (2001) presented a new methodology for mobile robot navigation in

unknown environments. Once the mobile robot started to move, it also started to

construct the path using Voronoi diagram based on the information from the on-board

sensor. From the results, the mobile robot was successfully constructed a map and

localized itself. However, they had not discussed on the time required to construct the

map and navigate to the goal point. Furthermore the map construction and localization

is relevant to static environments only. Thus their method may not be appropriate to

be used for time-dependent planning and in dynamic environments.

As the combination of Visibilty graph and Voronoi diagram may gives optimal path

for mobile robots, Wein et al. (2007) introduced a new type of diagram which is a

hybrid between the visibility graph and the Voronoi diagram. The aims were to find

the smooth shortest path without sharp turns. This method was used for planning a

 Literature Review

11

path for robots in an environment filled with polygonal obstacles. In order to keep the

distance from obstacles optimum, they used predefined clearance value, c. In

addition, they used Dijkstra search to find the shortest path. However, their method

was only implemented for a robot with two degrees of motion freedom. Furthermore,

Voronoi diagram tends to maximize the distance between the robot and the obstacles,

in order to provide more space and safety to the robot.

Roadmap path planning approaches such as visibility graph and Voronoi diagram are

effective to be used to obtain a safe path and the shortest path. The approaches used

the information from map such as the shape of the obstacles to generate the path.

However the mobile robot tends to make a sharp turn and move very close to the

obstacles. These situations are not appropriate for a car-like robot that has a steering

angle limitation.

2.1.2 Cell decomposition path planning

In cell decomposition approach, the robot’s free space is divided into several simple,

connected regions called “cells”. There are several types of grid that normally used

such as fixed-resolution grid and triangulation grid in order to construct the cells as

shown in Figure 2.3. Then the cells containing the initial and goal states are located

and path in the connectivity graph is searched to join the initial and goal cell.

(a) (b)

Figure 2.3 Cell decomposition method (a) A fixed-resolution grid. (b) A triangulation

(Ge and Lewis, 2006).

 Literature Review

12

Hazon and Kaminka (2008) presented new multi-robot coverage algorithms in their

paper. Their algorithms are based on spanning-tree coverage of approximate cell

decomposition of work-area and have achieved a significant improvement in coverage

time by improving the efficiency of the algorithms. However, they have not

mentioned the type of robot which has been used in their simulation and the

algorithms were only tested by simulation works. Furthermore, the algorithms work

efficiently in obtaining the optimal coverage time but not time dependent.

Figure 2.4 Simulation results by using (a) trapezoidal decomposition and (b)

triangular decomposition (Ghita and Kloetzer, 2012).

Ghita and Kloetzer (2012) proposed a fully automatic planning and control strategy

for a car-like robot based on cell compositions approach. The approach used an

abstraction of the free environment and an iterative procedure to find a feasible path

for the nonholonomic mobile robot. The planning and control method was developed

in Matlab and the feasible and smooth path was obtained as shown in Figure 2.4.

However, from the results, the generated path was closed to obstacles and collision

may occur between the mobile robot and the obstacle.

2.1.3 Potential field path planning

The most widely used method for collision free path planning is the potential fields

methods (Huang et al., 2006; Safadi, 2007; Huang, 2009). It was initially proposed by

Khatib in 1986 for mobile robot path planning. The main aspects of this method are

 Literature Review

13

the mobile robot is treated as a point, the obstacle generates a repulsive force and the

goal generates an attractive force. The attractive force lead the robot to the goal and

the repulsive force ensures the robot is away from the obstacles as shown in Figure

2.5. The generated repulsive force also increases proportionally with the distance of

the nearest obstacles. Thus the combined force should drive the mobile robot towards

the goal while avoiding the obstacles.

Figure 2.5 Potential field method (Safadi, 2007).

Cosio and Castaneda (2004) proposed an improved artificial potential field method

for autonomous navigation of a mobile robot. In the paper, they attempted to

overcome the problem that caused by using a single attraction point which lead to trap

situation where the method is unable to produce the resultant force needed to avoid

the large obstacles. Therefore, they introduced multiple auxiliary attraction points that

allow the robot to avoid large or closely spaced obstacles. The force intensity

parameters of the repulsive and attractive cells have been optimised by using a genetic

algorithm. From the simulation results as shown in Figure 2.6, the generated path was

not too smooth and tends to make sharp turns. Furthermore, the algorithms were

tested only in Matlab and the authors have not discussed the time required for a

mobile robot to reach the final point.

 Literature Review

14

Figure 2.6 Path generated by the navigation algorithm (Cosio and Castaneda, 2004).

The earlier works on path planning using potential field method only concentrated on

static environments. In the recent years, dynamic obstacles have also been included in

navigation planning. Ferrara and Rubagotti (2009) proposed a dynamic obstacle

avoidance strategy for a mobile robot based on harmonic potential field method. Their

approach consists of two key elements which are an online generator is used to track

the reference signals to reach the goal point and at the same time, a potential field

method is modified online in order to avoid the moving obstacles with time-varying

speed. In addition, they used a collision cone approach to avoid the moving obstacles.

The key idea is to modify the radius of the ‘security circle’ around each obstacle on

the basis of the so-called ‘collision cone’. However, their proposed strategy was to

control the mobile robot but not to generate the path. Furthermore, they only tested

their approach by simulation works.

Jacob (2008) proposed a sensor-based navigation and obstacle avoidance algorithm

for mobile robots in unknown dynamic environments. The proposed method allows a

mobile robot to navigate in the environment with a large number of static and

dynamic obstacles. The mobile robot will navigate through the environment via the

global path which was generated based on the updated map which processed by the

global planner. Then the local planner continuously tries to reach each waypoint on

the path using potential field. However, their algorithm only tested by simulation

works and they have not discussed the time required to reach the final point.

 Literature Review

15

Furthermore, from their simulation works, they encountered several failures in the

simulation such as the rear-end collision occurred due to the blind spot of the laser

scanner.

Huang et al. (2006) proposed a method which combined a single camera and potential

field method in order to navigate in real-time environment. The camera is used to

estimate the “time of impact” once the obstacle is detected which then can be used to

make sure the robot navigates around the obstacle. Furthermore, Huang (2009) has

extended the work to deal with the dynamic obstacles. Using the same method –

potential fields – Huang has applied this method for path and speed planning in order

to avoid the moving obstacles. Their approach provides both the direction and the

speed of the mobile robot, which guarantees that the mobile robot will able to track

the moving obstacle while avoiding it. However, their algorithms only tested in the

simulation and they have not discussed the time require to avoid the obstacle and

reach the final point.

Beside a potential field method, a vector field method is also has been used in robot

navigation. The vector field utilizes a statistical representation of the environment

through the histogram grid and it consists of attractive forces, goal and repulsive

forces. Both attractive and repulsive forces are usually characterised as point forces.

Hong et al. (2007) proposed a mobile robot navigation using modified flexible vector

field approach with laser range finder and infrared sensors. The laser range finder is

used to generate the map and infrared sensors are used for emergency stop and

obstacle avoidance. From the results, their algorithms show a smooth motion of the

mobile robot navigates through the environment. However the proposed method only

demonstrated in static environments and the speed of the mobile robot was set to

70cm/s only which is not optimized for the robot’s motion. The mobile robot may

need to speed up at the straight line and slow down at cornering. Furthermore the

authors have not discussed on the time require for the mobile robot to reach the final

point.

Liddy and Lu (2007) proposed waypoint navigation for an Ackermann steering

autonomous vehicle. Their aim is to obtain a path with position and heading control of

the mobile robot. They have introduced a complex vector field method by combining

 Literature Review

16

vector field components such as point force vector field, rotational field and line

force. The results successfully demonstrated the position and heading can be

controlled at the goal point. However, the authors have not discussed on the time

require for the mobile robot to reach the final point and the algorithms were only

tested by simulation works.

Potential field method is one of the commonly used approaches to generate path for

the mobile robot. The method has been utilised for various types of mobile robot such

as the differential drive robot and the car-like robot with Ackermann steering limit.

One of the problems in potential fields method is the robot is intended to converge in

the local minima (Huang, 2009). Furthermore, most of the research in potential field

approach have not addressed the time require for the mobile robot to reach the final

point. This parameter is one of the important points for the time-critical motion

planning.

2.1.4 Other path planning approaches

There are other approaches which have been developed by researchers in order to

obtain the optimal collision free path. The approaches could be a combination of two

different approaches, or sampling-based path planning. Koh and Cho (1999) presented

a path tracking algorithm for a nonholonomic mobile robot in order to obtain a

smooth motion of the mobile robot. This algorithm is based on time optimal bang-

bang control considering dynamic constraints of the mobile robot in order to avoid the

wheel slippage problem during the mobile robot navigation. Figure 2.7 shows the

flow chart on implementing the proposed algorithm. In their experiment, they have

used a two-wheel driven mobile robot to validate their proposed algorithm. However,

their approaches only focused on obtaining a smooth motion without the

consideration of avoiding obstacles.

 Literature Review

17

Figure 2.7 Implementation of the proposed algorithm by Koh and Cho (Koh and Cho,

1999).

Mihaylova et al. (2003) presented an information-based approach for trajectory

optimization of a mobile robot by a linear combination of sine functions. The mobile

robot was equipped with a sensor which measures the range and bearing to a beacon

located at a known coordinate. The information acquired from the sensor will then be

used to obtain an optimal trajectory based on a known, nominal reference trajectory.

The accuracy of this approach depends on the number of beacons available in the

environment. If there are more beacons at the appropriate places, the accuracy can be

improved considerably. However, the effectiveness of this approach is only

demonstrated by simulation results as shown in Figure 2.8. An experiment using this

approach would be useful to validate the optimization effectiveness.

 Literature Review

18

Figure 2.8 Results from the information- based method (Mihaylova et al., 2003)

A new approach using the cell-mapping method was introduced by Li and Wang

(2003) as shown in Figure 2.9. Their aim was to achieve the optimal trajectory in term

of minimum time, energy and jerk. Firstly, this approach performs a global analysis

and reconstructs the whole system into a cell space model. Then, based on this cell

space model, this method finds out the stable region as a set of cells in the cellular

state space after a number of integration processes to generate the optimal trajectory.

In their study, they used a four-wheeled mobile robot with dynamic constraints such

as velocity and acceleration limitations. However, this method was only tested in

simulation works and the authors have not discussed on the obstacle avoidance

approach.

 (a) (b)

Figure 2.9 Cell mapping model (a) with 305 cells. (b) with 405 cells (Li and Wang,

2003).

In order to achieve the time-optimal planning for the wheeled mobile robot, Prado et

al. (2003) proposed two tasks that can be carried out simultaneously or sequentially.

The first task is spatial-planning which is to obtain the shortest feasible geometric

 Literature Review

19

path. The second task is temporal-planning which is to obtain the fastest feasible

velocity profile for a homogenous segment which the segment is the path length

navigated over time. They also considered kinematic and dynamic constraints such as

velocity and acceleration in order to get the optimal trajectory solution and to avoid

the obstacles in dynamic environments. To validate their algorithm, they used a four-

wheeled mobile robot which is known as RAM in their experiment and the results are

shown in Figure 2.10. However, from their results, the mobile robot moved very close

to the obstacles and the mobile robot tends to make a sharp turn. Furthermore, the

authors have not discussed the time require for the mobile robot to reach the final

point.

Figure 2.10 (a) Generated trajectory (b) Velocity profile (c) Acceleration profile

(Prado et al., 2003)

Then, Hui et al. (2006) presented a time-optimal, collision-free navigation of a car-

like robot using neuro-fuzzy-based approaches as shown in Figure 2.11. In their

paper, a fuzzy logic controller (FLC) was used to control the robot. The performance

of the controller was improved by using three different neuro-fuzzy-based approaches,

which are neuro-fuzzy approach, genetic-neuro-fuzzy approach and GA-tuned

adaptive network-based fuzzy inference system (ANFIS), and then comparing among

themselves and with other approaches such as default behaviour, manually-

constructed FLC and potential field method, through computer simulation. From their

results, even though the performance using neuro-fuzzy-based approaches is better

 Literature Review

20

than other approaches, it is dependant on the training data. This condition caused the

performance of the neuro-fuzzy-based approaches not to work well, particularly when

the training scenarios are different from the real scenarios.

Figure 2.11 Neuro-fuzzy approach (Hui et al., 2006).

In 2007, Haddad et al. (2007) presented a random-profile approach in order to

optimize the free-trajectory planning problem for non-holonomic wheeled mobile

robots in constrained workspaces as shown in Figure 2.12. This method is based on a

simultaneous search for the mobile robot path and also handles the obstacle avoidance

issues during navigation. In their paper, they focused on the planning the trajectories

for the mobile robot with the consideration of geometry, kinematic and dynamic

constraints. However their results are presented using only two- and three-wheeled

mobile robots. It remains to be seen that their works are able to be extended to the

four-wheeled mobile robot. Nevertheless, the algorithm may require to be modified in

order to cater the kinematic and dynamic constraints of the four-wheeled mobile

robot.

 Literature Review

21

 (a) (b)

Figure 2.12 Generated trajectory with several control points (Haddad et al., 2007).

Ma et al. (2013) presented a path planning algorithm for a nonholonomic mobile

robot using the information of the sensors to navigate in complex environments. The

robot moved toward a known target while avoiding obstacles by choosing appropriate

intermediate objectives based on the local sensor information. In addition, by

choosing intermediate objectives, a local minima problem can be solved. The

efficiency of the approach was assessed via different simulated environments as

shown in Figure 2.13. From the results, the robot was able to navigate trough the

complex environments. However, the robot’s path was closed to the obstacles and the

robot was likely to make a sharp turn as in Figure 2.13(b).

 (a) (b)
Figure 2.13 Simulation results in (a) a complex scenario, and (b) a long corridor (Ma

et al., 2013).

 Literature Review

22

2.1.5 Geometric approach for trajectory planning

A trajectory is a path which is an explicit function of time. Initially a path can be

differentiated to give a continuous velocity and acceleration profiles. One common

methodology for trajectory planning in order to obtain a smooth-path and length-

optimum plan is by assembling the arcs of simple curve. A mobile robot has to follow

the path (curve) with specific velocity which is dependent on its position and its

orientation (Tounsi and Corre, 1996). Basically, the orientation (θ) is defined as the

tangent of the point (x(s), y(s)), which s is the length along the curve. The curvature κ

is defined as the derivative of θ(s) with respect to s.









= −

dy

dx
s 1tan)(θ ,

ds

sd
s

)(
)(

θκ = (2.1)

Tounsi & Le Corre (1996) reviewed and compared several types of curves used in

path generation, which are straight lines, circular arcs, polynomial functions, clothoids

(cornu spiral) and cubic spirals. Generally, the path is generation by a set of robot’s

postures, which these postures depend on the position and orientation of the mobile

robot (Shin and Singh, 1990). They also discussed the methods to generate the path as

shown in Figure 2.14.

Figure 2.14 Different types of curves used to connect four postures for path

generation (Shin and Singh, 1990).

The path generated by several straight lines is the simplest method in terms of

calculation and requires only the choice of intermediate points. However, in most

cases, the orientation is discontinuous and the mobile robot needs to stop and change

its direction in order to move to the next point. Similarly in the path generation by

following circular arcs of radius R, the drawback is that the path presents

 Literature Review

23

discontinuous curvature at junction points, which means the speed of each wheel of

the mobile robot is not continuous at these points.

In order to avoid the discontinuous curvature, polynomial curves were used. There are

three different types of polynomial curves discussed by Tounsi and Le Corre (1996),

which are polar polynomials, Cartesian polynomials and Bezier’s polynomials. Even

though the polar polynomial method gives a continuous curvature, the radius R must

be fixed and it is only used for symmetric cases. Both Cartesian and Bezier’s

polynomials are used to connect non-symmetric postures. However these curves have

a complex curvature profile which is not necessarily smooth and makes them difficult

to follow (Delingette et al., 1991).

The other type polynomial curvature is known as polynomial spiral. There are two

commonly used types of spiral curves which are clothoid curves and cubic spiral

curves. In general, the polynomial spirals are useful for path generation because they

provide an easy-to-track polynomial curvature profile (Liang et al., 2005). In a review

by Delingette et al. (1991), the original work by Kanayama (Kelly, 2003) on clothoid

curves has introduced the idea of using continuous piecewise linear curvature function

that was then extended by Shin and Singh (Kanayama and Miyake, 1986) in order to

eliminate discontinuity at the junction points. However, the problems with this

method are difficult to choose the coefficient of the curvature (k) (Tounsi and Corre,

1996), difficult to compute (Delingette et al., 1991) and it still results in a

discontinuity in the derivative of the curvature (Nagy and Kelly, 2001). Thus, a study

by Pin and Vasseur (1990) considered the problems of complexity and lengthy path

using clothoid curves by generating deterministic and providing trajectories joining all

the pairs of configurations of the mobile robot. Their aim was to determine the

shortest path with reverse mode capabilities while the mobile robot is manoeuvring by

considering non-holonomic and steering angle constraints.

 Literature Review

24

Table 2.1 Intrinsic splines’ family (Delingette et al., 1991)

Most studies have used cubic spiral curve (Nagy and Kelly, 2001; Kelly, 2003; Liang

et al., 2005) in path generation because it provides a smooth path and minimizes the

variation of jerk (Delingette et al., 1991). In addition, it also has been used due to its

simple curvature profile which is easy to follow. Later, Delingette et al. (1991)

developed a family of trajectory called intrinsic splines of degree n, ISn as shown in

Table 2.1. This family is based on cubic polynomials, but the end conditions of this

family are defined in term of heading and curvature instead of first and second

derivative for cubic polynomial. Nagy and Kelly (2001) extended the work done by

Delingette et al. (1991). In comparison to Delingette et al., the approach is gained by

converting the integro-differential state equation into four nonlinear equations and

solving them simultaneously in order to get the four unknown constant parameters.

Subsequently, Kelly (2003) extended the work done by Nagy and Kelly (2001) by

introducing an approach which produced an efficient real-time algorithm to join

arbitrary points. However, most of the researchers have switched the specification of

the trajectories in term of time to distance, which suits most of application but not the

time-critical application targeted in this research.

 Literature Review

25

Liu and Sun (2011) presented an optimal path planning of a mobile robot by utilizing

Bezeir curves. The objective of their approach was to minimize energy consumption

during robot navigation. The energy consumption was analysed for both in geometric

path planning and smooth path planning. The effectiveness of the approach has been

tested in the simulation and experimental works. The results of their works are shown

in Figure 2.15 and the experiment was conducted using two-wheel mobile robot. The

results show an optimal path in term of minimum energy, minimum travel distance

and minimum travel time. This approach can be adopted in this study to minimize the

energy consumption and at the same time to reach the final point at the specified

travel time.

Figure 2.15 An optimal path (a) minimum energy, (b) minimum travel distance, and

(c) minimum travel time (Liu and Sun, 2011).

2.2 Navigation environments

Mobile robots are being deployed in various types of environments. Some of them are

tasked to navigate inside the buildings and others outside the buildings. Outdoor

navigation poses a greater challenge over typical indoor navigation. Outdoor

environments are usually dynamically changed over time and give uncertainty to the

mobile robots. Such environment, so-called dynamic environment may consist of

static and moving obstacles. Static environments normally have unmoved obstacle

with various shapes and sizes. Thus, static environments are not as complicated as

dynamic environments in term of planning the path.

In the previous sections, the standard path planning approaches, such as roadmap, cell

decomposition and potential field methods, have been utilised whether in static or

dynamic environments. However these standard approaches have not been proven to

be effective in unknown environments. Due to the uncertainty of the unknown

 Literature Review

26

environments, some approaches such as grid-based or roadmap-based approaches

cannot generate an optimal path. Furthermore, local information is required to detect

and avoid the unexpected obstacles. Thus some of the researches have developed the

alternative approaches by modifying and improving the existing approaches or with

combining two or more existing approaches to overcome the limitations of the

existing approaches.

2.2.1 Outdoor navigation

In outdoor navigation, the robot will face a new challenge especially due to numerous

uncertainties and dynamic changes in the outdoor environment such as varying terrain

surface and level, and also lighting condition as shown in Figure 2.16. A robust

outdoor navigation system will improve the autonomy of the robot and provide a safe

and smooth navigation to reach the final location. In order to obtain a safe and smooth

path, most researchers consider the moving obstacle’s velocity as known to the

system. With the knowledge of the moving obstacle’s velocity, the system is able to

predict the moving obstacle’s motion and probability the collision between the mobile

robot and the moving obstacle. If the mobile robot is indisputably to collide with the

moving obstacle, the mobile robot is able to avoid the moving obstacle by adjusting

its path. However in the real-world, it is difficult to distinguish the velocity of the

moving obstacle beforehand. This circumstances may fall short the system.

 (a) (b)

Figure 2.16 Outdoor navigation (a) Pioneer3-AT with URG and SICK (Chang et al.,

2009) (b) The Cycab used in the experimental works (Zhang et al., 2006).

 Literature Review

27

Furthermore, the unknown environment gives a further challenge to the system. The

uncertainty of the information in the environment leads to the needs of a better

detection and prediction approaches in order to make sure the smooth and safe path

requirements are met. However in certain cases, the map of the area that the mobile

robot needs to navigate is available. This map may give some information to the robot

planner. By utilising this information, the planner is able to plan the path beforehand.

Thus a good outdoor navigation system is still required in order to ensure the mobile

robot navigates and reaches the final location safely. Therefore, many studies are

attempted to develop a new and better navigation system in a dynamic and unknown

environment.

2.3 Obstacle avoidance

Avoiding obstacles is one of the problems for the mobile robot to navigate in static

and dynamic environments. In dynamic environment, where there are static and

moving obstacles, the task becomes more complicated and difficult in comparison to

static environments. Therefore, many approaches have been introduced in previous

research in order to develop an effective and reliable obstacle avoidance capability for

mobile robots to navigate in static and dynamic environments.

Fajen and Warren (2003) introduced a new solution for obstacle avoidance based on

observing the human behaviour in dynamic environments. In their paper, the aim is to

apply the dynamic model to the robot behaviour of steering towards a goal and

avoiding the obstacles. Once the set of behaviour variables for steering and obstacle

avoidance have been identified, the general form of the model will be introduced. The

basis of their work is shown in Figure 2.17. In Figure 2.17(a), the authors considered

an observer moving in a simple environment. The observer moves at a constant speed

(s) and a heading direction (ø) with respect to fixed vertical exocentric reference axis.

In Figure Figure 2.17(b), the goal and obstacle angles can be represented in egocentric

reference frame with respect to the observer’s point of view. In order to model their

approach, they have used human as participants to observe the behaviour during

walking from initial point to final point as well as during avoiding the obstacle. The

collected descriptive data were then being used to develop a model of the behavioural

dynamics. This work has been extended by Fajen et al. (2003) by using visually-

 Literature Review

28

guided locomotion in a dynamic environment in order to identify a set of behavioural

variables for steering and obstacle avoidance. However, the behavioural approach

requires human experiments in prior in order to develop a model of behavioural

dynamics. This model is directly influent by the behaviour of human at the time of the

experiments is conducted that may lead to inaccuracy of the model. Nevertheless,

from their experiment results, it was suggested that human route selection does not

require explicit planning but may emerge on-line as a consequence of elementary

behaviours for steering and obstacle avoidance.

 (a) (b)

Figure 2.17 Plan view of the observer moving in dynamic environment (a) Exocentric

reference frame (b) Egocentric reference frame (Fajen and Warren, 2003).

The most commonly used method for solving the obstacle avoidance problem is based

on the potential field method, firstly proposed by Khatib (1986). Then Huang et al.

(2006) proposed a vision-guided navigation approach by adapting Fajen and Warren’s

work on human behaviour navigation and this approach was expressed as a potential

field. In their study, the potential field is used to control the angular acceleration and

heading of the robot in order to steer it toward the goals and to avoid the obstacles

during robot navigation. However, this approach has a limitation since they used

angular width of the obstacle rather than distance, yet a large obstacle can also has the

same angular width as a smaller obstacle.

Furthermore, Hamner et al. (2006) also proposed an extension method based on Fajen

and Warren formulation. The proposed method can learn the parameters of the control

 Literature Review

29

model automatically by observing behaviour of the human driver. In addition,

Hamner et al. introduced a speed control function based on the obstacle’s distance and

angle in their method. This speed control function slows down the vehicle as the

obstacles get closer, which gives time to the vehicle to turn and avoid the obstacles.

However this method also allows a sharp turning which has a negative impact for the

vehicle motion. Moreover, their results showed that the vehicle attempts to follow a

far path while avoiding large obstacles and gave conservative results.

The other method to solve the problem of obstacle avoidance was proposed by Brock

and Khatib (1999) using global dynamic window approach. In their paper, the global

dynamic window approach used for motion planning is an extension of the dynamic

window approach (Fox et al., 1997) by incorporating a simple and efficient motion

planning. This framework allows robust execution of high-velocity, goal-directed and

reactive motion for a mobile robot in unknown and dynamic environments. However

the approach was used for a holonomic mobile robot, not for non-holonomic mobile

robot as targeted in this study.

Castillo et al. (2006) proposed an approach that using sonar detection for detecting the

obstacles. Sonar was used in the research due to it provides a consistent data and it

can simply detects “something” in the environment. From their results, the sonar

sensor was capable to detect obstacles and ensure the wheelchair as able to navigate

safely. However, they applied this approach only for an autonomous wheelchair, used

in an indoor environment, which can be extended to an outdoor environment.

Recently, Jolly et al. (2008) proposed a method for avoiding the dynamic obstacle by

modifying the initial generated Bezier curve. At the initial stage, the robot will travel

along the original curve. Once an obstacle is detected, a new modified Bezier curve

will be generated. This approach is shown in Figure 2.18. In their simulations, a

holonomic mobile robot is used but the idea of the obstacle avoidance approach can

be adopted for this study regardless the type of the curve used.

 Literature Review

30

Figure 2.18 Avoiding a dynamic obstacle (Jolly et al., 2008).

2.4 Multiple robots coordination

There have been many studies on using multiple robots to achieve a task given. Using

a group of robots instead of single robot in task-based mission has a few advantages

such ability to complete the task faster, more robust, ability to locate the goal position

more accurate and ability to complete the task that by using a single robot cannot be

achieved. Some of the applications using multiple robots are exploration of hazardous

environment, search and rescue, autonomous construction, hunting operations and

soccer robot.

Controlling a group of robots may require a significant control law of motion

coordination. Yamaguchi (2003) presented a distributed motion coordination strategy

for multiple robots in cooperative hunting operations as shown in Figure 2.19. Each

robot in this control law has its own coordinate system and it can sense the target,

other robots and obstacles. This control law is based on “formation vector” strategy as

an input. The formation of each robot is controllable by the vectors.

 Literature Review

31

Figure 2.19 A group of robots in hunting operation (Yamaguchi, 2003).

Stroupe et al. (2005) presented a behaviour-based multiple robots collaboration for

autonomous construction tasks. In the paper, two robots are used to form a team for

the construction tasks. The construction task consists of several subtasks which are

shown in Figure 2.20. Each robot will perform the subtasks at every stage in order to

achieve the goal.

Figure 2.20 Subtasks of construction task (Stroupe et al., 2005).

In soccer robot system, most of the cooperative strategy is based on vision system.

The global vision system is used to track the position and orientation of the robot

(Klancar et al., 2004; Brezak et al., 2008). Klancer et al. (2004) has used a robot with

colour patch on the robot. In order to estimate the robot position, patches and the

regions belonging to the ball, opponent team patches have to identify. Then the

position of the robot can be located by using image segmentation and component

labelling. Figure 2.21 shows the overview of the system. Then Brezak et al. (2008)

 Literature Review

32

used the same approach in their paper. However they have used Bayer image format

in order to interpret the position of the robots.

Figure 2.21 Overview of the system (Klancar et al., 2004).

Other approaches for soccer robot system without using colour information are by

using shape information (Treptow and Zell, 2004), artificial neutral networks (Jolly et

al., 2007) and reinforcement learning (Duan et al., 2007).

2.5 Summary and gap statement

From the literature, most research focused on obtaining an optimal motion planning in

terms of safe navigation, smoothness path, shortest path and optimal time motion plan

for the mobile robots. Even though there are studies on shortest path and optimal time

motion plan, the focus is only on how to reach the desired location as soon as

possible. This means the mobile robot will reach the desired location in minimum or

optimal time. However, there are situations that timing of reaching the desired

location can be crucial especially when dealing with the multiple mobile robots

coordination.

There are many methods to obtain the smooth trajectories. The common approaches

such as roadmap approaches, cell decomposition and potential field method are not

the best approaches to achieve the aims of this study. These approaches are usually

used for holonomic robots as they tend to require sharp turns. Furthermore integration

with time parameter might be difficult to be performed due to these approaches are

 Literature Review

33

typically to generate a path for the mobile robot. Thus the best method is by using a

geometric approach as this approach can be developed in term of time and due to its

simplicity and flexibility of geometric profile. In the geometric approach, the simplest

method to generate a path is by assembling the arcs of simple curves. The commonly

used types of curves are clothoid curves (Kanayama and Miyake, 1986; Pin and

Vasseur, 1990; Delingette et al., 1991) and cubic spiral curves (Nagy and Kelly,

2001; Kelly, 2003; Liang et al., 2005). However, there are drawbacks using clothoid

curves such as it results in a discontinuity in the derivative of the curvature.

Therefore, cubic spiral curves are adopted instead of clothoid curves in this study.

This is because the cubic spiral curve provides a smooth path, minimizes the variation

of jerk and is a simple curvature profile to follow. In addition, Tounsi and Le Corre

(1996) introduced a variable velocity function in order to minimize the jerk problem

and to obtain smooth trajectories. However, the reviewed research proposed the

algorithm for cubic spiral curves in terms of distance rather than time. In contrast,

timing to reach the desired location is more important rather than distance in certain

situation such as for the task-based missions.

The research based on human behaviour observation in dynamic environment has

been carried out in order for the robot to avoid the obstacles while navigating (Fajen

and Warren, 2003; Fajen et al., 2003; Hamner et al., 2006; Huang et al., 2006). A

camera was used by Fajen et al. (2003) and Huang et al. (2006) as a navigational aid

for robot to avoid the obstacles. Huang et al. used the potential field approach to

control the angular acceleration and heading of the robot. However, this approach

gives conservative results as the robot attempted to avoid the obstacles by following

the far path even though to avoid smaller obstacles. In addition, Hamner et al. (2006)

introduced a speed control function, which slows down the robot as the obstacle gets

closer and gives time to the robot to turn and avoid it. However, this approach allows

the mobile robot to make a sharp while avoiding the obstacles which will give a

negative impact to the robot’s motion. Jolly et al. (2008) presented a method to avoid

the obstacles by using Bezier curves. The idea is to get the control point in order to

generate the Bezier curves for the new path which avoid the obstacles. This idea

appears to be useful for this study.

 Literature Review

34

So far, there is no depth research focuses on time-critical motion planning with

obstacle avoidance capability for nonholonomic car-like mobile robots and on

multiple robots which each robot has a different mission or objective in time critical

environments. Therefore, the purpose of this study is to develop a time-critical motion

planning for Ackermann-steering-like nonholonomic mobile robots with the

capability of obstacle avoidance in static and dynamic environments. In addition, the

developed algorithm will capable to plan the motion for different mobile robots from

the different starting point to accomplish specific missions or objectives

simultaneously.

At the end of this study, it is expected that the robot should be able to move from one

location and reach the next one with the specified orientation, velocity and time with

consideration of the kinematic and dynamic constraints such as maximum turning

radius, maximum velocity and acceleration. Moreover, the robot should have a

capability of planning the trajectory with known obstacles and re-adjust its trajectory

while avoiding the detected obstacles, which are unknown to the mobile robot in order

to catch-up with the time delayed due to avoiding the obstacles.

 Methodology

35

3. METHODOLOGY

The methodology developed for this study is driven by the research aims of this study.

Basically, the methods are divided into four stages as shows in Figure 3.1. Each stage

will briefly explain in the following subsections.

Figure 3.1 Stages for proposed methodology

Obstacle avoidance algorithm
development

Simulations

Motion planning algorithm
development

Hardware preparation and
experimental works

 Methodology

36

3.1 Stage 1: Development of Algorithms for Time-critical

Motion Planning

A new algorithm is to be developed through the use of mathematics for a time-critical

motion planning with the consideration of position, orientation, velocity and timing.

Geometric approach is adopted for generation of the trajectories. The types of curves

that are used for the trajectory planning are cubic and quintic polynomials because

they give smooth trajectories and they were derive from the kinematics and dynamic

constraints, which will discuss in later chapter. In addition, the kinematic and

dynamic constraints which are maximum turning radius and maximum velocity of the

mobile robot are taken into the consideration during the development of this

algorithm.

The development of these algorithms includes:

i. basic trajectory algorithm

ii. multiple waypoints planning

iii. multiple robots planning

3.2 Stage 2: Obstacle Avoidance Approach

Once the first stage has successfully been carried out, the second stage is to integrate

the obstacle avoidance capability into the system. The steps for this algorithm are

shown in Figure 3.2. At the beginning, the motion planning algorithm will generate a

path despite the presence of obstacles. Then, when the mobile robot detects an

obstacle, the safety margin and deviation point will be generated. This will give two

options for the mobile robot, whether to turn right or left, which is depending on the

current position and location of the obstacle in respect to the final point. Once the

decision has been made, a new path will be generated to avoid the obstacle. Generally,

during navigation, the robot will be capable of detecting and avoiding obstacles and

re-adjust its original path once encounters the obstacle in order to catch-up the time

delayed due to avoiding the obstacle. Finally, this algorithm will be extended to deal

with both the unknown static and dynamic obstacles.

 Methodology

37

Figure 3.2 Generalized steps for avoiding an obstacle

3.3 Stage 3: Simulation Works

Simulation works will be carried out at every stage aforementioned in order to ensure

the functionality and the effectiveness of the algorithms developed. The algorithms

will be simulated for several types of environments. Firstly, the environment is

assumed as an obstacle-free outdoor environment. Secondly, there are known

obstacles in the static environment. Lastly, there are combinations of known and

unknown obstacles, which make the outdoor environment more realistic for the

mobile robot navigation. Physical constraints experienced by real robot will be

investigated and included in the trajectory planning algorithms. The selection of the

sensors also will be carried out during this stage in order to have a smooth navigation

during experimental stage. Matlab software will be used for development and

conduction of simulations.

Detect obstacle

Generate safety margin

Optimization

Determine deviation points

Generate new trajectory

Which point to use?

 Methodology

38

3.4 Stage 4: Hardware Preparation and Experimental

Works

Once the simulations have successfully been carried out at every stage, the algorithm

will be validated by experiments. There will be several experiments to be carried out

based on the environmental setup as in the simulation stages. An Ackermann-steering-

like robot will be used in these experiments with consideration of the static and

dynamic constraints of this mobile robot. The mobile robot, which is modified from

the standard remote control car, will be equipped with sensors and time-critical

control systems to ensure the objectives of this study are met. The modified mobile

robot used in the experimental works is shown in Figure 3.3.

Figure 3.3 The modified mobile robot used in the experimental works.

The experimental setup has been divided into a few tasks in order to ease the

experimental works. The tasks are:

1. Prepare the mobile robot, which includes upgrading, modifying and

calibration works,

2. Program the microcontroller of the mobile robot,

3. Run the first test – obstacle-free environment, and

4. Run the second test – static and dynamic environments.

 Methodology

39

The main purposes of this experimental works are to validate the effectiveness of the

simulation framework developed and to verify the practicality of developed

algorithms in real-time applications. The experimental works will be conducted in an

open-space area. The mobile robot will communicate wirelessly with the personal

computer (PC), which will act as the coordinator. Then velocity and position of the

mobile robot at every time step will be recorded in PC. These data will be used to plot

the actual trajectory of the mobile robot. The movement of the mobile robot will also

be captured using video camera to observe the behaviour of the mobile robot during

navigating through the environment. These experimental results will then be used to

compare and validate the algorithms against the respective simulation results.

3.5 Concluding remarks

In this chapter, the methodology of this study was discussed. The work can divided

into four stages which began from the development of the algorithm for motion

planning until the verification of the algorithm. The algorithm was developed for

nonholonomic mobile robot by adopting geometric approach which includes obstacle

avoidance. The algorithm was then tested by simulation using Matlab. The simulation

works started from a simple scenario which was the obstacle-free environment in

order to assess the functionality of the algorithm. It was then further tested in the more

complicated environment with the combination of the static and dynamic obstacles.

Once the simulation works were successfully conducted, the algorithm was tested in

the real environments using a mobile robot. The mobile robot was development by

modifying a standard remote control car to become an autonomous nonholonomic

mobile robot. The experimental works were conducted in a series of cases. The static

and dynamic obstacles were considered in the experimental works in order to mimic

the real environment. The results from the experiment were then being compared to

the simulation works to validate and verify the practicality as well as the effectiveness

of the algorithm for the time-critical motion planning.

 Algorithms for Motion Planning

40

4. DEVELOPMENT OF TIME-CRITICAL
MOTION PLANNING ALGORITHMS

In this chapter, the development of time-critical motion planning algorithms and

obstacle avoidance algorithm is discussed. The motion planning algorithms are based

on the geometric approach. The development of the algorithms begins with the

derivation of mathematical functions and boundary conditions until the integration of

motion planning algorithm with obstacle avoidance algorithm.

The proposed algorithms for this study are shown in Figure 4.1. The algorithms are

divided into several steps in order to ensure the algorithms will be executed smoothly.

Firstly, the planner needs to set the input data for the mobile robot at the initial point

and final point. The input data are position, orientation, steering angle, velocity and

travelling time. Then an initial trajectory will be generated based on these inputs for

the mobile robot to move from the initial point to the final point. Parameters such as

position, velocity, orientation and steering angle will be determined at every time step.

Furthermore the algorithms will check the current steering angle to ensure this output

does not exceed the maximum limit. In the case of current steering angle exceeds the

 Algorithms for Motion Planning

41

maximum limit, the replanning algorithm will be initiated. A new steering angle will

be used, which is the maximum steering angle and the initial trajectory will be

modified in order to satisfy this limitation. On the other hand, if the mobile robot

detects an obstacle, the obstacle avoidance algorithm will be initiated. If there is no

obstacle and the current velocity or steering angle does not exceed the maximum

limit, the mobile robot will continue its journey based on the generated trajectory until

it reaches the final point.

Figure 4.1 Flowchart of the proposed algorithms

Regarding the replanning algorithm, if any steering angle exceeds the maximum limit

while moving along the path, the data at the current time step, which are location,

velocity and orientation of the mobile robot will be obtained and will be used as the

initial input data. Then the value of the steering angle will be readjusted to the

specified maximum limit value for the steering angle and a new trajectory will be

generated. The replanning algorithm is required for the proposed motion planning

algorithms in order to obtain a smooth trajectory in which the mobile robot will be

limited to kinematic and dynamic constraints such as steering angle and velocity.

Trajectory generation

Continue manoeuvre

Avoid/Replanning Data

Input Data
x, y, Ø, Ө, v, t

Is there any obstacle?
Is ø > ømax

YES

NO

 Algorithms for Motion Planning

42

4.1 Kinematic model of nonholonomic mobile robot

Figure 4.2 A car-like mobile robot

In this study, a car-like mobile robot is considered. The front wheels are the steering

and the rear wheels are the driving wheels. For this study, it is assumed that both front

wheels of the mobile robot will have similar steering angle, which is treated as a

single front wheel as shown in Figure 4.2. The distance between front wheel and rear

wheel axle centre is l. The midpoint of rear wheel axle is set to be a centre point in the

space state, CP. Given the generalized coordinates is Ttvyxq],,,,,[φθ= , with (x, y)

are the Cartesian coordinate, θ is the orientation of mobile robot with respect to the x-

axis in Cartesian coordinate , φ is steering angle, v is the velocity and t is the

required travel time.

Let ρ be the radius of rear wheel, 1u be the angular velocity of the driving wheel and

2u be the steering velocity of steering wheel (Dong and Guo, 2005). Then, the state

space that represents the kinematic constraints of this mobile robot can be obtained

from:

21

1

0

0

0

0

/tan

sin

cos

uu
l

y

x





















+





















=





















ρ
φ
θ
θ

φ
θ
&

&

&

&

 (4.1)

X

Y

y

x

Front wheel

Rear wheel

Ø

Ө

l

 Algorithms for Motion Planning

43

From the kinematic model (Equation 4.1), the range of θ and φ is limited to),(22
ππ−

due to the structural and mathematical constraint of the physical mobile robot.

From Equation 4.1, we have:

θtan=
dx

dy
,

θ
φ
32

2

cos

tan

ldx

yd = (4.2)

4.2 Boundary conditions

From the kinematic model (Equation 4.1), we have set the boundary conditions for the

mobile robot as follow:

,],,,,,[)(

,],,,,,[)(000000
0

T
ffffff

f
f

T
o

tvyxqtq

tvyxqtq

φθ
φθ

==

==
 (4.3)

with v is the velocity of the mobile robot. In this study, we have set the initial velocity

as 0v and final velocity as Tv , so that we can control the velocity at both states. The

generalized velocity function for the x- and y-axis is given by:

θ
θ

sin

,cos

vy

vx

=
=

&

&
 (4.4)

The details of boundary conditions at initial and final state for x- and y-axis are as

follow:

;)(

,)(

,)(

,)(

00

00

ff

ff

xtx

xtx

xtx

xtx

&&

&&

=

=
=
=

 (4.5)

;
cos

tan

,tan

,)(

0
3

0
2

2

0

00

0

0

θ
φ

θ

ldx

yd

dx

dy

yty

tt

tt

=

=

=

=

= (4.6)

 Algorithms for Motion Planning

44

;
cos

tan

,tan

,)(

32

2

f

f
tt

ftt

ff

ldx

yd

dx

dy

yty

f

f

θ
φ

θ

=

=

=

=

= (4.7)

For x equation, with consideration of the boundary conditions (Equation 4.5), we have

chosen a cubic polynomial equation as:

3
3

2
210 tatataax +++= , (4.8)

with first and second derivative as follow:

2
321 32 tataa

dt

dx ++= , (4.9)

taa
dt

xd
322

2

62 += (4.10)

For y equation, with consideration of the boundary conditions (Equation 4.6 and

Equation 4.7), we have chosen a quintic polynomial equation as:

5
5

4
4

3
3

2
210 tbtbtbtbtbby +++++= , (4.11)

with first and second derivative as follow:

4
5

3
4

2
321 5432 tbtbtbtbb

dt

dy ++++= , (4.12)

3
5

2
4322

2

201262 tbtbtbb
dt

yd +++= (4.13)

4.3 Coordinate-x equation

From the boundary conditions (Equation 4.5) and the cubic polynomial equations

(Equation 4.8, 4.9 and 4.10), we have:

 Algorithms for Motion Planning

45

0
3

03
2

02010

00)(

xtatataa

xtx

=+++

=
 (4.14)

0
2

03021

0
0

32

)(

xtataa

x
dt

tdx

&

&

=++

=
 (4.15)

ffff

ff

xtatataa

xtx

=+++

=
3

3
2

210

)(
 (4.16)

fff

f
f

xtataa

x
dt

tdx

&

&

=++

=

2
321 32

)(

 (4.17)

Let Taaaaa],,,[3210= is the constant vector and rearrange Equation 4.14 to Equation

4.17 as cAa 1−= , we have:









































=


















−

f

f

x

x

x

x

TT

TTT

tt

ttt

a

a

a

a

&

&0

0

1

2

32

2
00

3
0

2
00

3

2

1

0

3210

1

3210

1

 (4.18)

4.4 Coordinate-y equation

From the boundary conditions (Equation 4.6) and the quintic polynomial equations

(Equation 4.11 ─ 4.13), we have:

0
5

05
4

04
3

03
2

02010

00)(

ytbtbtbtbtbb

yty

=+++++

=
 (4.19)

From Chain Rule, we have:

 Algorithms for Motion Planning

46

0
|

tan5432

tan5432

)(

1

01
4

05
3

04
2

03021

0
4

05
3

04
2

03021

0

ttdt

dx

with

tbtbtbtbb

dt

dx
tbtbtbtbb

dx

dy

dt

dx

dt

tdy

==

=++++

=++++

=

α

θα

θ

 (4.20)

and

2

3

2

2

2

0
3

0
302

3
05

2
04032

0
3

0

2

02

2
3

05
2

04032

2

2

2

2

2

2
0

2

0

0

|

|

cos

tan
tan201262

cos

tan
tan201262

)(








=

=

+=+++








+=+++








+=

=

=

tt

tt

dt

dx

dt

xd

with

l
tbtbtbb

ldt

dx

dt

xd
tbtbtbb

dt

dx

dx

yd

dt

xd

dx

dy

dt

tyd

α

α

θ
φαθα

θ
φθ

 (4.21)

From the boundary conditions (Equation 4.17) and the quintic polynomial equations

(Equation 4.11 ─ 4.13), we have:

ffffff

ff

ytbtbtbtbtbb

yty

=+++++

=
5

5
4

4
3

3
2

210

)(
 (4.22)

From Chain Rule, we have:

 Algorithms for Motion Planning

47

ftt

fffff

fffff

f

dt

dx

with

tbtbtbtbb

dt

dx
tbtbtbtbb

dx

dy

dt

dx

dt

tdy

==

=++++

=++++

=

|

tan5432

tan5432

)(

4

4
4

5
3

4
2

321

4
5

3
4

2
321

α

θα

θ

 (4.23)

and

2

6

2

2

5

365
3

5
2

432

3

2

2

2
3

5
2

432

2

2

2

2

2

2

2

|

|

cos

tan
tan201262

cos

tan
tan201262

)(








=

=

+=+++








+=+++








+=

=

=

f

f

tt

tt

f

f
ffff

f

f
ffff

f

dt

dx

dt

xd

with

l
tbtbtbb

ldt

dx

dt

xd
tbtbtbb

dt

dx

dx

yd

dt

xd

dx

dy

dt

tyd

α

α

θ
φ

αθα

θ
φ

θ

 (4.24)

Let Tbbbbbbb],,,,,[543210= is the constant vector and rearrange Equation 4.19 to

Equation 4.24 as cAb 1−= , we have:































+

+



























=


























−

f

f
f

f

f

l

y
l

y

TT

TTTT

TTTTT

ttt

tttt

ttttt

b

b

b

b

b

b

θ
φ

αθα

θα

θ
φαθα

θα

365

4

0
3

0
302

01

01

32

432

5432

3
0

2
00

4
0

3
0

2
00

5
0

4
0

3
0

2
00

5

4

3

2

1

0

cos

tan
tan

tan

cos

tan
tan

tan

20126200

543210

1

20126200

543210

1

 (4.25)

 Algorithms for Motion Planning

48

4.5 Orientation (θ) equation

By Equation 4.1, we have:










++
++++

=

=
++

++++

=

=

−
2

321

4
5

3
4

2
3211

2
321

4
5

3
4

2
321

32

5432
tan

tan
32

5432

tan

tan

tataa

tbtbtbtbb

tataa

tbtbtbtbb

dx

dy

dt
dx

dt
dy

θ

θ

θ

θ

 (4.26)

4.6 Steering angle (φ) equation

By Equation 4.2, we have:






















++
+−+++

=

++
+−+++

=










−
=








+=

−
22

321

32
3

5
2

43231

22
321

32
3

5
2

432
3

2

2

2

2

2

2

2

2

2

2

2

2

2

2

)32(

tan)62()201262(
costan

)32(

tan)62()201262(

cos

tan

tataa

taatbtbtbb
l

tataa

taatbtbtbb

l

dt

dx
dt

xd

dx

dy

dt

yd

dx

yd

dt

dx

dx

yd

dt

xd

dx

dy

dt

yd

θθφ

θ
θ

φ

 (4.27)

 Algorithms for Motion Planning

49

4.7 Angular velocity (1u) equation

Let 10 uv ρ= . From Pythagoras’ Theorem, we have:

ρ
θθ

θθρ

θθρθθρρ
θρθρρ

θρθρρ
θρθρρ

]sin)5432[(]cos)32[(

)(sin)(cos

)(sinsin)(coscos

sincos

sin)(cos)()(

)sin()cos()(

4
5

3
4

2
321

2
321

1

1

111

2
1

2
11

22
1

22
1

2
1

2
1

2
1

2
1

tbtbtbtbbtataa
u

dt

dy

dt

dx
u

uuu

uuu

uuu

uuu

+++++++
=

+=

+=
+=

+=

+=

 (4.28)

4.8 Obstacle avoidance approach

Obstacle detection is fundamental for a mobile robot to navigate safely in a dynamic

environment. In this study, the obstacle avoidance approach deals with both static and

moving obstacles in a 2D workspace using a laser range finder (LRF). The approach

is evolved from the dynamic trajectory planning scheme presented (Jolly et al., 2008),

In a dynamic trajectory planning scheme, the mobile robot will replan and modify its

trajectory once it detects an obstacle and the newly generated trajectory may differ

from the initially planned trajectory. However, instead of using the Bezier curves,

which were used by Jolly et al. (2008), polynomial curves have been adopted in this

study. The reason behind this is to ensure that the mobile robot will pass through all

the control points to have a better control for the mobile robot’s motion, compared to

the Bezier curves, which only pass through the first and last control points (Jolly et

al., 2008). In this study, all the control points are used as inputs to generate the

polynomial curves to ensure the generated curves will pass all the control point.

Furthermore, the dynamic trajectory planning scheme is divided into two planning

schemes, which are utilised to avoid static obstacles and moving obstacles.

 Algorithms for Motion Planning

50

4.8.1 Avoiding static obstacles

In this study, the static obstacles are divided into two categories: known and

unknown. Known static obstacles are known in advance to the planner during offline

planning, while unknown static obstacles are unknown to the planner and will only be

detected by the sensor during navigation. For the known static obstacles, the planner

will consider them in the initial stage while generating the trajectory. Thus the

generated trajectory should navigate the mobile robot to be away from the potentially

colliding obstacles. Meanwhile, the unknown static obstacles will only be considered

when the mobile robot starts to navigate through the environment. The general view

of avoiding an unknown static obstacle is illustrated in Figure 4.3.

Figure 4.3 Avoiding a detected static obstacle which is unknown in priori

When the mobile robot starts to navigate along the initial trajectory, the range finder

will also start to scan the environment. The maximum scanning range and resolution

is set by Dscan and Өscan, respectively. Once the mobile robot detects an obstacle, it

will check whether the obstacle is within collision region or not. The collision region

is defined by collision range (Dcol) and collision angle (Өcol). If the obstacle falls into

this region, a new deviated point will be calculated in order to readjust the initial

trajectory and to ensure the mobile robot avoids the obstacle. The deviated point

(xdev,ydev) is determined by detection distance (Ddect), detection angle (Өdect), obstacle’s

size (Robs), safety margin (Rsm), robot’s width (w) and sensor’s position (xsen,ysen). The

following equations are used to obtain the deviated point:

(xdev, ydev)

Rsm

Rsm+w

Ddect

Ddev

Dcol

Өcol

Өdev

Өscan Robs

initial
trajectory

obstacle

mobile
robot

(xsen, ysen)

Dscan

Өdect
deviated
trajectory

w

 Algorithms for Motion Planning

51

() ()2 2

dev sm dect obsD R w D R= + + + (4.29)

1tan sm
dev dect

dect obs

R w

D R
θ θ −  += +  + 

 (4.30)

cosdev sen dev devx x D θ= + × (4.31)

sindev sen dev devy y D θ= + × (4.32)

Once the deviated point is obtained, a new trajectory (deviated trajectory) is generated

from the current point to the final point, through the deviated point. The new

trajectory will have to ensure that it catches up with the time lost during obstacle

avoidance in order to reach the final point at the specified time. Note that the new

trajectory does not necessarily follow the initial generated trajectory as the new

trajectory is based on the updated information.

4.8.2 Avoiding moving obstacles

The strategy to avoid a moving obstacle is usually based on prior information of the

moving obstacle’s velocity (Guo et al., 2003; Qu et al., 2004). However, in this study

the strategy is based on the direction and position of the moving obstacle.

Furthermore, the moving obstacle’s direction of movement will influence the

selection of appropriate strategy to avoid it. For instance, if the moving obstacle is

approaching perpendicularly to the mobile robot, the mobile robot will avoid the

moving obstacle as illustrated in Figure 4.4(a). On the other hand, if the moving

obstacle is approaching from the opposite direction of the mobile robot, the moving

obstacle is treated as a static obstacle and the mobile robot will avoid the obstacle as

illustrated in Figure 4.4(b).

 Algorithms for Motion Planning

52

 (a) (b)

Figure 4.4 Avoiding a moving obstacle (a) perpendicular direction to the mobile robot

and (b) in opposition to the mobile robot.

Despite the direction of the moving obstacle, the mobile robot will predict the

possibility of collision between the mobile robot and the moving obstacle. As shown

in Figure 4.5(b), when the mobile robot first detects a moving obstacle, the position

for both the mobile robot and the moving obstacle will be registered into the registry.

Then, when the next detection occurs, the system will compare the stored position

(first detection) with the current position (second detection) to obtain direction and

distance between these two locations for both the mobile robot and the moving

obstacle. In addition, the planner will estimate the velocity of the moving obstacle.

Ddect

Ddev

Rsm

moving obstacle

mobile
robot

(xsen, ysen)

Өdect

deviated
trajectory

previous position

previous
position

obstcale’s path

initial
trajectory

(xdev, ydev)

Ddect
Ddev

Өdev

initial
trajectory

moving
obstacle

mobile
robot

(xsen, ysen)

Өdect

deviated
trajectory

previous
position

previous
position

Ddect’

Өdect’

obstcale’s path

 Algorithms for Motion Planning

53

 (a) (b)

 (c) (d)

Figure 4.5 Collision prediction approach (a) before detection of the obstacle, (b) first

detection, (c) predicted position falls inside the collision radius, and (d) obstacle

avoidance approach implemented.

From this information, the system can predict the mobile robot’s and moving

obstacle’s position for the next two steps. If the predicted moving obstacle’s position

falls inside the collision radius of the mobile robot, then the collision is likely to

happen as shown in Figure 4.5(c), the collision point (xcol, ycol) and the deviation point

(xdev, ydev) are determined by using the following equations:

coscol sen dect dectx x D θ= + × (4.33)

coscol sen dect decty y D θ= + × (4.34)

collision radius

deviated
trajectory

robot

obstacle

 Algorithms for Motion Planning

54

2 2() ()col movobs col movobs colD x x y y= − + − (4.35)

()dev col movobsx x r w= − + (4.36)

dev coly y= (4.37)

where,

rmovobs = size of a moving obstacle

w = width of the robot.

Then a new trajectory which is a deviated trajectory will be generated from the mobile

robot’s current point to the final point, through the deviation point as shown in Figure

4.5(d).

4.9 Concluding remarks

The algorithm for time-critical motion planning was developed for a nonholonomic

mobile robot by geometric approach. The kinematic constraints were taken into

consideration during the development of the algorithm. Furthermore, the development

of the algorithm was also considered the limitation of the mobile robot such as

steering angle and velocity in order to obtain a smooth trajectory. In addition, the

obstacle avoidance approach was incorporated in the algorithm in order for the mobile

robot to avoid obstacles.

The obstacle avoidance algorithm was divided into two categories which are for static

obstacles and for moving obstacles. The approach utilizes the developed trajectory

planning algorithm in order to avoid obstacles. When avoiding obstacles, the

algorithm replans its initial trajectory once the mobile robot detects an obstacle. The

algorithm uses the current information such as location of the mobile robot and

obstacle, velocity and orientation to generate new trajectory. Therefore, the mobile

robot will able to avoid the obstacle and reach the final point at the specified time.

In addition, for moving obstacle, the algorithm will predict the motion of the detected

moving obstacle and the possibility that the collision will occur between the mobile

robot and the moving obstacle. If the collision is likely to happen, the algorithm will

 Algorithms for Motion Planning

55

replan its trajectory based on the direction of the moving obstacle. Therefore, the

mobile robot will able to avoid the obstacle and reach the final point at the specified

time.

 Simulation Results & Discussions

56

5. SIMULATION RESULTS AND
DISCUSSIONS

Simulation is one of the popular tools to investigate the effectiveness and capability of

a system prior to the real experimental works. A few benefits can be gained by

conducting simulation works such as reducing experimental material’s cost and time.

Robotics field also is no exception in using simulation. The algorithm can be

investigated and any adjustment and modification on the algorithm can be done

during simulation works. Then once the algorithm is working well, it can be

downloaded into real robots. Furthermore, simulation results can be used as a

guideline or comparison for the experimental works.

In this study, the platform for the simulation works is conducted in Matlab. Matlab is

one of the development tools that has been widely used in engineering fields. Matlab

is to develop the simulation platform because of its powerful graphics and ease of use.

In addition, it is also supported by many different computer systems and it comes with

an extensive built-in library of predefined functions for mathematical and technical

solutions.

 Simulation Results & Discussions

57

5.1 Simulation architecture

The algorithms introduced in this study consist of an offline and online planning.

These algorithms will ensure the mobile robot is able to navigate with a smooth

motion and within the limitation of the kinematic constraints such as steering angle

and it also be able to avoid obstacles.

Figure 5.1 shows the scheme of the algorithm steps for the simulation, which were

used in this study. At the early stage, the initial trajectory will be generated using the

input data from the user. Then, the offline planning was executed to deal with the

known or predefined static obstacles. The algorithm will check whether there is a

known static obstacle along the way of the initially generated trajectory. If there is an

obstacle, the new input data at the detection point will be used, such as position,

orientation, steering angle, velocity and time, to generate a new trajectory. The

process will continue until a collision-free trajectory is generated, with incorporation

of steering angle limitation.

Once the offline planning has been completed and the trajectory has been generated,

the new data from the offline planning will be used for the online planning. The

inputs, such as time, steering angle and velocity, will be used to simulate the mobile

robot at every time steps. While navigating within the environment, the robot also will

check the presence of new obstacle, which is previously unknown. If there is an

identified obstacle, the obstacle avoidance will be executed to avoid the obstacle and

once the robot has avoided the obstacle, the trajectory from the deviated point to the

final point will be replanned using the actual data in order to catch-up the time loss

from avoiding the obstacle and to maintain a smooth trajectory. The process will

continue until the robot reaches the final point.

 Simulation Results & Discussions

58

Figure 5.1 Simulation process flowchart.

Generate path

Exceed steering
angle limit?

Wireless
communication

Input data

Any known
static obstacle?

YES

YES

NO

NO

New input
data

Register obstacle’s
data

New obstacle?

New input
data

YES

NO

Scan environment –
detection sensors

Continue
manoeuvre

Reach final
point?

End

Simulation
input

Any unknown
static or moving

obstacle?

YES

YES

NO

NO

Output data
OFFLINE
PLANNING

ONLINE
PLANNING

OBSTACLE
REGISTRY

 Simulation Results & Discussions

59

5.2 Simulated vehicle

Figure 5.2 Geometric model of a mobile robot.

For simulation environment, the mobile robot used for this study is an Ackermann-

steering mobile robot which based on the modified remote control car. It is assumed

that the mobile robot behaves as a tricycle which the rear wheels are the driving wheel

and the front wheel is a steering wheel. The geometry model of the mobile robot is

modelled based on work by Liddy and Lu (2007). However a few modifications have

been made to suit this study. In this project, the centre point (CP) is located at the

middle of the rear axle instead of centre of the vehicle and instantaneous turning

points (RP) is shown as in Figure 5.2. The inputs for this simulation environment are

velocity (v) and orientation (θ) which calculated in Section 4.1. The following

equations will demonstrate the actual position, orientation and steering angle during

online planning. To find the steering angle (φ):

tvtud ∆×∆+∆×=
2

1
 (5.1)

2sin(/ 2)

d
Rb

θ
=

∆
 (5.2)

y

x

RP

Rt Rb

CP

Ø

Ө

l

overall length

Steering wheels

Driving
wheels

w

 Simulation Results & Discussions

60








= −

Rb

l1tanφ (5.3)

where,

d = distance between time interval
u = initial velocity
Rb = distance between CP and RP.

To find position of x and y, the equations can be reversed by using steering angle and

velocity as inputs, as shown by the following equations:

φtan

l
Rb= (5.4)








=∆ −

Rb

d 2/
sin2 1θ (5.5)

θθθ ∆+= oldnew (5.6)

θcosdxx oldnew += (5.7)

θsindyy oldnew += (5.8)

5.3 Matlab frameworks

In this section, the development of the simulation frameworks using Matlab is

discussed. In order to simulate the mobile robot planner as close as possible to the

actual environment, the Laser Range Finder (LRF) is simulated as shown in Figure

5.3.

 Simulation Results & Discussions

61

Figure 5.3 Simulated Laser Range Finder.

The LRF is placed in front of the mobile robot so that the detection coverage can be

optimised. The coverage of the LRF is defined by the scan angle and the detection

range. And the resolution of the LRF is defined by the angle step and the range step.

In the actual LRF, only the angular resolution is counted. However in order to obtain

the detection distance once the mobile robot detects an obstacle, the range step is one

of the approaches in the simulation framework that can be adopted to overcome this

issue.

The map can be generated in any graphic editor software such as Paint. In this study,

the obstacles are represented by square and circle as shown in Figure 5.4. The known

and unknown static obstacles are represented by black and green squares,

respectively. And the moving obstacle is represented by red circle. The obstacles can

be randomly placed in the simulation map or can be arranged properly to indicate the

fixed objects in the actual environment such as lamp posts and trees.

Detection range

Scan angle

Range step

Angle step

 Simulation Results & Discussions

62

Figure 5.4 Simulation map with static and moving obstacles.

Furthermore, the Graphical User Interface (GUI) was developed for the simulation

framework as shown in Figure 5.5. This interface was developed to ensure the user

will be able to run the simulation with ease and will give a user-friendly simulation

framework. With the GUI, the user will only need to key in the initial and final state

of the mobile robot. In addition, the user will also need to key in the physical data of

the mobile robot.

(a)

 Simulation Results & Discussions

63

(b)

Figure 5.5 The Graphical User Interface (GUI) for simulation framework (a) Input

GUI, (b) Output GUI

5.4 Trajectory optimization

The original trajectory planning may exceed the restriction of the physical limitations

of the mobile robot such as maximum turning radius and maximum velocity or

acceleration. In real-life driving, the lower speed is preferred when the driver is closed

to the obstacles or when the driver is making a sharp turn. Thus the mobile robot

needs to follow a reasonable velocity profile in order to mimic the actual driving

behaviour. In Section 5.1, the architecture of the simulation has been discussed. As

we know, the original offline trajectory planning will consider the limitation of

steering angle and velocity of the mobile robot. Furthermore, these boundary

conditions will also be considered in the online planning, meaning that when the

mobile robot starts to navigate the environment following the original trajectory. An

example of the generated trajectory is shown in Figure 5.6.

 Simulation Results & Discussions

64

Figure 5.6 Original trajectory plan.

The original trajectory is planned with two obstacles – known and unknown static

obstacles. The map dimension is 50m x 50m and the travel time is set to be 60s. As

shown in Figure 5.6, the original trajectory was planned pass through the unknown

obstacle. This is because the algorithm only considered the known obstacle at the first

place. The unknown obstacle will be considered after the sensor detects the obstacle

and the obstacle is potentially blocking the path. Then the algorithm will planned a

new trajectory in order to avoid the obstacle. The final result of the trajectory is

shown in Figure 5.7.

 Simulation Results & Discussions

65

Figure 5.7 Final result of the trajectory.

The orientation of the mobile robot was changed dramatically as the mobile robot tries

to avoid the obstacle as shown in Figure 5.8(a). If there is no other obstacle detected,

the mobile robot will try to follow the original trajectory as close as possible. Once it

detected an unknown obstacle, for example in this case, the mobile robot detected an

unknown obstacle at time step 33s, it has turned right in order to avoid the obstacle.

The decision of turning right or left is made by observing the location or position of

the obstacle. For example, if the obstacle is at the left region of the mobile robot

respect to the mobile robot’s orientation, it will turn right. Furthermore, the actual

orientations were given by the red line. The actual orientations were slightly different

from the adjusted orientation due to the adjustment made in order to satisfy the actual

steering limitation of the mobile robot during navigation as shown in Figure 5.8(b).

 Simulation Results & Discussions

66

 (a) (b)

Figure 5.8 Orientation profiles (a) Planned orientation (red line) against adjusted

orientation (red dashed), and (b) adjusted orientation (red dashed) against actual

orientation (blue line).

The steering angle plots are shown in Figure 5.9. The adjustment on the robot’s

orientation will also reflect the steering angle values of the mobile robot. Figure 5.9(a)

shows the original planned steering angle values (red line) compared to the adjusted

on steering angle values (red dashed) once the mobile robot detected an obstacle. The

positive values indicate the mobile robot is turning right while the negative values

indicate the mobile robot is turning left. The actual steering angle values are given by

the blue plot as shown in Figure 5.9(b).

 (a) (b)

Figure 5.9 Steering angle profiles (a) Planned steering angle (red line) against

adjusted steering angle (red dashed), and (b) adjusted steering angle (red dashed)

against actual steering angle (blue line).

 Simulation Results & Discussions

67

One of the input parameter is the velocity of the mobile robot. Figure 5.10(a) shows

the original planned velocity values which are given by the red plot and the adjusted

velocity values once the mobile robot detected an obstacle which is given by the blue

plot. Once the mobile robot detected an obstacle, the algorithm tends to decrease the

velocity of the mobile robot in order to avoid the obstacle smoothly. It is also mimic

the actual human driver when he encounters an obstacle. The driver will try to slow

down its vehicle once he detects an obstacle so that he can steer steering smoothly.

Then once the mobile robot was already avoided the obstacle, the mobile robot will

speed up in order to pick up the time lost due to avoiding the obstacle. This is the

reason why the adjusted velocity value is higher than the original velocity after 39s. In

Figure 5.10(b), the actual velocity was matched with the adjusted velocity because the

algorithm used the adjusted velocity as input parameter for the mobile robot to

manoeuvre.

 (a) (b)

Figure 5.10 Velocity profiles (a) Planned velocity (red line) against adjusted velocity

(red dashed), and (b) adjusted velocity (red dashed) against actual velocity (blue line).

The final actual trajectory is shown in Figure 5.11. The planned trajectory is given by

the red dashed plot while the actual trajectory is given by the blue line plot. As we can

see in Figure 5.11(b), the actual trajectory is slightly deviated from the adjusted

trajectory due to the adjustment made in order to cater the steering angle limitation.

This proved that the algorithm is able to incorporate the kinematic constraints of the

mobile robot.

 Simulation Results & Discussions

68

(a)

(b)

Figure 5.11 Adjusted trajectory (red dashed) against actual trajectory (blue line).

Close-up figure in (b)

 Simulation Results & Discussions

69

5.4.1 Replanning approach

Replanning approach is introduced to reduce the errors while the mobile robot

navigates through the intermediate waypoints. When the mobile robot reaches the

waypoint, the replanning approach will be executed and a new trajectory will be

generated from the current intermediate waypoint to the next waypoint. The current

data at the waypoint such as position and velocity will be used to generate the new

trajectory.

The replanning approach scenario is in Figure 5.12. The black areas represent the

walls and/or known obstacles. The waypoints are represented by red circles. Point 1

and Point 4 are the initial and final points, respectively. Point 2 and Point 3 are the

desired waypoints. The orientation at each point is indicated by an arrow. The input

data for this simulation are summarized in Table 5.1. The control inputs for this

simulation are steering angle and velocity.

Table 5.1 Input data for replanning approach scenario

Point t (sec) x (m) y (m) θ (o) ø (o) v (m/s)

1 0 15 10 90 0 0

2 20 30 50 0 0 2

3 40 70 50 0 0 2

4 60 85 90 90 0 0

 Simulation Results & Discussions

70

Figure 5.12 Prior map with two waypoints connecting the initial and final point.

The simulation algorithm consists of both offline and online planning components.

The offline planning deals with the known obstacles and it will be executed at the

initial stage. Then, the online planning will be executed once the mobile robot starts

navigating in the environment. The online planning is to detect and deal with

unknown obstacles Table 5.2 summarizes the actual collected data at every waypoint

without replanning approach. In comparison to input data for simulation in Table 5.1,

the errors in position and orientation at the final point are around 2.29 meters and 0.3

degrees, respectively. These errors are quite large, especially for position error.

Table 5.2 Actual collected data of simulation without replanning approach

Point t (sec) x (m) y (m) θ (o) ø (o) v (m/s)

1 0 15 30 90 0 0

2 20 30.08 49.99 2.1 0 2

3 40 70.00 49.97 -3.3 0 2

4 60 87.21 89.04 89.7 0 0

1

2 3

4

 Simulation Results & Discussions

71

In the scenario without replanning approach, the mobile robot will follow the initial

trajectory. While in the scenario with replanning approach, the new trajectory will be

generated once the mobile robot reached the waypoint. The simulation results for

replanning approach are shown in Figure 5.13 Simulation results with replanning

approach.

 (a) At time step = 1 sec (b) At time step = 21 sec

 (c) At time step = 41 sec (d) At time step = 60 sec

Figure 5.13 Simulation results with replanning approach.

Figure 5.13(a) shows the initial planned trajectory from the initial point to the final

point, and pass through all the waypoints. Then the mobile robot navigates along the

initial planned trajectory until it reaches Point 2. Once it reaches Point 2, the

replanning algorithm is executed. Using the actual data at Point 2, a new trajectory is

generated from Point 2 to Point 3, as shown in Figure 5.13(b). The new trajectory is

almost identical to the initial trajectory because the errors are quite small. Then the

Initial
trajectory

New trajectory

2 3

3

4

 Simulation Results & Discussions

72

mobile robot continues its journey along the new trajectory, avoiding the obstacle and

reaches Point 3. At this point, replanning algorithm once again is executed and a new

trajectory is generated from Point 3 to the final point, as shown in Figure 5.13(c). The

mobile robot then continues its journey and finally reaches the final point, as shown in

Figure 5.13(d). The actual collected data at every waypoint are summarized in Table

5.3.

Table 5.3 Actual collected data with replanning approach

Point t (sec) x (m) y (m) θ (o) ø (o) v (m/s)

1 0 15 30 90 0 0

2 20 30.08 49.99 2.1 0 2

3 40 70.00 49.97 -3.3 0 2

4 60 84.9 90.00 93.2 0 0

From the, the data at both waypoints - Point 2 and Point 3 - are not much different

from data in Table 5.2. This is because at Point 2, the replanning approach was not yet

been executed. While at Point 3, the trajectory was affected by the obstacle avoidance

algorithm. Therefore the significant errors different can be perceived at the final point.

With replannning approach, the errors in position and orientation are around 0.1

meters and 3.2 degrees, respectively. Although the error in orientation is greater than

the previous orientation error, it is considered as still in satisfactory limits, with the

consideration of both position and orientation errors.

5.5 Simulation results and discussions

In the previous section, the simulation framework used a simple example to explain

how the simulation and algorithms work. The generated map was consisted of two

static obstacles. In this section, more complicated examples are presented. A series of

simulation cases have been setup to investigate the capability and effectiveness of the

algorithms. The scenario of the simulations will include more mobile robots, obstacles

and more complicated environments.

All the simulations were conducted in Matlab. Steering angle and velocity of the

mobile robot have been used as the control input parameters for these simulations. A

 Simulation Results & Discussions

73

few general assumptions have been made for the modelled Ackermann steering car-

like robot in these simulations:

1. The mobile robot moves on horizontal plane – no topological effects,

2. Single point contact of the wheels,

3. The wheels are not deformable,

4. No slipping, skidding or friction, and

5. The wheels are attached at the rigid chassis.

5.5.1 Navigation in static and open-space environments

The first set of simulation cases is conducted in the static and open-space

environments. In these scenarios, the there are only static obstacles and the map is set

as an open space are such as a field or large area. The complicated obstructed

environment is a 100m x 100m region and the obstacles are randomly placed in the

map consisting known and unknown static obstacles as shown in Figure 5.14. The

environment is tested by one, two and three robots with various initial and final

points.

Figure 5.14 A complicated obstructed environment.

 Simulation Results & Discussions

74

In Case 1, the input data is tabulated in Table 5.4. In this case, only one mobile robot

was used to navigate in the environment. The mobile robot started from the bottom-

left of the map as shown in Figure 5.15(a). The red line is the original planned

trajectory without considering the known static obstacles, while the blue line is the

pre-planned trajectory with the consideration of the known static obstacles. At 29s,

the mobile robot detected an obstacle and the new trajectory was generated in order to

avoid the obstacle as shown in Figure 5.15(c). The final result at 60s is shown in

Figure 5.15(d).

Table 5.4 Input data for simulation Case 1.

Point t (sec) x (m) y (m) Ө (o) Ø (o) v (m/s)

Initial 0 0 0 45 0 0

Final 60 100 100 45 0 0

 Simulation Results & Discussions

75

 (a) (b)

 (c) (d)

Figure 5.15 One mobile robot navigates in the environment.

The comparisons between the planned and actual orientation, steering angle, velocity

and location of Robot 1 are shown in Figure 5.16. Due to the presence of the unknown

static obstacles, the trajectory was adjusted in order to avoid the unknown obstacles.

From Figure 5.16, the mobile robot tried to follow the planned input from the

beginning until it encountered the unknown static obstacles. The actual position of the

mobile robot at the final point is tabulated in Table 5.5.

 Simulation Results & Discussions

76

 (a) (b)

 (c) (d)

Figure 5.16 Robot 1: Planned (red) against actual (blue) plot for (a) orientation, (b)

steering angle, (c) velocity, and (d) location.

Table 5.5 Actual data collected at the final point for Case 1

 t (sec) x (m) y (m) Ө (o) Ø (o) v (m/s)

Planned 60 100 100 45 0 0

Actual 60 99.93 99.93 45.15 17.16 0

 Simulation Results & Discussions

77

In Case 2, two mobile robots were used and the input data for each robot are tabulated

in Table 5.6. The first mobile robot started from the bottom-left of the map and the

second mobile robot started from right-hand side of the map. Each robot navigates to

the different final point as shown in Figure 5.17(a). The travel time for both mobile

robots was assigned to 60 seconds. As we can see in Figure 5.17(b) and (c), both

mobile robots were capable to detect and avoid the obstacle. The final result at 60s is

shown in Figure 5.17(d).

Table 5.6 Input data for simulation Case 2.

Point t (sec) x (m) y (m) Ө (o) Ø (o) v (m/s)

Initial 0 0 0 45 0 0
Robot 1

Final 60 100 100 45 0 0

Initial 0 100 30 -30 0 0
Robot 2

Final 60 0 100 -30 0 0

 Simulation Results & Discussions

78

 (a) (b)

 (c) (d)

Figure 5.17 Two mobile robots navigate in the environment.

The comparisons between the planned and actual orientation, steering angle, velocity

and location for Robot 1 are similar to Case 1 as shown in Figure 5.16. For Robot 2,

the comparisons are shown in Figure 5.18. Due to the presence of the unknown static

obstacles, the trajectory was adjusted in order to avoid the unknown obstacles. The

actual position of the mobile robot at the final point is tabulated in Table 5.7.

 Simulation Results & Discussions

79

 (a) (b)

 (c) (d)
Figure 5.18 Robot 2: Planned (red) against actual (blue) plot for (a) orientation, (b)

steering angle, (c) velocity, and (d) position.

Table 5.7 Actual data collected at the final point for Case 2

Point t (sec) x (m) y (m) Ө (o) Ø (o) v (m/s)

Planned 60 100 100 45 0 0
Robot 1

Actual 60 99.93 99.93 45.15 17.16 0

Initial 60 0 100 -30 0 0
Robot 2

Final 60 -0.0057 100 -29.98 -1.84 0

 Simulation Results & Discussions

80

In the third case (Case 3), three mobile robots were used and the input data for each

mobile robot are tabulated in Table 5.8. The first mobile started from the bottom-left

of the map, the second mobile robot started from the right-hand side of the map and

the third mobile robot started from the left-hand side of the map as shown in Figure

5.19(a). The travel time for the first and the second mobile robot was assigned as 60

seconds, while the third mobile robot was 40 seconds. At 40s, the third mobile robot

was already reached the final point as shown in Figure 5.19(c). The final result at 60s

is shown in Figure 5.19(d).

Table 5.8 Input data for simulation Case 3.

Point t (sec) x (m) y (m) Ө (o) Ø (o) v (m/s)

Initial 0 0 0 45 0 0
Robot 1

Final 60 100 100 45 0 0

Initial 0 100 30 -30 0 0
Robot 2

Final 60 0 100 -30 0 0

Initial 0 0 50 0 0 0
Robot 3

Final 40 80 100 30 0 0

 Simulation Results & Discussions

81

 (a) (b)

 (c) (d)

Figure 5.19 Three mobile robots navigate in the environment.

The comparisons between the planned and actual orientation, steering angle, velocity

and location for Robot 1 and Robot 2 are similar to Case 1 and Case 2, respectively.

For Robot 3, the comparisons are shown in Figure 5.20. The planned and actual

trajectory for Robot 3 is almost identical because Robot 3 did not encounter any

unknown static obstacles. The actual position of the mobile robot at the final point is

tabulated in Table 5.9.

 Simulation Results & Discussions

82

 (a) (b)

 (c) (d)

Figure 5.20 Robot 3: Planned (red) against actual (blue) plot for (a) orientation, (b)

steering angle, (c) velocity, and (d) position.

Table 5.9 Actual data collected at the final point for Case 3

Point t (sec) x (m) y (m) Ө (o) Ø (o) v (m/s)

Planned 60 100 100 45 0 0
Robot 1

Actual 60 99.93 99.93 45.15 17.16 0

Planned 60 0 100 -30 0 0
Robot 2

Actual 60 -0.0057 100 -29.98 -1.84 0

Planned 40 80 100 30 0 0
Robot 3

Actual 40 79.94 99.97 29.86 -9.33 0

From the results of Case 1, Case 2 and Case 3, the mobile robots were safely reached

the final points with the capability to avoid known and unknown static obstacles.

They have tried to follow the planned trajectories closely. However, there is a slight

 Simulation Results & Discussions

83

different in orientation and steering angle of the mobile robots due to limitation of the

steering angle. For example, at the beginning of the journey, steering angle for Robot

3 is 25o. Thus the algorithm has adjusted the steering angle to 15o so that the

limitation is not exceeded and the mobile robot can turn smoothly. The actual

positions of all the mobile robots at every time step are close to the planned position

and the actual positions at the final point are summarized in Table 5.9. The maximum

relative error for x-position is 0.07 m, y-position is 0.07 m, orientation is 0.15o and

steering angle is 17.16o.

5.5.2 Navigation in dynamic and open-space environments

In this section, the previous examples are extended to dynamic environments. Moving

obstacles are added into the environment and a series of simulation cases are

presented in order to investigate the capability of the algorithms. In this study, the

moving obstacle is a mobile robot that moves along the predefined path.

Figure 5.21 Simulated environment for Case 4

The first scenario (Case 4) discussed in this section involves one mobile robot and one

moving obstacle in a complicated obstructed environment as shown in Figure 5.21.

 Simulation Results & Discussions

84

The input data for the mobile robot is tabulated in Table 5.10. The moving obstacle

started from the left-hand side of the map.

Table 5.10 Input data for simulation Case 4

Point t (sec) x (m) y (m) Ө (o) Ø (o) v (m/s)

Initial 0 0 0 45 0 0

Final 60 100 100 45 0 0

Figure 5.22 shows the simulation results for Case 4. The initial trajectory for the

mobile robot and the moving obstacle is represented by red line as in Figure 5.22(a).

However after consideration of known static obstacles in the environment, the new

initial trajectory for the mobile robot is generated and represented by blue line. Once

the trajectory generation is completed, the mobile robot starts to move along the

trajectory. At 17 seconds, the mobile robot detects a moving obstacle as shown in

Figure 5.22(b). The algorithm for avoiding the moving obstacle is executed and the

new deviation trajectory is generated. As in Figure 5.22(c) and (d), the mobile robot

starts to avoid the moving obstacle and reduce its speed to ensure the moving obstacle

avoided before the mobile robot increase its speed to catch up the time lost during

avoiding the obstacle. The mobile robot will continue to navigate along the new

generated trajectory until it detects an unknown static obstacle at 31 seconds as shown

in Figure 5.22(e). Then the obstacle avoidance algorithm for avoiding a static obstacle

is executed and a new deviated trajectory is generated. The mobile robot will continue

to navigate along the new trajectory and reaches the final point as shown in Figure

5.22(f).

 Simulation Results & Discussions

85

 (a) (b)

 (c) (d)

 (e) (f)

Figure 5.22 One mobile robot navigates in a dynamic environment.

 Simulation Results & Discussions

86

The comparisons between the planned and actual orientation, steering angle, velocity

and location for Robot 1 are shown in Figure 5.23. The actual position of the mobile

robot at the final point is tabulated in Table 5.11.

 (a) (b)

 (c) (d)

Figure 5.23 Robot 1: Planned (red) against actual (blue) plot for (a) orientation, (b)

steering angle, (c) velocity, and (d) position.

Table 5.11 Actual data collected at the final point for Case 4

Point t (sec) x (m) y (m) Ө (o) Ø (o) v (m/s)

Planned 60 100 100 45 0 0

Actual 60 99.98 99.97 46.21 18.06 0

 Simulation Results & Discussions

87

The next two cases involve multiple mobile robots and multiple moving obstacles in

dynamic environment. In the second case, two mobile robots and two moving obstacle

are used as shown in Figure 5.24. The first mobile robot, R1 started from the bottom-

left of the map and the second mobile robot, R2 started from the right-hand side of the

map. The first moving obstacle, M1 started from the left-hand side of the map which

the initial point is (0,30) and the second moving obstacle, M2 started from the right

hand side of the map which the initial point is (100,70).

Figure 5.24 Simulated environment for Case 5

The input data for each mobile robot are tabulated in Table 5.12.

Table 5.12 Input data for simulation Case 5

Point t (sec) x (m) y (m) Ө (o) Ø (o) v (m/s)

Initial 0 0 0 45 0 0
Robot 1

Final 60 100 100 45 0 0

Initial 0 100 50 -30 0 0
Robot 2

Final 60 0 100 -30 0 0

 Simulation Results & Discussions

88

Figure 5.25 shows the simulation results for Case 5. As we can see, the initial

trajectory for mobile robot R2 is represented only by the blue line since there is no

obstacle along the original initial trajectory as shown in Figure 5.25(a). Once the

offline planning is completed, both mobile robots start to navigate along their

trajectories. At 15 seconds, mobile robot R2 detects a moving obstacle, which is

moving obstacle M2, as shown in Figure 5.25(b). Then the algorithm for avoiding a

moving obstacle is executed and the new deviated trajectory is generated. As we can

see in Figure 5.25(c), mobile robot R2 is slowing down in order to ensure the moving

obstacle passes. In the case of mobile robot R1, the result is similar to the previous

simulation result. Finally, both mobile robot R1 and R2, safely reach the final point as

shown in Figure 5.25(d).

 (a) (b)

 (c) (d)

Figure 5.25 Two mobile robots navigate in a dynamic environment.

 Simulation Results & Discussions

89

The comparisons between the planned and actual orientation, steering angle, velocity

and location for Robot 1 are similar to Case 4. For Robot 2, the comparisons are

shown in Figure 5.26. The actual position of the mobile robot at the final point is

tabulated in Table 5.13.

 (a) (b)

 (c) (d)

Figure 5.26 Robot 2: Planned (red) against actual (blue) plot for (a) orientation, (b)

steering angle, (c) velocity, and (d) position.

Table 5.13 Actual data collected at the final point for Case 5

Point t (sec) x (m) y (m) Ө (o) Ø (o) v (m/s)

Planned 60 100 100 45 0 0
Robot 1

Actual 60 99.98 99.97 46.21 18.06 0

Planned 60 0 100 -30 0 0
Robot 2

Actual 60 0.012 99.98 -30.27 -8.99 0

 Simulation Results & Discussions

90

In the third case, there are three mobile robots and two moving obstacles in the

environment as shown in Figure 5.27. The initial points for both moving obstacles are

set similar to the previous case. However, in this case, two mobile robots (R2 and R3)

are planned to meet each other at the final points at the desired time. This type of

scenario may have implication in the real world such as goods exchange and goods

delivery between robots at the same location.

Figure 5.27 Simulated environment for Case 6.

The input data for all the mobile robots are tabulated in Table 5.14.

Table 5.14 Input data for simulation Case 6

Point t (sec) x (m) y (m) Ө (o) Ø (o) v (m/s)

Initial 0 0 0 45 0 0
Robot 1

Final 60 100 100 45 0 0

Initial 0 100 30 -30 0 0
Robot 2

Final 60 0 100 -30 0 0

Initial 0 80 0 0 0 0
Robot 3

Final 40 0 95 -45 0 0

 Simulation Results & Discussions

91

 (a) (b)

 (c) (d)

Figure 5.28 Three mobile robots navigate in a dynamic environment

Figure 5.28 shows the simulation results for Case 3. The initial generated trajectories

for all the mobile robots are shown in Figure 5.28(a), which are represented by blue

line. Once the offline planning is completed, all mobile robots start to move along

their trajectories. In this case, we only discuss the movement of mobile robot R3 as

the other two mobile robots’ motions are similar to previous cases. At 20 seconds,

mobile robot R3 detects an unknown static obstacle and a new deviated trajectory is

generated. As we can see in Figure 5.28(b), there is a known static obstacle near to the

newly generated trajectory. If the static obstacle is blocking the trajectory, the offline

planning will be executed along with the obstacle avoidance algorithm. However, in

this case, the known static obstacle is not blocking the way. Thus, the mobile robot R3

will continue its journey along the new trajectory. At 37 seconds, it detects a moving

 Simulation Results & Discussions

92

obstacle (M2), which is coming from the right side, as shown in Figure 5.28(c). The

algorithm for avoiding a moving obstacle is executed and a new deviated trajectory is

generated. As we can see, mobile robot R3 reduce its speed in order to make sure the

moving obstacle M2 passes. After that, mobile robot R3 continues its journey and

reaches the final point, as shown in Figure 5.28(d).

The comparisons between the planned and actual orientation, steering angle, velocity

and location for Robot 1 and Robot 2 are similar to Case 4 and Case 5, respectively.

For Robot 3, the comparisons are shown Figure 5.29. The actual position of the

mobile robot at the final point is tabulated in Table 5.15.

 (a) (b)

 (c) (d)

Figure 5.29 Robot 3: Planned (red) against actual (blue) plot for (a) orientation, (b)

steering angle, (c) velocity, and (d) position.

 Simulation Results & Discussions

93

Table 5.15 Actual data collected at the final point for Case 6

Point t (sec) x (m) y (m) Ө (o) Ø (o) v (m/s)

Planned 60 100 100 45 0 0
Robot 1

Actual 60 99.98 99.97 46.21 18.06 0

Planned 60 0 100 -30 0 0
Robot 2

Actual 60 0.02 99.98 -30.27 -8.99 0

Planned 40 0 95 -45 0 0
Robot 3

Actual 40 -0.0012 94.99 -45.29 -4.60 0

From the results of Case 1, Case 2 and Case 3, the mobile robots were safely reached

the final points with the capability to avoid known and unknown static obstacles as

well as dynamic obstacles. The results show that the algorithms are capable to detect

and avoid not only static obstacles, but also dynamic obstacles. Furthermore the entire

mobile robots were capable to follow the planned trajectories closely. The actual

positions for the mobile robots are summarized in Table 5.15. The maximum relative

error for x-position is 0.02 m, y-position is 0.03 m, orientation is 1.21o and steering

angle is 18.06o.

5.5.3 Navigation in the city-like environments

In this section, the simulations are based on the multiple waypoints trajectory

planning in a city-like environment as shown in Figure 5.30. All the parameters used

for the mobile robots; R1 and R2, are listed in Table 5.16 and Table 5.17,

respectively. North direction of the map is set pointing up on the map. As listed in

Table 5.16, R1 starts from the bottom of the map at point (10, 20) and facing north. At

the first junction, it needs to turn right. The first and second waypoints are set to

ensure the mobile robot can turn at the junction smoothly. Then, it needs to move

along the road until it reaches the second junction. It then needs to turn left and move

until it reaches the final point (60, 170) at the 120th second with 90o orientation.

 Simulation Results & Discussions

94

Table 5.16 Parameters for the first mobile robot (R1)

Points t (sec) x (m) y (m) Ө (o) Ø (o) v (m/s)

1 0 10 20 90 0 0

2 20 10 50 90 0 1

3 30 20 60 0 0 2

4 50 50 60 0 0 1

5 60 60 67 90 0 2

6 120 60 170 90 0 0

As listed in Table 5.17, R2 starts from the right side of the map at point (183,60) and

facing west. Then at the junction, it needs to turn right and move along the road until

it reaches the final point (80,170) at the 120th second with 60o orientation. Note that

the road is tilted at about 60o from x-axis.

Table 5.17 Parameters for the second mobile robot (R2)

Points t (sec) x (m) y (m) Ө (o) Ø (o) v (m/s)

1 0 183 60 0 0 0

2 30 143 60 0 0 1

3 40 133 65 -60 0 1

4 120 80 170 -60 0 0

 Simulation Results & Discussions

95

(a)

(b)

Figure 5.30 (a) A simplified city-like map, (b) Multiple waypoints trajectory planning.

 Simulation Results & Discussions

96

In addition, there are two moving obstacles in the map as shown in Figure 5.31. The

first moving obstacle (M1) starts from the north of the map and moves straight down

to the south of the map. The initial and final point for M1 is (61, 180) and (61, 80),

respectively. The second moving obstacle starts from east of the map and finishes at

the middle of the map. The initial and final point for M2 is (180, 113) and (90, 113),

respectively. Both moving obstacles move from their respective initial points and

reach their final points at the 100th second.

Figure 5.31 Initial trajectories in a city-like map.

The initial trajectories for mobile robots and moving obstacles are shown in Figure

5.31. Once all the trajectories were generated, the mobile robots and the moving

obstacles were started to move along their respective trajectories. At the 9th second,

R2 detected an unknown static obstacle as shown in Figure 5.32(b). Then a new

trajectory was generated from the detection point to the closest waypoint, which was

in this case the first waypoint. R2 started to move along the new trajectory as shown

in Figure 5.32(c) and reached the first waypoint at the 30th second as shown in Figure

5.32(d).

 Simulation Results & Discussions

97

 (a) (b)

 (c) (d)

Figure 5.32 (a) Before detecting an obstacle. (b) Obstacle detected at the 9th second.

(c) Starts to move along new trajectory. (d) Reaches the first waypoint at the 30th

second.

Furthermore, at the 67th second, R2 detected a moving obstacle (M2) coming from the

right side of it as shown in Figure 5.33(b). It then predicts whether it might collide

with the moving obstacle or not. In this case, collision is expected to happen and a

new trajectory is generated from detection point to the closest waypoint, which is the

final point, based on the obstacle avoidance algorithm of a moving obstacle. Then R2

started to move along the new trajectory as shown in Figure 5.33(c). Also as we can

see, the mobile robot actually slowed down to cautiously passing through the moving

obstacle as shown in Figure 5.33(d).

 Simulation Results & Discussions

98

 (a) (b)

 (c) (d)

Figure 5.33 (a) Before detecting an obstacle. (b) Obstacle detected at the 67th sec. (c)

Starts to move along new trajectory. (d) Passes through moving obstacle safely.

As we can see in Figure 5.31, the initial trajectory for R1 was already considered

known static obstacles during offline planning. Then R1 started to move along the

initial trajectory and passes through all the waypoints. However at the 68th second, R1

detected a moving obstacle (M1) as shown in Figure 5.34(b). Also R1 checked the

direction of moving obstacle and in this case, M1 came from the opposite direction of

R1. Therefore, M1 was treated as a static obstacle and a new trajectory was generated

from the current point to the final point, through the deviation point. Then R1 started

to move along the new trajectory and safely avoided M1 as shown in Figure 5.34(c)

and (d). Furthermore, after avoiding the moving obstacle, R1 detected an unknown

static obstacle at the 86th second and successfully avoided it. Figure 5.35 shows the

final overall simulation results at the 120th second.

 Simulation Results & Discussions

99

 (a) (b)

 (c) (d)

Figure 5.34 (a) Before detecting an obstacle. (b) Obstacle detected at the 68th sec. (c)

Starts to move along new trajectory. (d) Passes through moving obstacle safely.

As we can see, both mobile robots reached the final point at the specified time,

position and orientation with certain errors as shown in Table 5.18. The errors are

reasonably small as a result of the online planning approach. At every time step, the

online planner will use the actual data to get to the next pre-planned position of the

mobile robot. This means the planner will need to determine a new steering angle

using the actual position and orientation, and the pre-planned velocity of the mobile

robot. This practice will eliminate or at least reduce the errors at every time step.

Furthermore, the mobile robots successfully passed through all the waypoints and

avoided all the static and moving obstacles.

 Simulation Results & Discussions

100

Table 5.18 Table 3 Errors for Case 1 at final point.

 Actual Relative error

 x (m) y (m) Ө (o) x (m) y (m) Ө (o)

Robot 1 59.999 169.999 89.427 0.001 0.001 0.573

Robot 2 79.972 170.04 -62 0.028 0.04 2

Figure 5.35 Final result at the 120th second.

 Simulation Results & Discussions

101

In addition, two more simulation cases have been conducted to investigate the

effectiveness of the algorithms. Figure 5.36 shows the second simulation scenario

with two mobile robots, R1 and R2, and one moving obstacle, M1.

Figure 5.36 Second scenario with two mobile robots and one moving obstacle.

Using the similar map setup to the first case, the inputs for both mobile robots are

tabulated in Table 5.19. As we can see in Figure 5.36, the pre-planned trajectories are

presented by the blue line with the consideration of the known static obstacles. The

moving obstacle is set to move along the road from initial point (61,170) to final point

(61,80).

 Simulation Results & Discussions

102

Table 5.19 Parameters for second simulation case

 Points t (sec) x (m) y (m) Ө (o) Ø (o) v (m/s)

1 0 10 20 90 0 0

2 30 10 50 90 0 1

3 40 20 60 0 0 1
Robot 1

4 120 183 60 0 0 0

1 0 60 20 90 0 0

2 50 60 103 90 0 1

3 60 70 113 0 0 1
Robot 2

4 120 183 113 0 0 0

Figure 5.37 Final result at the 120th second for second scenario.

 Simulation Results & Discussions

103

The final results are shown in Figure 5.37. As we can see in the final results, the

mobile robots are capable to navigate safety and avoid the moving obstacle as well as

the static obstacles and reach the final points at the specified time. The errors at the

final point are tabulated in Table 5.20. The errors are reasonable and still fall within

the satisfactory limits as the mobile robots do not deviate too far from the final points,

considering the distance that the mobile robots have travelled. The maximum final

errors for positions are 0.06 m for R1 and 0.37 m for R2, while the maximum

orientation errors are 0.818o for R1 and 0o for R2.

Table 5.20 Errors for Case 2 at the final point.

 Actual Relative error

 x (m) y (m) Ө (o) x (m) y (m) Ө (o)

Robot 1 183.06 60 0.818 0.06 0 0.818

Robot 2 182.63 113 0 0.37 0 0

In the third case, the scenario is extended with three mobile robots and two moving

obstacles are used as shown in Figure 5.38. The mobile robots started at the different

initial points and moved to the different final points as tabulated in Table 5.21. The

travel time for each mobile robot is set to 100 second. This case is conducted to

demonstrate the capability of the algorithms to handle the different travel time and to

demonstrate multiple robots coordination in the unknown environment.

 Simulation Results & Discussions

104

Figure 5.38 Third scenario with three mobile robots and two moving obstacles.

Table 5.21 Parameters for third simulation case

 Points t (sec) x (m) y (m) Ө (o) Ø (o) v (m/s)

1 0 133 10 90 0 0

2 30 133 50 90 0 1

3 40 133 67 -60 0 1
Robot 1

4 100 80 170 -60 0 0

1 0 83 15 90 0 0

2 40 83 50 90 0 1

3 50 93 60 0 0 1
Robot 2

4 100 183 60 0 0 0

1 0 60 10 90 0 0
Robot 3

2 100 60 170 90 0 0

 Simulation Results & Discussions

105

Figure 5.39 Final result at 100th second for third scenario.

From the final results are shown in Figure 5.39, all the mobile robots reached the final

points at the specified time. As we can see the final errors in Table 5.22, the position

errors for each robot are acceptable. Even though the orientation errors for R1 and R2

are larger than the second case, the results are still within the satisfactory limit as the

maximum orientation error only 1.5o.

Table 5.22 Errors for Case 3 at the final point.

 Actual Relative error

 x (m) y (m) Ө (o) x (m) y (m) Ө (o)

Robot 1 79.98 170.03 -58.53 0.02 0.03 1.47

Robot 2 183.06 59.999 1.042 0.06 0.001 1.042

Robot 3 59.999 169.96 90 0.001 0.04 0

 Simulation Results & Discussions

106

5.6 Concluding remarks

In this chapter, the Matlab was adopted for development of simulations and to

implement and test the algorithms for mobile robot navigation. The algorithm was

tested through a series of the simulation setup. The maps for the simulation works

were adopted from open-space environment and city-like environments which is more

complicated.

The simulation results show the mobile robot was able to follow the planned

trajectory as close as possible. Furthermore, the mobile robot was able to reach close

to the final point at the desired time. The algorithm also was able to simulate the

different environment setup for the mobile robot as well as for multiple robots with

the presence of dynamic obstacles.

However, there are errors occurred between the planned trajectories and actual

trajectories due to the actual calculation of the position and steering angle of mobile

robots. For example, the actual calculation of the steering angle is taking into

consideration of the current data at every time step to calculate the next motion of the

mobile robot. Thus this cumulative error caused the slight different between the

planned and actual at the final point.

Furthermore, the developed GUI framework ensures the user able to modify the

settings of the mobile robot easily. The user only needs to modify the settings at the

GUI framework without interfering the control functions of the algorithms.

 Development of a Mobile Robot

107

6. DEVELOPMENT OF A NONHOLONOMIC
MOBILE ROBOT

The development of a mobile robot is based on the application and requirement of the

mobile robot in the environment. In this study, a nonholonomic mobile robot is used

to navigate in the outdoor environment. Thus a car-like robot is preferred as it can be

converted from a standard car and able to travel in the large outdoor environments.

Therefore, the mobile robot used for the experimental works was converted from a

standard remote control car as shown in Figure 6.1. The wheelbase length and width

of the mobile are 174 mm and 191 mm, respectively. It has a similar structure to the

normal car with front steering wheels and rear driving wheels. All four wheels have

the same diameter which is 69 mm. The rear wheels are conventional fixed wheels on

the rear axle and the front wheels are centred turning wheels on the front axle. The

steering wheels are assumed to turn at the same angle and acted as a single wheel

located at the middle of the front axle as discussed in Chapter 4.

 Development of a Mobile Robot

108

Figure 6.1 The modified car-like robot used in experimental works.

As the focused mobile robot is a nonholonomic mobile robot, an Ackermann steering

robot is required as the mobile robot platform. Furthermore the selection of the mobile

robot platform should fulfil a few selection criteria for this study such as:

• Steering should be driven by a digital servomotor.

• The driving wheel should be driven by a motor.

• Enough size to host all the sensors and the microcontroller.

• Easy access to all the components attached to the car.

The basis of the mobile robot platform is shown in Figure 6.2. The mobile robot has a

motor that driven the rear wheels and acted as driving wheel, while the front wheels

are steered by a servo motor and acted as an Ackermann steering wheels. In addition

the RC car is powered by battery pack. This RC car needs to be modified in order to

install all the sensors, microcontroller, battery pack and other accessories.

 Development of a Mobile Robot

109

Figure 6.2 Mobile robot platform.

The sensor platform is constructed as shown in Figure 6.3. The platform is designed

to be as simple as possible and the material used is acrylic. This material has a few

advantages such as light weight and durable. The platform is a two tier platform

which the lower tier is used to install battery pack and the upper platform is used to

install sensors, microcontroller and other accessories.

Figure 6.3 Sensor platform

 Development of a Mobile Robot

110

The final attachment of the sensor platform to the mobile robot platform is shown in

Figure 6.4.

 (a) (b)

 (c) (d)

Figure 6.4 Sensor platform attached to the mobile robot platform.

6.1 Robot controller

A controller is essential for an autonomous mobile robot in order to control the mobile

robot. The robot controller is used to process the raw data from the sensors as well as

to transmit the processed data to the PC. In this study, the Orangutan SVP robot

controller is selected as the main robot controller as shown in Figure 6.5. This robot

controller is simple and a complete solution for small and medium-sized robots.

 Development of a Mobile Robot

111

Figure 6.5 Robot controller

The features in this robot controller fulfil the requirements for a nonholonomic mobile

robot developed in this study.. The module is design based on the powerful Atmel

microcontroller. It has two motor drivers, a demultiplexer to control servo motors, I/O

lines that can be used as analog and digital inputs and also the auxiliary processor that

can read two quadrature encoders. In addition, the advantages of this microcontroller

are easy to program the algorithms as it has extensive software libraries for the

compiler and it is compatible with all development software for Atmel’s AVR

microcontroller. Details functions and specifications are given in Appendix B.

6.2 Wheel encoder

The purpose of the encoder is to provide feedback on the speed and travelling distance

of the mobile robot. In this study, the magnetic encoder is used and attached to the

wheel as shown in Figure 6.6(a). Magnetic encoder is chosen due to its simplicity and

can provide a better accuracy for a small mobile robot. In the magnetic encoder, the

Hall Effect sensors are used as transducers in which the output voltage is varied by the

changes in magnetic field density. The Hall Effect sensors physical appearance is

shown in Figure 6.7.

 Development of a Mobile Robot

112

 (a) (b)

Figure 6.6 (a) Magnets mounting attached at the wheel (b) Hall Effect sensors

attached at the rear axle.

(a) (b)

Figure 6.7 Hall effect sensor

The magnetic encoder is designed to suit the dimension of the wheel, which the

readily available encoder may not be suitable for the specific model of the mobile

robot. Details of the Hall Effect sensor are given in Appendix B. The final attachment

of the magnetic encoder to the mobile robot is shown in Figure 6.8.

 Development of a Mobile Robot

113

 (a) (b)

Figure 6.8 Location of the wheel encoder

The magnets mounting has 16 magnets that has been arranged to cover 360 degrees as

shown in Figure 6.9. The calculation of distance is given by

o360
16

distance = 2
360

pulse

r

θ

θ π

= ×

×
 (6.1)

where, Ө is resolution of wheel and r is the radius of wheel. The pulse is obtained

once the Hall Effect sensor passing through the magnet. The total number of pulses

are counted at every time step and then are used to calculate the distance.

Figure 6.9 Magnet mounting of encoder

magnet

Ө

 Development of a Mobile Robot

114

6.3 Detection sensors

Sensors for obstacle detection are essential in robot navigation. Infrared, ultrasonic,

vision camera and laser range finder are among the sensors that have been used in

obstacle detection. Laser range finders provide precise and stable range reading,

however the drawback is the cost of the LRF is expensive. Using a vision camera is a

better option to detect the obstacles; however it needs a significant computational

power in order to process the data and may be a burden to a small robot. Infrared

sensors only provide a single line detection which more suitable to use as a range

sensor. Ultrasonic sensor is the best solution to use as a detection sensor for a small

robot. It can provide the similar detection function as the LRF that adopted in the

algorithm, which is to determine the region of detection relates to the position of the

mobile robot. The region can be on center, left or right of the mobile robot. The

ultrasonic sensor adopted in this study is the Devantech SRF05 as shown in Figure

6.10. This sensor can cover up to 45o angle and has a detection range from 3 cm to 4

m.

 (a) (b)

Figure 6.10 (a) Ultrasonic range sensors (b) Sensor attached to the sensor base.

6.4 Communication

In this study, communication between the mobile robot and the PC is required as all

the data need to send to the PC to process. The decision is made based on the data in

the PC and then the results will be sent back to the mobile robot in order to navigate

in the environment. Thus, a wireless communication is preferable as the mobile robot

will move away from the PC.

 Development of a Mobile Robot

115

The wireless communication module adopted in this study is Xbee/Zigbee RF module

as shown in Figure 6.11. The transmitting range for this module can be ranged up to

30 m for indoor and 100 m for outdoor environments. The wireless communication

consists of a router and a coordinator. The router is attached to the mobile robot, while

the coordinator is plug into the PC. Detail specifications are given in Appendix B.

 (a) (b)

Figure 6.11 Wireless communication (a) Router (b) Coordinator

6.5 Calibration of steering angle and velocity

Prior to the experimental work for the mobile robot in the real environment, the

calibration works are required to establish the actual steering angle and the speed of

the mobile robot. The steering angle and the speed are controlled by the PWM (Pulse-

Width Modulation) values. Thus, the relation between the PWM values and steering

angle as well as the relation between the PWM values and velocity of the mobile

robot need to be established. The calibration work was conducted in the open-space

and flat area.

6.5.1 Steering angle

The calibration work for the steering angle was conducted by setting the steering

angle to the constant PWM. Constant steering angle results in a drive along a circle.

The radius of the circle was then been measured and the relationship between the

steering angle and PWM can be established. The data for calibration work of the

steering angle are tabulated in Table 6.1.

 Development of a Mobile Robot

116

Table 6.1 Steering angles under different PWM values

PWM (hex) Diameter 1
(cm)

Diameter 2
(cm)

Ave diameter
(cm)

Steering angle
(o)

60 73 79 76.0 24.6

69 94 99 96.5 19.8

70 139 134 136.5 14.3

75 166 173 169.5 11.6

85 inf inf 0.0 0.0

95 186 194 190.0 10.4

99 145 153 149.0 13.1

A0 110 113 111.5 17.3

A5 90 92 91.0 20.9

The reference point for the radius of the circle is shown as in Figure 6.12. With radius

of circle and distance between front and rear wheels, the steering angle can be

calculated from the following equation

ϕ = L/R (6.2)

where is L = length between front and rear wheels

It was assumed that the steering angle is a virtual middle wheel between two front

wheels and distance from centre point to ICC is similar to radius of the circle.

Figure 6.12 Calibration work for establishment of steering angle

ICC

Centre point

Radius

L

Driving wheels

Steering wheels

Mobile robot

 Development of a Mobile Robot

117

From the data in Table 6.1, the relation between the PWM and the steering angle is

shown in Figure 6.13. The following linear relations were obtained by the Least

Square Method:

0.6502 86.477PWMφ = ⋅ + , for turning left, (6.3)
0.6717 89.698PWMφ = − ⋅ − , for turning right. (6.4)

For zero steering angle, the PWM value of 132 is used.

0

5

10

15

20

25

30

80 100 120 140 160 180
PWM

S
te

er
in

g
an

gl
e

(d
eg

re
e)

turn leftturn right

Figure 6.13 Relation between PWM values and steering angle.

6.5.2 Velocity

The speed control is crucial to the time-critical motion planning as it can reflect the

motion of the mobile robot. The speed is also controlled by the PWM value. The

calibration work was conducted by taking time for 100 m distance from start to final

point for each PWM value as shown in Figure 6.14.

Figure 6.14 Calibration work for establishment of velocity

1000 mm t0 tf

Start Finish

 Development of a Mobile Robot

118

The data for calibration work of velocity are tabulated in Table 6.2.

Table 6.2 Velocities under different PWM values

PWM (hex) Time 1 (s) Time 2 (s) Time 3 (s) Ave time (s) Vel (cm/s)

10 0 0 0 0.0 0

20 2.1 2.5 2.3 2.3 43.5

30 1.3 1.2 1.1 1.2 83.3

40 0.9 0.9 0.9 0.9 111.1

50 0.7 0.6 0.7 0.7 150.0

60 0.6 0.6 0.6 0.6 166.7

70 0.5 0.5 0.5 0.5 200.0

From the data in Table 6.2, the relation between the PWM and the speed is shown in

Figure 6.15. With the Least Square Method, the following equation was established:

2.038 22.636v PWM= ⋅ − . (6.5)

Note that, the measured speeds were obtained during the battery is fully charged.

0

50

100

150

200

250

0 20 40 60 80 100 120

PWM

S
pe

ed
 (

cm
/s

)

Figure 6.15 Relation between PWM values and speed.

 Development of a Mobile Robot

119

6.6 Obstacle detection

In the experimental works, an ultrasonic sensor was used to detect obstacles during

mobile robot navigation. Ultrasonic sensors have been proven to be effective to detect

an obstacle in the actual environment. The ultrasonic sensor was placed at the front of

the mobile robot. For the purpose of the experimental works in this study, the

detection range is set to be 100 cm and the detection angle for an ultrasonic sensor is

around 45º as shown in Figure 6.16. The full specifications of the ultrasonic sensor

used in this study can be referred in Appendix A.

Figure 6.16 Obstacle detection range for experimental works.

100 cm

~45o

~84 cm

 Development of a Mobile Robot

120

6.7 Wireless communication

In order to achieve remote control over the mobile robot, the Xbee RF module is used.

The wireless connection configuration is shown in Figure 6.17.

Figure 6.17 Wireless communication between the operator and the router (robot).

For this task, two Xbee RF modules are used as a Coordinator and a Router.

Basically, the Coordinator is connected to the PC via USB and the Router is attached

to the mobile robot via the General Purpose Input/Output (GPIO) port. Once the

initial collision-free trajectory was generated, the data – output data – will be sent to

the mobile robot by the Coordinator. Then the mobile robot will receive the data – as

control input data – by the Router. These control inputs which are steering angle and

velocity will be used to move the mobile robot. The communication can be a two-

way communication with the Router will send the data and the Coordinator will

receive the data. Such communication is necessary when the sensor’s reading needs to

be processed in the PC.

6.8 Concluding remarks

The development of a mobile robot is required to investigate the algorithms is

presented in this chapter. In order to implement the algorithms appropriately, the

mobile robot should has a capability similar to a car and be able to detect the obstacles

in front of it. A range of options were identified in the development stage and the

appropriate solutions were chosen such as the selection of the of the mobile robot’s

base, the arrangement of the sensors and accessories and the sensors’ selection. The

USB

Coordinator

2.4GHz

Router

GPIO

 Development of a Mobile Robot

121

base of the mobile robot was adopted from a RC car and a two-tier sensor platform

was assembled and placed on top of the mobile robot’s base. The sensors data will be

extracted from the sensors using the microcontroller. Furthermore, the mobile robot

was also fitted with a wireless communication, which allowed the data transmission

between the mobile robot and the PC in real time during testing.

 Experimental Results & Discussions

122

7. EXPERIMENTAL RESULTS AND
DISCUSSIONS

In this chapter, a series of experimental works have been conducted. The aims of

these experimental works are to validate the algorithms that have been used to control

the mobile robot and also to verify the effectiveness of the developed simulation

framework. The mobile robot model was tested in the various conditions of the

environments. The algorithms tested were derived from the algorithms that were

developed in the Chapter 4. In these experimental works, the sensor values were

transmitted from the mobile robot to the PC in real time during the testing. The results

were then collected in the PC and plotted in graphs.

For each case, the experimental results can be compared to the simulation results for

the given scenarios. The experimental works were divided into four parts:

1. Mobile robot navigates in an obstacle-free environment.

2. Mobile robot navigates in a known static environment.

3. Mobile robot navigates in an unknown static environment.

4. Mobile robot navigates in an unknown dynamic environment.

 Experimental Results & Discussions

123

7.1 Experiment architecture

The overall view of the system architecture for the mobile robots’ navigation is shown

in Figure 7.1. In this study, the experiment architecture was designed to cater the

known and unknown static obstacles and it can be expanded to the moving obstacles

in the future works.

Figure 7.1 Experimental work flow

The obstacle-free trajectory will first be obtained from the offline planning after

having inputs from the user. The output data, which are steering angle and velocity,

were then transmitted to the mobile robot via the wireless communication and these

data were used to move the mobile robot for every time step. In the same time, the

data extracted from the sensors; such as data from detection sensor; will be sent to the

PC to be processed. The decision making process will take place at this stage and

once the decision has been made, the mobile robot will then react based on the

Input data from user

Generate initial path

Wireless
communication

New input data

Input to robot
(ϕ, v)

Sensor data

Any known static
obstacle?

Steering angle
over limit?

Yes

Yes

No

No

 Experimental Results & Discussions

124

decision. For example, if the algorithm decided there is an obstacle in front of the

mobile robot, the obstacle avoidance algorithm will be executed and the new input

data will be transmitted to the mobile robot and the mobile robot will react based on

these new inputs.

7.2 Experiment setup

The testing arena is an open-space and flat terrain area as shown in Figure 7.2.

Figure 7.2 Testing arena

The first two cases have been conducted with the aim to initially validate the

algorithm. A car-like robot discussed in previous section has been used. For both

cases, the distance between the initial and final point was 400 cm and the travelling

time was set as 20 seconds.

In the first case, the algorithm was tested without an obstacle and in the second case,

the algorithm was tested with the presence of a known static obstacle. The

experimental work was then further extended to the unknown static obstacle in the

third case. The algorithm was executed in a PC using MATLAB and the output was

sent to the mobile robot as the control input via wireless communication.

Initial point

Final point

400 cm

 Experimental Results & Discussions

125

Furthermore, a marker was located at the back of the mobile robot in order to map out

the actual trajectory. When the mobile robot moves from the starting point, the marker

leaves a trace of the trajectory on the floor. Then the trace of the trajectory was

measured manually in order to obtain the actual trajectory for each experiment. In

addition, the movement of the mobile robot was also recorded using a video camera

for each experiment in order to trace the actual trajectory.

7.3 Case 1: Navigation in an obstacle-free environment

The purpose of the first experiment is to verify the control strategy of a car-like robot.

The steering angle and velocity are the two parameters that need to verify. In this

experiment, the initial state was set as [0, 200, 0, 0, 0, 0] and the final state was [400,

200, 0, 0, 0, 20]. The mobile robot was moved in a straight line for a distance of 400

cm in the environment without an obstacle as shown in Figure 7.3.

Figure 7.3 Experimental setup for Case 1

Finish

Start

 Experimental Results & Discussions

126

 (a) At time = 0 s (b) At time = 6 s

 (c) At time = 10 s (d) At time = 14 s

 (e) At time = 16 s (f) At time = 20 s

Figure 7.4 Mobile robot navigated in an obstacle-free environment (simulation)

 Experimental Results & Discussions

127

 (a) At time = 0 s (b) At time = 6 s

 (c) At time = 10 s (d) At time = 14 s

 (e) At time = 16 s (f) At time = 20 s

Figure 7.5 Mobile robot navigated in an obstacle-free environment (experiment)

 Experimental Results & Discussions

128

The results for the simulation works and experimental works are shown in Figure 7.4

and Figure 7.5, respectively. The mobile robot was placed at the initial point as shown

in Figure 7.5(a). It was then started to move from the initial point as shown in Figure

7.5(b). At the 10th second, the mobile robot was at the half of its trajectory. The

mobile robot was approaching the final point as shown in Figure 7.5(e) and reached

the final point at 20th second as shown in Figure 7.5(f).

The simulation and experimental results can be compared at the respective point

through the respective figures as shown in Figure 7.4 and Figure 7.5. From the results,

the experimental works demonstrate the mobile robot was able to match the

simulation results in term of location of the mobile robot at the specific time. In

addition, the experiment was conducted in three trial runs and the actual trajectory is

compared to the planned trajectory as shown in Figure 7.6.

150

170

190

210

230

250

0 100 200 300 400

x coordinate (cm)

y
co

or
di

na
te

 (
cm

)

theory

trial 1

trial 2

trial 3

Figure 7.6 Case 1: Trajectory planning without an obstacle

 Experimental Results & Discussions

129

From the results in Figure 7.6, the first trial is almost identical to the planned

trajectory, but the mobile robot stopped at 13 cm more than it should be. In the second

trial, the mobile robot basically reached the final point, but the mobile robot was not

moved in a straight line as we can see from the results. The final trial, the mobile

robot moved in a straight line, but its trajectory is tilted at about 1.1o from the planned

x-axis. The position errors for each trial are listed in Table 7.1. The time taken for the

mobile robot from initial point to the final point was 20 seconds and matched the time

that initially planned. The maximum percentage error at the final point is 3.3%. As a

conclusion, the result for control strategy is satisfactory as the mobile robot was able

to follow the desired trajectory closely.

Table 7.1 Actual initial and final positions for Case 1

 xs (cm) ys (cm) xf (cm) yf (cm) x error
 (cm)

y error
(cm)

Theory 0 200 400 200 - -

Trial 1 0 200 413 200 13 0

Trial 2 0 200 400 200 0 0

Trial 3 0 200 400 208 0 8

 Experimental Results & Discussions

130

7.4 Case 2: Navigation in a known static environment

The purpose of this experiment is to validate the newly developed algorithms. In this

experiment, a known static obstacle will be placed in the environment. The planner

will generate an initial collision-free trajectory; which the obstacle is taken into

account during generation of the trajectory and the mobile robot is expected to follow

the trajectory, avoid the obstacle and reach the final point at the desired time.

In this experiment, the environment was set as in Figure 7.7. The distance from the

starting point to the finishing point is 400 cm. A known static obstacle was placed in

the middle of the x-axis with the obstacle’s diameter is 20cm. The initial and final

states of the mobile robot were [0, 200, 0, 0, 0, 0] and [400, 200, 0, 0, 0, 20],

respectively.

Figure 7.7 Experimental setup for Case 2.

Finish

Start

X-axis
Obstacle

Robot

 Experimental Results & Discussions

131

 (a) At time = 0 s (b) At time = 8 s

 (c) At time = 10 s (d) At time = 12 s

 (e) At time = 16 s (f) At time = 20 s

Figure 7.8 Mobile robot navigated in a known static environment (simulation).

 Experimental Results & Discussions

132

 (a) At time = 0 s (b) At time = 8 s

 (c) At time = 10 s (d) At time = 12 s

 (e) At time = 16 s (f) At time = 20 s

Figure 7.9 Mobile robot navigated in a known static environment (experiment).

The simulation and experimental results for Case 2 are shown in Figure 7.8 and

Figure 7.9, respectively. The mobile robot and the static obstacle were placed at the

initial point and the middle of the trajectory, respectively, as shown in Figure 7.9 (a).

The mobile robot was then started to move from the initial point as shown in Figure

7.9(b). At the 10th second, the mobile robot was at the half of its way and successfully

followed the initially planned trajectory with the consideration of the static obstacle as

Collision-free
trajectory

 Experimental Results & Discussions

133

shown in Figure 7.9(c). The mobile robot was approaching the final point and reached

the final point at 20th second as shown in Figure 7.9(e) and Figure 7.9(f), repsectively.

(a)

150

200

250

300

0 100 200 300 400
x coordinate (cm)

y
co

or
di

na
te

 (
cm

)

theory

trial 1

trial 2

trial 3

(b)

Figure 7.10 (a) Case 2: Trajectory planning with a known static obstacle, (b)

Experimental results.

Obstacle

Initial collision-free
trajectory

 Experimental Results & Discussions

134

The generated initial collision-free trajectory is shown in Figure 7.10(a) with the

obstacle is represented by black circle. From the results in Figure 7.8 and Figure 7.9,

the location of the mobile robot at the specific time in the experiment was matched

with the simulation works. In addition, this second experiment was also conducted in

three trial runs and the results are compared to the planned trajectory as shown in

Figure 7.10(b).

From the results, the actual trajectory for the first and second trials is almost identical

to the planned trajectory. And in the final trial, the mobile robot was able to avoid the

obstacle, but the mobile robot was not reached the final point accurately. The position

errors for Case 2 are tabulated in Table 7.2. The maximum percentage error at the

final point is 2.5%. As a conclusion, the result for control strategy is satisfactory as

the mobile robot was able to avoid the obstacle and follow the desired trajectory

closely. In addition the mobile robot was able to reach closed to the final point at 20

seconds.

Table 7.2 Actual initial and final positions for Case 2

 xs (cm) ys (cm) xf (cm) yf (cm) x error
(cm)

y error
(cm)

Theory 0 200 400 200 - -

Trial 1 0 200 390 205 -10 5

Trial 2 0 200 402 194.5 2 -5.5

Trial 3 0 200 400 194.5 0 -5.5

 Experimental Results & Discussions

135

7.5 Case 3: Navigation in an unknown static environment

The experiment was further performed on the mobile robot in an unknown static

environment. The purpose of this experiment is to validate the obstacle avoidance

approach for the time-critical motion planning. In this experiment, unknown static

obstacles will be placed in the environment. The planner will generate the collision-

free trajectory without the knowledge of unknown static obstacle and it is expected to

detect and avoid the obstacle. Furthermore, the mobile robot is also expected to reach

the final point at the desired time. The algorithm is tested through a series of

scenarios.

7.5.1 Scenario 1: One unknown static obstacle

In Scenario 1, the mobile robot was required to move from the initial point to the final

point as shown in Figure 7.11. The distance from the initial point to the final point is

3000 mm. An unknown static obstacle was placed randomly between the initial point

and final point with the obstacle’s diameter is 8 cm. The initial and final states of the

mobile robot were [0, 50, 0, 0, 0, 0] and [300, 50, 0, 0, 0, 20], respectively.

(a)

Start Finish

Obstacle

x

Distance = 3000 mm

 Experimental Results & Discussions

136

(b)

Figure 7.11 (a) Plan view (b) Actual experimental setup for Scenario 1

Using the initial and final states of the mobile robot, the planner an initial collision-

free trajectory which is represented by a blue line is shown in Figure 7.12. Note that

there is no obstacle in the map as the obstacle is unknown to the planner.

(a)

Figure 7.12 Initial collision-free trajectory for Case 3

Robot

Start

Finish

Obstacle

 Experimental Results & Discussions

137

 (a) At time = 0 s (b) At time = 4 s

 (c) At time = 8 s (d) At time = 12 s

 (e) At time = 16 s (f) At time = 20 s

Figure 7.13 Mobile robot navigates in the unknown static environment (simulation)

 Experimental Results & Discussions

138

 (a) At time = 0 s (b) At time = 4 s

 (c) At time = 8 s (d) At time = 12 s

 (e) At time = 16 s (f) At time = 20 s

Figure 7.14 Mobile robot navigates in the unknown static environment (experiment)

Initial
trajectory

New trajectory

 Experimental Results & Discussions

139

The simulation and experimental results for Scenario 1 are shown in Figure 7.13 and

Figure 7.14, respectively. Both simulation and experimental results can easily

compared through the respectively figures. At the start of the experimental work, the

mobile robot was followed the initial collision-free trajectory until it detected the

obstacle in front of it as shown in Figure 7.14(c). Then the dynamic obstacle

avoidance approach was executed and a new trajectory was generated from the point

of detection to the final point. The mobile robot was then followed the new trajectory

successfully until it reached the final point as shown in Figure 7.14(f).

The experiment results were then being compared with the theory as shown in Figure

7.15. During the experiment, the mobile robot detected the obstacle’s location at (169,

50). The actual measured location of the unknown static obstacle was (163, 50). This

was showed that the ultrasonic sensor was able to detect and locate the obstacle close

to the actual location. In comparison with the theory, the mobile robot was able to

follow the initial planned trajectory until it detected the obstacle and the new

trajectory was generated in order to avoid the obstacle. From the point of detection,

the mobile robot’s movement was slightly deviated from its planned trajectory and

stopped before the final point. The experiment has proven that the algorithms was

practical to be used in trajectory planning as control strategy for the mobile robot was

able to translate the input to the actual trajectory and the mobile robot was able to

follow the planned trajectory as close as possible.

20

30

40

50

60

70

80

0 50 100 150 200 250 300

x (cm)

y
(c

m
)

Theory

Actual

Initial

Figure 7.15 Theoretical and actual trajectory for Case 3

X
(52,50) (169,50)

X

(270,60) X Detection point
Detected obstacle’s

location

 Experimental Results & Discussions

140

The experiment has been conducted in three trial runs and the errors in positions at the

final point were compared with the theory as tabulated in Table 7.3. The maximum

relative errors recorded in x-axis and y-axis at the final point for 20 seconds are

around 18.3% and 20%, respectively.

Table 7.3 Actual initial and final positions for Case 3

 xs (cm) ys (cm) xf (cm) yf (cm) x error
(cm)

y error
(cm)

Theory 0 50 300 50 - -

Trial 1 0 50 270 60 -30 10

Trial 2 0 50 355 43 55 -7

Trial 3 0 50 350 40 50 -10

7.5.2 Scenario 2: Two unknown static obstacles

The experimental works for the unknown static environments were further

investigated by adding more unknown static obstacles. In Scenario 2, two unknown

obstacles were placed in the environment at the unknown location and the distance

was increased to 4000 mm. The travelling time from initial point to final point was set

to 30 seconds. The experimental setup was shown in Figure 7.16.

Figure 7.16 Experimental setup for Scenario 2

Start Finish

Obstacles

x1

Distance = 4000 mm

x2

 Experimental Results & Discussions

141

The simulation and experimental results are shown in Figure 7.17 and Figure 7.18,

respectively. Both simulation and experimental results can be compared through the

respectively figures. At the beginning of the experiment, the mobile robot was

followed the initial collision-free trajectory until it detected the first obstacle. Then the

obstacle avoidance algorithm has been executed and the mobile robot avoided the first

obstacle as shown in Figure 7.18(b). Once the mobile robot has avoided the first

obstacle, it then continued it journey until it detected and avoided the second obstacle

as shown in Figure 7.18(d). After successfully avoiding the second obstacle, the

mobile robot continued following the new trajectory until it reached the final point as

shown in Figure 7.18(f).

 Experimental Results & Discussions

142

 (a) At time = 0 s (b) At time = 6 s

 (c) At time = 10 s (d) At time = 15 s

 (e) At time = 21 s (f) At time = 30 s

Figure 7.17 Mobile robot navigates through two unknown obstacles (simulation)

 Experimental Results & Discussions

143

 (a) At time = 0 s (b) At time = 6 s

 (c) At time = 10 s (d) At time = 15 s

 (e) At time = 21 s (f) At time = 30 s

Figure 7.18 Mobile robot navigates through two unknown obstacles (experiment)

Initial
trajectory

 Experimental Results & Discussions

144

The experiment has been conducted in three trial runs and the final results were

compared to the theory as shown in Figure 7.19.

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400

x (cm)

y
(c

m
)

Theory

Initial

Actual

Figure 7.19 Theoretical and actual trajectory for Case 4

The errors in positions at the final point were compared with the theory and tabulated

as in Table 7.4. The maximum errors recorded in x-axis and y-axis are around 6.3%

and 36%, respectively.

Table 7.4 Actual initial and final positions for Case 4

 xs (cm) ys (cm) xf (cm) yf (cm) x error
(cm)

y error
(cm)

Theory 0 50 400 50 - -

Trial 1 0 50 410 60 10 10

Trial 2 0 50 375 50 -25 0

Trial 3 0 50 377 68 -23 18

X
(210,70)

(141,50)
X (410,60)

X

Detection point Detected first
obstacle’s location

Detected second
obstacle’s location

(279,77)
X Detection point

(45,51)

X

 Experimental Results & Discussions

145

7.6 Case 4: Navigation in an unknown dynamic

environments

In this section, the experimental works were conducted in order to validate the

algorithm for moving obstacles. The dynamic obstacle avoidance approach was used

to detect and avoid the moving obstacles as discussed in previous chapter. In this

experiment, the remote control car was used as the moving obstacle. The algorithm

was tested through a series of scenarios.

7.6.1 Scenario 1: Opposite direction of mobile robot

In the first scenario, the moving obstacle came from the opposite direction of the

mobile robot as shown in Figure 7.20. The moving obstacle was placed randomly in

front of the mobile robot. The distance from initial point to final point was set to 350

cm and the travelling time for the mobile robot was set to 30 seconds.

Figure 7.20 Moving obstacle coming from the opposite direction of the mobile robot

The simulation and experimental results are shown in Figure 7.21 and Figure 7.22,

respectively. From the experimental results, the planned trajectory is represented by

red dash line, while the actual trajectory is represented by solid red line. At the

beginning of the experiment, the mobile robot was followed the initial collision-free

trajectory until it detected the moving obstacle. Then the obstacle avoidance algorithm

was executed and the new deviated trajectory was generated as shown in Figure

7.22(b). The mobile robot then avoided the mobile robot and followed new trajectory

until it reached the final point as shown in Figure 7.22(f).

Start Finish

Moving obstacle

Distance = 350 cm

Moving direction

Mobile robot

 Experimental Results & Discussions

146

 (a) At time = 0 s (b) At time = 13 s

 (c) At time = 18 s (d) At time = 22 s

(e) At time = 26 s (f) At time = 30 s

Figure 7.21 Scenario 1: Moving obstacle from the opposite direction of the mobile

robot (simulation)

Moving obstacle

Mobile robot

 Experimental Results & Discussions

147

 (a) At time = 0 s (b) At time = 13 s

 (c) At time = 18 s (d) At time = 22 s

 (e) At time = 26 s (f) At time = 30 s

Figure 7.22 Scenario 1: Moving obstacle from the opposite direction of the mobile

robot (experiment)

Obstacle
direction

Robot
direction

Initial
trajectory Deviated

trajectory

Planned
trajectory

Actual
trajectory

 Experimental Results & Discussions

148

From the experiment results, the planned (theoretical) trajectory and the actual

trajectory can be compared as shown in Figure 7.22(f) and Figure 7.23. The planned

trajectory was extracted from Matlab as the real-time data were collected from the

sensors in order to execute the obstacle avoidance algorithm. The mobile robot was

able to follow the planned closely it detected the moving obstacle. It then started to

deviate from the planned trajectory. At the final time, the mobile robot stopped at

(370, 120) compared to the planned final point at (350, 100). The errors recorded for

x-axis and y-axis for Scenario 1 are around 5.7% and 20%, respectively.

20

40

60

80

100

120

140

160

0 50 100 150 200 250 300 350 400

x (cm)

y
(c

m
)

Theory

Initial

Actual

Figure 7.23 Theoretical and actual trajectory for scenario 1

 Experimental Results & Discussions

149

7.6.2 Scenario 2: From left-hand side of mobile robot

In the second scenario, the moving obstacle came from the left-hand side direction of

the mobile robot as shown in Figure 7.24. The moving obstacle was placed randomly

at the left-hand side of the mobile robot and it moves on the straight line across the

mobile robot from left to right. The distance from initial point to final point for the

mobile robot was set to 350 cm and the travelling time was set to 30 seconds.

Figure 7.24 Moving obstacle coming from left-hand side of the mobile robot

The simulation and experimental results are shown in Figure 7.25 and Figure 7.26,

respectively. At the beginning of the experiment, the mobile robot was followed the

initial collision-free trajectory until it detected the moving obstacle and a new

deviated trajectory was generated as shown in Figure 7.26(b). The mobile robot was

then followed the new deviated trajectory and it reached the final point as shown in

Figure 7.26(f).

Start Finish

Moving obstacle

Distance = 350 cm

Moving direction

Mobile robot

 Experimental Results & Discussions

150

 (a) At time = 0 s (b) At time = 10 s

 (c) At time = 12 s (d) At time = 13 s

 (e) At time = 17 s (f) At time = 30 s

Figure 7.25 Scenario 2: Moving obstacle from the left-hand side of the mobile robot

(simulation)

 Experimental Results & Discussions

151

 (a) At time = 0 s (b) At time = 10 s

 (c) At time = 12 s (d) At time = 13 s

 (e) At time = 17 s (f) At time = 30 s

Figure 7.26 Scenario 2: Moving obstacle from the left-hand side of the mobile robot

(experiment)

Obstacle
direction

Robot
direction

Initial
trajectory

Planned
trajectory

Actual
trajectory

Deviated
trajectory

 Experimental Results & Discussions

152

The comparison between the planned (theoretical) trajectory and the actual trajectory

is shown in Figure 7.26(f) and Figure 7.27. From the figures, the mobile was able to

follow the planned trajectory until it detected the moving obstacle. It then started to

deviate from the new deviated trajectory. However the mobile robot was able to avoid

the moving obstacle safely. At the final time, the mobile robot stopped at (360, 90)

compared to the planned final point at (350, 100). The errors recorded for x-axis and

y-axis for scenario 2 are around 2.9% and 10%, respectively.

20
40
60
80

100
120
140
160
180
200

0 50 100 150 200 250 300 350 400

x (cm)

y
(c

m
)

Theory

Initial

Actual

Figure 7.27 Theoretical and actual trajectory for scenario 2

 Experimental Results & Discussions

153

7.6.3 Scenario 3: From right-hand side of mobile robot

In the third scenario, the moving obstacle came from the right-hand side direction of

the mobile robot as shown in Figure 7.28. The moving obstacle was placed randomly

at the right-hand side of the mobile robot and it moves on the straight line across the

mobile robot from left to right. The distance from initial point to final point for the

mobile robot was set to 350 cm and the travelling time was set to 30 seconds.

Figure 7.28 Moving obstacle coming from right-hand side of the mobile robot

The simulation and experimental results are shown in Figure 7.29 and Figure 7.30,

respectively. At the beginning of the experiment, the mobile robot was followed the

initial collision-free trajectory until it detected and avoided the moving obstacle as

shown in Figure 7.30(c). Then the new deviated trajectory was generated and the

mobile robot was followed the new trajectory until it reached the final point as shown

in Figure 7.30(f).

Start Finish

Moving obstacle

Distance = 350 cm

Moving direction
Mobile robot

 Experimental Results & Discussions

154

 (a) At time = 0 s (b) At time = 11 s

 (c) At time = 16 s (d) At time = 24

 (e) At time = 28 s (f) At time = 30 s

Figure 7.29 Scenario 3: Moving obstacle from the right-hand side of the mobile robot

(simulation)

 Experimental Results & Discussions

155

 (a) At time = 0 s (b) At time = 11 s

 (c) At time = 16 s (d) At time = 24

 (e) At time = 28 s (f) At time = 30 s

Figure 7.30 Scenario 3: Moving obstacle from the right-hand side of the mobile robot

(experiment)

Obstacle
direction

Robot
direction

Initial
trajectory

Deviated
trajectory

Planned
trajectory

Actual
trajectory

 Experimental Results & Discussions

156

The comparison between the planned (theoretical) trajectory and the actual trajectory

is shown in Figure 7.30(f) and Figure 7.31. From the figures, the mobile robot was

able to follow the planned trajectory until it detected the moving obstacle. It then

started to deviate from the new deviated trajectory. At the final time, the mobile robot

stopped at (320, 110) which is shorter than the planned final point at (350,100). The

errors recorded for x-axis and y-axis for scenario 3 are around 8.6% and 10%,

respectively.

20

40

60

80

100

120

140

0 50 100 150 200 250 300 350 400

x (cm)

y
(c

m
)

Theory

Initial

Actual

Figure 7.31 Theoretical and actual trajectory for scenario 3

7.7 Concluding remarks

From the experimental results, it was found that the mobile robot was capable to

follow closely the planned trajectories. The errors for each case were compared

between the planned and actual results at the final point for respective travel time. The

position errors obtained from the experiments show an acceptable result as most of the

trials for each case, the mobile robot has stopped close to the final point. Furthermore,

the control strategy of the nonholonomic mobile robot was applicable to the real

mobile robot and the control of the mobile robot was ideal with the calibration work

which was conducted prior to the experimental works. The algorithm was also

showed a good result in computational time which was shown by the mobile robot

when it detected an obstacle and started to re-plan its trajectory in order to avoid the

obstacle in the real testing arena. Furthermore, the integration of the sensors and

 Experimental Results & Discussions

157

algorithm showed that the mobile robot was capable to detect and avoid the obstacle.

This indicates the dynamic obstacle avoidance approach was practical to use to avoid

the obstacle in the real experiments.

 However, there is a slight deviation between the planned and n actual trajectories due

to inaccuracy of actual steering angle and actual travelled distance caused by the

open-loop system. The control strategy for a car-like robot can be developed further in

order to obtain a better result. For example, the introduction of close-loop feedback

control will ensure the speed and steering angle respond better to the calibrated speed

and steering angle. In addition, the errors occurred due to:

1. The friction between the tyres and surface caused slippage and reduce the

accuracy of velocity and distance recorded for the mobile robot.

2. The torque of the motor used to control the speed was quite small and the

mobile robot needs a kick start to move.

Therefore, the newly developed algorithms are applicable and practical to be used for

a car-like robot in real-time applications as demonstrated in the experimental works.

The validation works for the algorithms and the verification of effectiveness of the

simulation frameworks for the mobile robot were successfully conducted through a

series of experimental setup. Furthermore the development of simulation framework

will be used to further research and running more scenarios that are difficult to be

conducted by experiment works.

 Conclusions & Future Works

158

8. CONCLUSIONS AND FUTURE WORKS

The reviewed literature indicates that there is no comprehensive research focused on

the time-critical motion planning for a nonholonomic mobile robot. Several

simulation works have been conducted for trajectory planning of the nonholonomic

mobile robot to simulate the algorithms, but there was no experimental work was

conducted to validate the algorithms (Guo et al., 2003; Qu et al., 2004; Guo et al.,

2007). This study has been carried out to further investigate the time-critical motion

planning for a nonholonomic mobile robot. The geometry approach has been

examined and used to generate the time-critical motion planning for mobile robots.

Cubic and quintic polynomials are used to obtain a smooth and continuous trajectory

for the mobile robots. The kinematic constraints of the mobile robot have been taken

into consideration during the development of the algorithms. From the simulation

results, all the cases proved that the algorithms are practical to be used in motion

planning for single and multiple mobile robots. Furthermore the experimental works

validate and verify the algorithms and the control strategies of the mobile robot.

 Conclusions & Future Works

159

In this chapter, all the findings will be concluded as a whole and the future works for

this study will be described.

Contributions

This study had made several contributions to the current knowledge and the

contributions are summarized as followings.

(1) Development of the time-critical motion planning algorithms for

nonholonomic mobile robots.

In this study, a new time-critical motion planning algorithm was developed for

nonholonomic mobile robots. The movement of the mobile robot can be analysed

through this algorithm with given initial and final states, which are x-position, y-

position, orientation, steering angle, velocity and time, of the mobile robot. The

environment setup can be easily changed by adopting a required map into the

algorithm. This algorithm can also be utilised for multiple mobile robots planning

with each mobile robot has a different initial and final state.

The advantage of this algorithm is it can indicate the initial and final trajectory at

every time step for each scenario that has been set. In addition the size of the mobile

robot can be set simply by changing the parameter of the mobile robot to suit the real

mobile robot. Furthermore, using MATLAB as an object-oriented programming

allows a real time programming which is used in real time experiments.

On the other hand, the planned trajectory has considered obstacles that known in prior

to the planner before the mobile robot starts to move from the initial point. The

advantage of this approach is the planner will generated an initial free-collision

trajectory for the mobile robot. This will ensure the mobile robot will not collide with

any known obstacle while manoeuvring through the environment and will able to

reach the final point at the desired time.

 Conclusions & Future Works

160

Furthermore, the developed 2D simulation framework in Matlab give a user friendly

interface for the user to set the initial and final state of the mobile robot before

running the simulation.

(2) Development of the dynamic obstacle avoidance approach

In this study, a new strategy in avoiding an obstacle has been is developed for a time-

critical motion planning for nonholonomic mobile robots. The obstacle avoidance

approach has modified the initial trajectory in order to avoid the obstacle and at the

same time, the new generated trajectory will ensure the mobile robot reach the final

point at the desired time.

The advantage of this dynamic obstacle avoidance approach is it can compensate the

time lost during avoiding the obstacle. The obstacle avoidance algorithm ensures the

mobile robot able to avoid unknown static and dynamic obstacles which the mobile

robot encounters during navigating through the environments. To the current

knowledge, this dynamic obstacle avoidance approach is the first obstacle avoidance

approach that considering timing when encountering an obstacle.

(3) Validation and verification works through series of simulations and

experiments

One of the most important parts of this study is to validate the algorithm and

effectiveness of the simulation framework with the real mobile robot. A car-like robot

was used to carry out the simulated trajectory in the real environment. At the

preparation stage, the steering angle and speed of the mobile robot were calibrated.

Then an actual mobile robot was used to validate and verify the theory.

The experiments were conducted through a series of cases. Basically, there were four

cases have been carried out for this study. The first case was to verify the control

strategy of the car-like robot. The second case was to validate the collision-free time-

critical motion planning algorithm. In this case, a known static obstacle was placed in

the environment and the obstacle was known to the planner prior to trajectory

generation. The third and forth cases were carried out in the unknown static

 Conclusions & Future Works

161

environments to validate the dynamic obstacle avoidance algorithm. In the third case,

a static obstacle was place in the environment, but it was not known to the planner

prior to trajectory generation. While in the forth case, the scenario was extended by

placing more unknown static obstacles. Finally the fifth case was carried out in the

unknown dynamic environments to test and validate the algorithm for moving

obstacles. There were three scenarios which differentiated by the moving direction of

the moving obstacle from the mobile robot – moving from opposite side, left-hand

side and right-hand side of the mobile robot. For each case, the experimental results

were then being compared to the theory or simulation results.

From the experiment results, the mobile robot was able to navigate through the

environment and reach the final point at the desired time, with capability to avoid the

obstacle along its way. This shows that the mobile robot can be used for a task-based

mission as the mobile robot can be set to reach a certain waypoint or the final point at

the desired time. Furthermore, the setting of parameter for the algorithm is also

flexible as the modification can only be made in Matlab interface without interfering

the onboard control algorithm at the mobile robot.

Future works

This study can be further investigate and improve in the future to establish a robust

and optimize algorithms that can be used for the real applications. The possible future

works for this study are briefly described as followings.

(1) Optimization of the time-critical motion planning algorithm.

Currently, the algorithm is not considering the overall distance of the trajectory for the

mobile robot from the initial to the final point. The algorithm can be optimised in

order to ensure the mobile robot will travel using the shortest trajectory. In addition,

the usage of battery for mobile robots is one the main concerns. Thus the energy

management approach can be adopted for the algorithm so that the mobile robot can

travel for long distance.

 Conclusions & Future Works

162

Furthermore, in order to obtain a better driving experience to the mobile robot, the

velocity can be optimised. For example, at the straight line, the mobile robot can

achieve a higher speed than at the curve. This may has impact on dynamic of the

mobile robot during cornering. Furthermore the mobile robot might be also start at a

higher speed from the initial point and will slow down when it approaching the final

point.

At this moment, the steering angle and speed are set with an open loop system which

means there is no feedback control. However, the experimental results show the

mobile robot was able to perform the driving along the planned trajectory well, but

introducing a feedback controller can increase the accuracy results in real time

experiments.

(2) Experimental work for multiple mobile robots in dynamic environments.

At this moment, the experimental works only conducted in the static and dynamic

environments with single mobile robot. In the future, the experiment can be conducted

in environments with the presence of multiple mobile robot and moving obstacles

such as other mobile robot and human. However, prior to the experiment, the mobile

robot need to equip with a better detection sensor for moving obstacle such as laser

range finder (LRF) or a mobile camera. These sensors will ensure the moving obstacle

can be detected and tracked so that the algorithm will be able to plan the next step.

Furthermore, the limitations of the current car-like robot need to be considered. The

mobile robot was modified from the small scale RC car and will not be suitable to

carry a large sensor such as LRF. The battery life also needs to be taking into

consideration as the battery will power all the sensors, motor, servo and

microcontroller.

 Reference

163

REFERENCE

Brezak, M., I. Petrovic and E. Ivanjko (2008). "Robust and accurate global vision
system for real time tracking of multiple mobile robots", Robotics and
Autonomous Systems, vol.56, pp. 213-230.

Brock, O. and O. Khatib (1999). "High-speed navigation using the global dynamic
window approach", International Conference on Robotics and Automation,
Michigan, USA, 10-15 May 1999.

Castillo, G. D., S. Skaar, A. Cardenas and L. Fehr (2006). "A sonar approach to
obstacle detection for a vision-based autonomous wheelchair", Robotics and
Autonomous Systems, vol.54, pp. 967-981.

Chang, Y.-C., Y. Y. Lwin and Y. Yamamoto (2009). Sensor-based trajectory planning
strategy for non-holonomic mobile robot with laser range sensors. IEEE
International Symposium on Industrial Electronics (ISIE’09). Seoul, Korea.

Cosio, F. A. and M. A. P. Castaneda (2004). "Autonomous robot navigation using
adaptive potential fields", Mathematical and Computer Modelling,
vol.40(2004), pp. 1141-1156.

Delingette, H., M. Hebert and K. Ikeuchi (1991). "Trajectory generation with
curvature constraint based on energy minimization", International Conference
on Intelligent Robotics Systems, Osaka, Japan, November 1991.

Dong, W. and Y. Guo (2005). "New trajectory generation methods for nonholonomic
mobile robots", International Symposium on Collaborative Technologies and
Systems, Missouri, USA, 15-20 May 2005.

Duan, Y., Q. Liu and X. Xu (2007). "Application of reinforcement learning in robot
soccer", Engineering Applications of Artificial Intelligence, vol.20, pp. 936-
950.

Fajen, B. R. and W. H. Warren (2003). "Behavioral dynamics of steering obstacle
avoidance and route selection", Journal of Experimental Psychilogy: Human
and Perception and Performance, vol.29(2), pp. 343-362.

Fajen, B. R., W. H. Warren, S. Temizer and L. P. Kaelbling (2003). "A dynamic
model of visually-guided steering, obstacle avoidance and route selection",
International Journal of Computer Vision, vol.54(1/2/3), pp. 13-34.

Ferrara, A. and M. Rubagotti (2009). A dynamic obstacle avoidance strategy for a
mobile robot based on sliding mode control. IEEE International Conference on
Control and Applications. Saint Petersburg, Russia.

Fox, D., W. Burgard and S. Thrun (1997). "The dynamic window approach to
collision avoidance", IEEE Robotics and Automation Magazine, vol.4(1), pp.
23-33.

Ge, S. S. and F. L. Lewis (2006). "Autonomous mobile robot: Sensing, control,
decision making and applications", Taylor and Francis Group, 2006.

Ghita, N. and M. Kloetzer (2012). "Trajectory planning for a car-like robot by
environment abstraction", Robotics and Autonomous Systems, vol.60, pp.
609-619.

Guo, Y., Z. Qu and J. Wang (2003). "A New Performance-Based Motion Planner for
Nonholonomic Mobile Robots", The 3rd Performance Metrics for Intelligent
Systems Workshop, Gaithersburg, MD, USA, 16-18 September 2003.

 Reference

164

Haddad, M., T. Chettibi, S. Hanchi and H. E. Lehtihet (2007). "A random-profile
approach for the trajectory planning of the wheeled mobile robots", European
Journal of Mechanics A/Solids, vol.26, pp. 519-540.

Hamner, B., S. Singh and S. Scherer (2006). "Learning obstacle avoidance parameters
from operator behavior", Journal of Field Robotics, vol.23(11/12), pp. 1037-
1058.

Hazon, N. and G. A. Kaminka (2008). "On redundancy, effieciency and robustness in
coverage for multiple robots", Robotics and Autonomous Systems, vol.56, pp.
1102-1114.

Hong, J., Y. Choi and K. Park (2007). Mobile robot navigation using modified
flexible Vector field approach with laser range finder and IR sensor.
International Conference on Control, Automation and Systems. Seoul, Korea.

Huang, L. (2009). "Velocity planning for a mobile robot to track a moving target - a
potential field approach", Robotics and Autonomous Systems, vol.57, pp. 55-
63.

Huang, W. H., B. R. Fajen, J. R. Fink and W. H. Warren (2006). "Visual navigation
and obstacle avoidance using a steering potential function", Robotics and
Autonomous Systems, vol.54, pp. 288-299.

Hui, N. B., V. Mahendar and D. K. Pratihar (2006). "Time-optimal, collision-free
navigation of a car-like mobile robot using neuro-fuzzy approach", Fuzzy Sets
and Systems, vol.157, pp. 2171-2204.

Jacob, M. (2008). Path planning and obstacle avoidance in unknown dynamic
environments.

Jiang, K., L. D. Senevirate and S. W. E. Earles (1997). "TIme-optimal smooth-path
planning for a mobile robot with the kinematic constraints", Robotica, vol.15,
pp. 547-553.

Jolly, K. G., R. S. Kumar and R. Vijayakumar (2008). "A Bezier curve based path
planning in a multi-agent robot soccer system without violating the
acceleration limits", Robotics and Autonomous Systems, vol.57, pp. 23-33.

Jolly, K. G., K. P. Ravindran, R. Vijayakumar and R. S. Kumar (2007). "Intelligent
decision making in multi-agent robot soccer system through compounded
artificial neural networks", Robotics and Autonomous Systems, vol.55, pp.
589-596.

Kanayama, Y. and N. Miyake (1986). "Trajectory generation for mobile robots", 3rd
Symposium on Robotics Research, Gourvieux, France, 1986.

Kelly, A. (2003). "Efficient parametric synthesis of optimal mobile robot trajectories",
11th International Conference on Advanced Robotics, University of Coimbra,
Portugal, 30 June - 3 July 2003.

Khatib, O. (1986). "Real-time obstacle avoidance for robot manipulator and mobile
robots", International Journal of Robotics Research, vol.5(1), pp. 90-98.

Klancar, G., M. Kristan, S. Kovacic and O. Orqueda (2004). "Robust and efficient
vision system for group of cooperating mobile robots with application to
soccer robots", ISA Transactions, vol.43, pp. 329-342.

Koh, K. C. and H. S. Cho (1999). "A smooth path tracking algorithm for wheeled
mobile robots with dynamic constraints", Journal of Intelligent and Robotic
Systems, vol.24, pp. 367-385.

Li, L. and F.-Y. Wang (2003). "Trajectory generation for driving guidance of front
wheel steering vehicles", IEEE Intelligent Vehicles Symposium, Ohio, USA,
9-11 June 2003.

 Reference

165

Liang, T.-C., J.-S. Liu, G.-T. Hung and Y.-Z. Chang (2005). "Practical and flexible
path planning for a car-like mobile robot using maximal-curvature cubic
spiral", Robotics and Autonomous Systems, vol.52, pp. 312-335.

Liddy, T. J. and T.-F. Lu (2007). "Waypoint navigation with position and heading
control using complex vector fields for an Ackermann steering autonomous
vehicle", Australasian Conference on Robotics and Automation, Brisbane,
Australia, 10-12 December 2007.

Liu, S. and D. Sun (2011). Optimal motion planning of a mobile robot with minimum
energy consumption. 2011 IEEE/ASME International Conference on
Advanced Intelligent Mechatronics (AIM2011). Budapest, Hungary.

Ma, Y., G. Zheng and W. Perruquetti (2013). "Real-time local path planning for
mobile robots", 9th International Workshop on Robot Motion and Control,
Wasowo, Poland, 3-5 July 2013.

Mihaylova, L., J. D. Schutter and H. Bruyninckx (2003). "A multisine approach for
trajectory generation optimization based on the information gain", Robotics
and Autonomous Systems, vol.43, pp. 231-243.

Nagatani, K., Y. Iwai and Y. Tanaka (2001). "Sensor based navigation for car-like
mobile robots using generalized Voronoi Graph", IEEE/RSJ International
Conference on Intelligent Robots and Systems, Hawaii, USA, 29 Oct. - 3
Nov. 2001.

Nagy, B. and A. Kelly (2001). "Trajectory generation for car-like robots using cubic
curvature polynomials", International Conference on Field and Service
Robots, Helsinki, Finland, June 1991.

Pin, F. G. and H. A. Vasseur (1990). "Autonomous trajectory generation for mobile
robots with non-holonomic and steering angle constraints", IEEE
International Workshop on Intelligent Motion Control, Istanbul, Turkey, 20-
22 August 1990.

Prado, M., A. Simon, E. Carabias, A. Perez and F. Ezquerro (2003). "Optimal velocity
planning of wheeled mobile robots on specific paths in static and dynamic
environments", Journal of Robotic Systems, vol.20(12), pp. 737-754.

Qu, Z., J. Wang and C. E. Plaisted (2004). "A new analytical solution to mobile robot
trajectory generation in the presence of moving obstacles", IEEE Transaction
on Robotics and Automation, vol.20, pp. 978-993.

Safadi, H. (2007). Local path planning using virtual potential field, School of
Computer Science, McGill University.

Salichs, M. A. and L. Moreno (2000). "Navigation of mobile robots: Open question",
Robotica, vol.18, pp. 227-234.

Shin, D. and S. Singh (1990). Path generation for robot vehicles using composite
clothoid segments. Pittsburgh, Pennsylvania, Carnegie-Mellon University.

Siegwart, R. and I. R. Nourbakhsh (2004). "Introduction to autonomous mobile
robots", The MIT Press, 2004.

Sridharan, K. and T. K. Priya (2004). "A parallel algorithm for constructing reduced
visibility graph and its FPGA implementation", Systems Architecture,
vol.50(2004), pp. 635-644.

Stroupe, A., T. Huntsberger, A. Okon, H. Aghazarian and M. Robinson (2005).
"Behavior-based multi-robot collaboration for autonomous constraction tasks",
International Conference on Intelligent Robots and Systems, Alberta, Canada,
2-6 August 2005.

Tounsi, M. and J. F. L. Corre (1996). "Trajectory generation for mobile robots",
Mathematics and Computers in Simulation, vol.41, pp. 367-376.

 Reference

166

Treptow, A. and A. Zell (2004). "Real-time object tracking for soccer robots without
color information", Robotics and Autonomous Systems, vol.48, pp. 41-48.

Victorino, A. C., P. Rives and J.-J. Borrelly (2001). "Mobile robot navigation using a
sensor-based control strategy", IEEE International Conference on Robotics 8
Automation, Seoul, Korea, 21-26 May 2001.

Wein, R., J. P. v. d. Berg and D. Halperin (2007). "The Visibility-Voronoi complex
and its applications", Computational Geometry, vol.36(2007), pp. 66-87.

Yamaguchi, H. (2003). "A distributed motion coordination strategy for multiple
nonholonomic mobile robots in cooperative hunting operations", Robotics and
Autonomous Systems, vol.43, pp. 257-282.

Zhang, S., L. Xie and M. D. Adams (2006). "Feature extraction for outdoor mobile
robot navigation based on a modified Gauss–Newton optimization approach",
Robotics and Autonomous Systems, vol.54(2006), pp. 277-287.

 Appendix A

167

APPENDIX A

DATASHEETS

 Appendix A

168

A1. Robot Controller (http://www.pololu.com/catalog/product/1327)

Specifications

• Overall unit dimensions: 3.70" × 2.20"
• Input voltage: 6 – 13.5 V
• Programmable 20 MHz Atmel ATmega324PA AVR microcontroller with 32 KB

flash, 2 KB SRAM, and 1 KB EEPROM *
• Programmable 20 MHz Atmel ATmega1284P AVR microcontroller with 128

KB flash, 16 KB RAM, and 4 KB EEPROM *(SVP-1284 version)
• Built-in USB AVR ISP programmer (USB A to mini-B cable
• 2 bidirectional motor ports (2 A continuous per channel, 6 A maximum
• 8-output demultiplexer tied to one of the AVR’s hardware PWMs for easy

control of up to 8 servos
• 21 free I/O lines

o 17 free I/O lines on the main MCU, of which 8 can be analog inputs
o 4 input lines on the auxiliary processor, which can be either 4 analog

inputs or dual quadrature encoder inputs
o 2 hardware UARTs

• Removable 16-character × 2-line LCD with backlight
• Primary 5V switching regulator capable of supplying 3 A
• Secondary adjustable (2.5 V – 85% of VIN) buck (step-down) voltage regulator

capable of supplying 3 A
• Buzzer tied to one of the AVR’s hardware PWMs
• 3 user pushbutton switches
• 2 user LEDs
• Power (push-on/push-off) and reset pushbutton switches
• Power circuit makes it easy to add extra power buttons and provides a self-

shutdown option
• Auxiliary processor (connected via SPI) provides:

o Battery voltage reading
o User trimmer potentiometer reading
o Integrated USB connection
o In-System-Programming of the main processor
o Ability to read two quadrature encoders

 Appendix A

169

A2. Ultrasonic Sensor (http://www.robot-electronics.co.uk/htm/srf05tech.htm)

SRF05
Range - 1cm to 4m.
Power - 5v, 4mA Typ.
Frequency - 40KHz.
Size - 43mm x 20mm x 17mm height.

Two operational modes are available, Single pin for trig/echo or 2 Pin SRF04
compatible.

The input Trigger is a 10uS Min. TTL level pulse
Echo Pulse is Positive TTL level signal, with the width proportional to the object
range.

Mode 2 – Single pin for both Trigger and Echo

 Appendix A

170

A3. Hall Effect Sensor (http://www.melexis.com/Hall-Effect-Sensor-ICs/Hall-
Effect-Latches/US1881-140.aspx)

Features and Benefits
• Wide operating voltage range from 3.5V to 24V
• High magnetic sensitivity – Multi-purpose
• CMOS technology
• Chopper-stabilized amplifier stage
• Low current consumption
• Open drain output
• Thin SOT23 3L and flat TO-92 3L both RoHS Compliant packages

Functional diagram

Pin definitions and descriptions

 Appendix A

171

A4. Wireless Communication (http://www.digi.com/products/wireless-wired-
embedded-solutions/zigbee-rf-modules/zigbee-mesh-module/xbee-zb-module)

 Appendix B

172

APPENDIX B

MATLAB GRAPICAL USER INTERFACE (GUI)
AND PROGRAMMING

 Appendix B

173

Input window’s interface

Output window’s interface

 Appendix B

174

function mainstart()

clear all; clc;
addpath('Fig','Figures','function')
%%%%%%%% CONDITIONS %%%%%%%%%%%
% a) time for robot 1 >= robot 2
% b) time for movobs 1 >= movobs 2
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

num_of_robs = 1; % number of robots
num_of_movobs = 0; % number of moving obstacles
mapmax = max(str2num(getappdata(0, 'xf')),str2num(g etappdata(0,
'yf')));
xmapact=mapmax;
ymapact=mapmax;
% time=60; % overall time

%%%%%%%%%%%%%
% SET MAP
%%%%%%%%%%%%%
figure(1)
map=imread(getappdata(0, 'mapname')); %move4
image(map)
axis image on
colormap gray
axis ij
axis equal
axis tight

if mapmax<200
 mapinc = 10;
else
 mapinc = 50;
end

xlabel('x coordinate (m)','fontsize',12)
ylabel('y coordinate (m)','fontsize',12)
xlim([-10 (mapmax+50)])
ylim([-10 (mapmax+50)])
set(gca,'YDir','normal','XTick',0:mapinc:mapmax,'YT ick',0:mapinc:mapm
ax)
hold on

% xlim([0 200])
% ylim([0 200])
% set(gca,'YDir','normal','XTick',0:20:200,'YTick', 0:20:180)
% hold on

% set(gcf,'PaperPositionMode','auto');
% print(gcf,'-dtiff','-r0','newmap.tif')

%%%%%%%%%%%%%%%%%%%%%%%
% MOVING OBSTACLE PATH
%%%%%%%%%%%%%%%%%%%%%%%
if num_of_movobs>0
 for i=1:num_of_movobs
 run(['movobs' num2str(i)]);

 Appendix B

175

 end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% GENERATE INITIAL TRAJECTORY
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:num_of_robs
 run(['robot' num2str(i)]);

 if num_of_movobs>0
 for j=1:num_of_movobs
 filename=['xmovobs' num2str(j) '.dat'];
 xmovobs_old=csvread(filename);
 filename=['xmovobs' num2str(j) 'R' num2 str(i) '.dat'];
 csvwrite(filename,xmovobs_old)

 filename=['ymovobs' num2str(j) '.dat'];
 ymovobs_old=csvread(filename);
 filename=['ymovobs' num2str(j) 'R' num2 str(i) '.dat'];
 csvwrite(filename,ymovobs_old)
 end
 end
end

%%%%%%%%%%%%%%%%%%%%%
% SIMULATE ROBOTS
%%%%%%%%%%%%%%%%%%%%%

length= str2num(getappdata(0, 'length')).*str2num(g etappdata(0,
'magnify'));%1.3; %0.28; % robot length
width=str2num(getappdata(0, 'width')).*str2num(geta ppdata(0,
'magnify'));%0.6; %0.2; % robot width
phimax=str2num(getappdata(0, 'phimax'))*pi/180; %20 *pi/180;
obs_size=10;
movobs_size=0.5;
radsm=10;
radmov=10;
% n=time; % maximum time

%%%%%%%%% CHECK ROBOT TIME %%%%%%%%%%%%%%%
%%%% 1 robot
if num_of_robs==1
 dataR1 = csvread('offlineR1.dat'); % read offli ne data Robot1
 [mR1 nR1] = size(dataR1);
 tRmax = nR1;
 csvwrite('tR1.dat',nR1)
end

%%%%% 2 robots
if num_of_robs==2

dataR1 = csvread('offlineR1.dat'); % read offline d ata Robot1
[mR1 nR1] = size(dataR1);

dataR2 = csvread('offlineR2.dat'); % read offline d ata Robot2
[mR2 nR2] = size(dataR2);

 Appendix B

176

tRmax = max(nR1,nR2); % check max time

csvwrite('tR1.dat',nR1)
csvwrite('tR2.dat',nR2)
end

%%%% 3 robots
if num_of_robs==3

dataR1 = csvread('offlineR1.dat'); % read offline d ata Robot1
[mR1 nR1] = size(dataR1);

dataR2 = csvread('offlineR2.dat'); % read offline d ata Robot2
[mR2 nR2] = size(dataR2);

dataR3 = csvread('offlineR3.dat'); % read offline d ata Robot2
[mR3 nR3] = size(dataR3);

time=[nR1,nR2,nR3];
tRmax = max(time); % check max time

csvwrite('tR1.dat',nR1)
csvwrite('tR2.dat',nR2)
csvwrite('tR3.dat',nR3)
end

%%%% MOVING OBSTACLES %%%%
%%%% 1 moving obstacle
if num_of_movobs==1
 dataMov1 = csvread('movobs1.dat'); % read movin g obstacle 1 data
 [mV1 nV1] = size(dataMov1);
 tVmax=nV1;
 csvwrite('tV1.dat',nV1)
end

%%%% 2 moving obstacles
if num_of_movobs==2
 dataMov1 = csvread('movobs1.dat'); % read movin g obstacle 1 data
 [mV1 nV1] = size(dataMov1);
 dataMov2 = csvread('movobs2.dat'); % read movin g obstacle 2 data
 [mV2 nV2] = size(dataMov2);

 tVmax = max(nV1,nV2); % check max time

 csvwrite('tV1.dat',nV1)
 csvwrite('tV2.dat',nV2)
end

ht=text(5,100,'Time step: ');
set(ht,'string','Time step: 0 sec','Color',[0 0 0])
% ht=text(147,193,'Time: ');
% set(ht,'string','Time: 0 sec','Color',[0 0 0])

% save figure
set(gcf,'PaperPositionMode','auto');
foldername='Figures';
filename='time0.tif';

 Appendix B

177

print(gcf,'-dtiff','-r0',[foldername,filesep,filena me])
foldername='Fig';
filename='time0.fig';
saveas(gcf,[foldername,filesep,filename])

olddata1=csvread('offlineR1.dat');
csvwrite('olddata1.dat',olddata1)

olddata2=csvread('offlineR2.dat');
csvwrite('olddata2.dat',olddata2)

olddata3=csvread('offlineR3.dat');
csvwrite('olddata3.dat',olddata3)

pause(3)
delete(ht)

for i=2:tRmax

 %%%%%% moving obstacles %%%%%%%%%%
 if num_of_movobs>0
 for k=1:num_of_movobs

 filename=['tV' num2str(k) '.dat'];
 tV=csvread(filename);

 if i>tV
 break;
 end

 filename = ['movobs' num2str(k) '.dat'] ;
 movobs_data = csvread(filename);

 x_movobs=movobs_data(2,i);
 y_movobs=movobs_data(3,i);
 p = linspace(0,2*pi,100);
 x_mov = x_movobs + 0.5*sin(p)';
 y_mov = y_movobs + 0.5*cos(p)';
 phmov = fill(x_mov,y_mov,'r');
 movobsno=k;
 end
 end

 %%%%%% mobile robots %%%%%%%
 for j=1:num_of_robs

 filename=['tR' num2str(j) '.dat'];
 tfR=csvread(filename);

 if i>tfR
 break;
 end

 % read data
 filename = ['offlineR' num2str(j) '.dat'];
 data1 = csvread(filename);
 filename = ['timeR' num2str(j) '.dat'];
 tdata = csvread(filename);

 Appendix B

178

 [tm tn]=size(tdata);

 if tn==1
 data=data1;
 tR=tdata(1,1)+1;
 end

 if tn==2
 t1=tdata(1,1);
 t2=tdata(1,2);

 if i-1<t1
 data=data1(:,1:t1+1);
 tR=t1+1;
 end

 if i-1>t1
 data=data1(:,1:t2+1);
 tR=2+1;
 end
 end

 if tn==3
 t1=tdata(1,1);
 t2=tdata(1,2);
 t3=tdata(1,3);

 if i-1<=t1
 data=data1(:,1:t1+1);
 tR=t1+1;
 end
 if i-1>t1 && i-1<=t2
 data=data1(:,1:t2+1);
 tR=t2+1;
 end
 if i-1>t2
 data=data1(:,1:t3+1);
 tR=t3+1;
 end
 end

 if tn==5
 t1=tdata(1,1);
 t2=tdata(1,2);
 t3=tdata(1,3);
 t4=tdata(1,4);
 t5=tdata(1,5);

 if i-1<=t1
 data=data1(:,1:t1+1);
 tR=t1+1;
 end
 if i-1>t1 && i-1<=t2
 data=data1(:,1:t2+1);
 tR=t2+1;
 end
 if i-1>t2 && i-1<=t3
 data=data1(:,1:t3+1);
 tR=t3+1;
 end

 Appendix B

179

 if i-1>t3 && i-1<=t4
 data=data1(:,1:t4+1);
 tR=t4+1;
 end
 if i-1>t4
 data=data1(:,1:t5+1);
 tR=t5+1;
 end
 end

 filename = ['tempdataR' num2str(j) '.dat'];
 actdata = csvread(filename);
 robno=j;

 t=data(1,i);
 x=actdata(2,i-1);
 y=actdata(3,i-1);
 xth=data(2,i);
 yth=data(3,i);
 theta=actdata(4,i-1)*pi/180;
 thetas=data(4,1)*pi/180;
 phi=data(5,i)*pi/180;
 vel=data(6,i);
 ti=data(1,i)-data(1,i-1);

 % calculate new robot steering angle

 thetanext=atan((yth-y)./(xth-x));

 if (thetanext<=0 && x>xth) || (x>xth && y>y th)
 thetanext=pi+thetanext;
 end

 if thetanext<0 && x<xth && thetas<0
 thetanext=2*pi+thetanext;
 end

 dtheta=-(thetanext-theta);
 dvel=data(6,i)-data(6,i-1);
 d=data(6,i-1).*ti+0.5*dvel*ti;
 rb=d./(2*sin(dtheta/2));
 phi=atan(length/rb);

 if phi>phimax || phi<-phimax
 phi=phi/abs(phi)*phimax;
 end

 %%%%%%%%% calculate new robot data %%%%%%%% %

% drb=data(6,i-1).*ti+0.5*dvel.*ti
 num_dig = 5;
 phi = round(phi*(10^num_dig))/(10^num_dig);

 if phi==0
 phi=0.0001;
 end

 Appendix B

180

 rb=length/tan(phi);
 beta=2*(asin(d/(2*rb)));
 alpha=theta-(beta/2);

 xold=x;
 yold=y;

 theta=theta-beta;
 dx=d*cos(alpha);
 dy=d*sin(alpha);
 x=x+dx; % new x position
 y=y+dy; % new y position

 dxsen=length*cos(theta);
 dysen=length*sin(theta);

 xsen=x+dxsen; % initial x for sensor
 ysen=y+dysen; % initial y for sensor
% plot(xsen,ysen,'og')

 drawrobot(xold,yold,t,x,y,theta,phi,vel,len gth,width,robno)

 %%%%%%%%%%% static obstacles detection %%%%%%% %%%%%%%%%

 % to check whether the robot needs to avoid st atic obstacle or
not

 xmap=[data(2,tR), xmapact];
 ymap=[data(3,tR), ymapact];
 dist=rangefinder(xmap,ymap,xsen,ysen,theta, map);
 [o p]=size(dist);
 check_dist=min(dist(1,1:p));

 % if check_dist<=15, avoid
 tempdist=[];
 tempangle=[];
 if check_dist<=80%15
 for a=1:p
 distance=dist(1,a);
 angle=dist(2,a);
 if distance<=80%15
 distance1=distance;
 angle1=angle;

 tempdist=horzcat(tempdist,distanc e1);
 tempangle=horzcat(tempangle,angle 1);
 end
 end

 dist=[tempdist; tempangle];
 min_dist=min(tempdist);
 angle_detect1=min(tempangle);
 angle_detect2=max(tempangle);
 angle_detect_obs=(angle_detect2+angle_d etect1)/2;

 dscan_angle1=abs(theta-angle_detect1);
 dscan_angle2=abs(theta-angle_detect2);

 Appendix B

181

 if dscan_angle1 <=10*pi/180 || dscan_an gle2 <=10*pi/180

 distance=min_dist;
 scan_angle=angle_detect_obs;

 xobs=xsen + distance*cos(scan_angle);
 yobs=ysen + distance*sin(scan_angle);

 plot(xobs,yobs,'xr')

% hold on

 filename=['xobsR' num2str(robno) '. dat'];
 xobs_old=csvread(filename);
 filename=['yobsR' num2str(robno) '. dat'];
 yobs_old=csvread(filename);

 dobs=sqrt((xobs-xobs_old).^2+(yobs- yobs_old).^2);

 filename=['xobsR' num2str(robno) '. dat'];
 csvwrite(filename,xobs)
 filename=['yobsR' num2str(robno) '. dat'];
 csvwrite(filename,yobs)

 if dobs >= 2*(obs_size)

 if scan_angle<theta
 % Turn left

 h=sqrt((radsm+width).^2+(distan ce+obs_size).^2);
 gamma=scan_angle +
atan((radsm+width)./(distance+obs_size));
 dxc=h.*cos(gamma);
 dyc=h.*sin(gamma);

 xc=xsen+dxc;
 yc=ysen+dyc;
 sta=0;

 td=data(1,tR);
 xd=data(2,tR);
 yd=data(3,tR);
 thetad=data(4,tR)*pi/180;
 phid=data(5,tR)*pi/180;
 vd=data(6,tR);

avoidpath=avoid(t,x,y,theta,phi,vel,xc,yc,sta,td,xd ,yd,thetad,phid,vd
,ti,obs_size,length,width,map,phimax,robno);
 newpath=[data1(:,1:t), avoidpat h,
data1(:,tR+1:tfR)];
 csvwrite(['offlineR' num2str(ro bno)
'.dat'],newpath)

 else

 Appendix B

182

 % Turn right

 h=sqrt((radsm+width).^2+(distan ce+obs_size).^2);
 gamma=scan_angle -
atan((radsm+width)./(distance+obs_size));
 dxc=h.*cos(gamma);
 dyc=h.*sin(gamma);

 xc=xsen+dxc;
 yc=ysen+dyc;
 sta=0;

 td=data(1,tR);
 xd=data(2,tR);
 yd=data(3,tR);
 thetad=data(4,tR)*pi/180;
 phid=data(5,tR)*pi/180;
 vd=data(6,tR);

avoidpath=avoid(t,x,y,theta,phi,vel,xc,yc,sta,td,xd ,yd,thetad,phid,vd
,ti,obs_size,length,width,map,phimax,robno);
 newpath=[data1(:,1:t), avoidpat h,
data1(:,tR+1:tfR)];
 csvwrite(['offlineR' num2str(ro bno)
'.dat'],newpath)

 end
 end
 end
 end

 %%%%%% moving obstacles detection %%%%%%
 if num_of_movobs>0

 for k=1:num_of_movobs

 filename=['tV' num2str(k) '.dat'];
 tV=csvread(filename);

 if i>tV
 break;
 end

 movobsno=k;

 filename = ['movobs' num2str(movobsno) '.d at'];
 movobs_data = csvread(filename);

 x_movobs=movobs_data(2,i);
 y_movobs=movobs_data(3,i);
 theta_movobs=movobs_data(4,i);

 filename = ['xmovobs' num2str(movobsno) 'R ' num2str(robno)
'.dat'];
 xmovobs_old=csvread(filename);

 Appendix B

183

 filename = ['ymovobs' num2str(movobsno) 'R ' num2str(robno)
'.dat'];
 ymovobs_old=csvread(filename);

 xmovdir=round(xmovobs_old - x_movobs);
 ymovdir=round(ymovobs_old - y_movobs);
 robdir=yold-y;

 checkmovdata =
checkmov(movobsno,x_movobs,y_movobs,xsen,ysen,theta);
 distmov = checkmovdata(1,1);
 scanmov = checkmovdata(2,1);

 dobs=sqrt((x_movobs-xmovobs_old).^2+(y_movo bs-
ymovobs_old).^2);

 if distmov<15 && dobs>radmov

 if robdir<0

 if xmovdir<0 && y_movobs>y && scanm ov>=theta

 xmov_old=movobs_data(2,i-1);
 ymov_old=movobs_data(3,i-1);
 dobspred=2*(sqrt((x_movobs-
xmov_old).^2+(y_movobs-ymov_old).^2));
 xmovpredict=x_movobs+dobspred*c os(theta_movobs);
 ymovpredict=y_movobs+dobspred*s in(theta_movobs);

 xpred_old=actdata(2,i-2);
 ypred_old=actdata(3,i-2);
 drobpred=2*(sqrt((x-xpred_old). ^2+(y-
ypred_old).^2));
 xpredict=x+drobpred*cos(theta);
 ypredict=y+drobpred*sin(theta);

 lp=linspace(0,2*pi,100);
 xv=xpredict+5*cos(lp)';
 yv=ypredict+5*sin(lp)';
 xv=[xv;xv(1)];
 yv=[yv;yv(1)];
 [mp np]=size(xv);

 for jp=1:mp
 in =
inpolygon(xmovpredict,ymovpredict,xv,yv);
 end

% plot(xmovpredict,ymovpredict ,'xr',xv,yv,'.y')

 else if xmovdir>0 && y_movobs>y && scanmov<=theta

 xmov_old=movobs_data(2,i-1);
 ymov_old=movobs_data(3,i-1);
 dobspred=2*(sqrt((x_movobs-
xmov_old).^2+(y_movobs-ymov_old).^2));
 xmovpredict=x_movobs-dobspred*c os(theta_movobs);
 ymovpredict=y_movobs-dobspred*s in(theta_movobs);

 Appendix B

184

 xpred_old=actdata(2,i-2);
 ypred_old=actdata(3,i-2);
 drobpred=2*(sqrt((x-xpred_old). ^2+(y-
ypred_old).^2));
 xpredict=x+drobpred*cos(theta);
 ypredict=y+drobpred*sin(theta);

 lp=linspace(0,2*pi,100);
 xv=xpredict+5*cos(lp)';
 yv=ypredict+5*sin(lp)';
 xv=[xv;xv(1)];
 yv=[yv;yv(1)];
 [mp np]=size(xv);

 for jp=1:mp
 in =
inpolygon(xmovpredict,ymovpredict,xv,yv);
 end

% plot(xmovpredict,ymovpredict ,'xr',xv,yv,'.y')

 else
 in=0;
 end
 end

 %%%%%%%%% case 1 - rob from bottom & movob s from left
%%%%%%%%%%
 if xmovdir<0 && y_movobs>y && scanmov>= theta && in==1

% d_mov=sqrt((x_movobs-x).^2+(y_mov obs-y).^2)
 d_mov=abs(distmov/sin(theta));
 ycent=y_movobs;
 xcent=xsen+d_mov*cos(abs(theta));
% plot(xcent,ycent,'og')

 dm=sqrt((x_movobs-xcent).^2+(y_movo bs- ycent).^2);
 xc=xcent-dm/2; % movobs from left
 yc=y_movobs;
 sta=1;

% radmov=abs(xcent-x_movobs);
% xref=xcent; % movobs from left
% yref=ycent;

 td=data(1,tR);
 xd=data(2,tR);
 yd=data(3,tR);
 thetad=data(4,tR)*pi/180;
 phid=data(5,tR)*pi/180;
 vd=data(6,tR);

 filename = ['xmovobs' num2str(movob sno) 'R'
num2str(robno) '.dat'];
 csvwrite(filename,x_movobs)
 filename = ['ymovobs' num2str(movob sno) 'R'
num2str(robno) '.dat'];
 csvwrite(filename,y_movobs)

 Appendix B

185

avoidpath=avoid(t,x,y,theta,phi,vel,xc,yc,sta,td,xd ,yd,thetad,phid,vd
,ti,obs_size,length,width,map,phimax,robno);
 newpath=[data1(:,1:t), avoidpath, d ata1(:,tR+1:tfR)];
 csvwrite(['offlineR' num2str(robno) '.dat'],newpath)
 end

 %%%%%%%% case 2 - rob from bottom & mov obs from right
%%%%%%%
 if xmovdir>0 && y_movobs>y && scanmov<= theta && in==1

% d_mov=sqrt((x_movobs-x).^2+(y_mov obs-y).^2)
 d_mov=abs(distmov/sin(theta));
 ycent=y_movobs;
 xcent=xsen+d_mov*cos(abs(theta));
% plot(xcent,ycent,'og')

 dm=sqrt((x_movobs-xcent).^2+(y_movo bs- ycent).^2);
 xc=xcent+dm/2; % movobs from right
 yc=y_movobs;
 sta=1;

% radmov=abs(xcent-x_movobs);
% xref=xcent; % movobs from right
% yref=ycent;

 td=data(1,tR);
 xd=data(2,tR);
 yd=data(3,tR);
 thetad=data(4,tR)*pi/180;
 phid=data(5,tR)*pi/180;
 vd=data(6,tR);

 filename = ['xmovobs' num2str(movob sno) 'R'
num2str(robno) '.dat'];
 csvwrite(filename,x_movobs)
 filename = ['ymovobs' num2str(movob sno) 'R'
num2str(robno) '.dat'];
 csvwrite(filename,y_movobs)

avoidpath=avoid(t,x,y,theta,phi,vel,xc,yc,sta,td,xd ,yd,thetad,phid,vd
,ti,obs_size,length,width,map,phimax,robno);
 newpath=[data1(:,1:t), avoidpath, d ata1(:,tR+1:tfR)];
 csvwrite(['offlineR' num2str(robno) '.dat'],newpath)
 end

 if (ymovdir<0 && y_movobs>y) || (ymovdi r>0 && y_movobs>y)

 %%%% case 3 - rob from bottom & movobs fro m top or bottom
%%%%%
 scan_angle_mov=abs(theta-scanmov);

 if scan_angle_mov<=11*pi/180
 if scanmov<=theta
 % Turn left

 h=sqrt((2*movobs_size+width).^2 +(distmov).^2);

 Appendix B

186

 gamma=scanmov +
atan((2*movobs_size+2*width)./(distmov+movobs_size));
 dxc=h.*cos(gamma);
 dyc=h.*sin(gamma);

 xc=xsen+dxc;
 yc=ysen+dyc;
 sta=2;

 td=data(1,tR);
 xd=data(2,tR);
 yd=data(3,tR);
 thetad=data(4,tR)*pi/180;
 phid=data(5,tR)*pi/180;
 vd=data(6,tR);

 filename = ['xmovobs' num2str(m ovobsno) 'R'
num2str(robno) '.dat'];
 csvwrite(filename,x_movobs)
 filename = ['ymovobs' num2str(m ovobsno) 'R'
num2str(robno) '.dat'];
 csvwrite(filename,y_movobs)

avoidpath=avoid(t,x,y,theta,phi,vel,xc,yc,sta,td,xd ,yd,thetad,phid,vd
,ti,obs_size,length,width,map,phimax,robno);
 newpath=[data1(:,1:t), avoidpat h,
data1(:,tR+1:tfR)];
 csvwrite(['offlineR' num2str(ro bno)
'.dat'],newpath)

 else

 % Turn right

 h=sqrt((2*movobs_size+witdh).^2 +(distmov).^2);
 gamma=scanmov -
atan((2*movobs_size+2*width)./(distmov+movobs_size));
 dxc=h.*cos(gamma);
 dyc=h.*sin(gamma);

 xc=xsen+dxc;
 yc=ysen+dyc;
 sta=2;

 td=data(1,tR);
 xd=data(2,tR);
 yd=data(3,tR);
 thetad=data(4,tR)*pi/180;
 phid=data(5,tR)*pi/180;
 vd=data(6,tR);

 filename = ['xmovobs' num2str(m ovobsno) 'R'
num2str(robno) '.dat'];
 csvwrite(filename,xmovobs)
 filename = ['ymovobs' num2str(m ovobsno) 'R'
num2str(robno) '.dat'];
 csvwrite(filename,ymovobs)

 Appendix B

187

avoidpath=avoid(t,x,y,theta,phi,vel,xc,yc,sta,td,xd ,yd,thetad,phid,vd
,ti,obs_size,length,width,map,phimax,robno);
 newpath=[data1(:,1:t), avoidpat h,
data1(:,tR+1:tfR)];
 csvwrite(['offlineR' num2str(ro bno)
'.dat'],newpath)

 end
 end
 end
 end
 end
 end
 end
 %%%%%%%%% end of moving obstacle detection % %%%%%%%%%%%%

 end
 ht=text(5,100,'Time step: ');
 set(ht,'string',['Time step: ',num2str(t),' sec'],'Color',[0 0 0])
% ht=text(147,193,'Time: ');
% set(ht,'string',['Time: ',num2str(t), 'sec'],' Color',[0 0 0])

 % save figure
 set(gcf,'PaperPositionMode','auto');
 foldername='Figures';
 filename=['time' num2str(t) '.tif'];
 print(gcf,'-dtiff','-r0',[foldername,filesep,fil ename])
 foldername='Fig';
 filename=['time' num2str(t) '.fig'];
 saveas(gcf,[foldername,filesep,filename])

 pause(1)
 delete(ht)
end

	TITLE: Outdoor Navigation: Time-critical Motion Planning for Nonholonomic Mobile Robots
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	STATE OF ORIGINALITY
	PUBLICATIONS
	ACKNOWLEDGEMENTS

	1. INTRODUCTION
	2. LITERATURE REVIEW
	3. METHODOLOGY
	4. DEVELOPMENT OF TIME-CRITICAL MOTION PLANNING ALGORITHMS
	5. SIMULATION RESULTS AND DISCUSSIONS
	6. DEVELOPMENT OF A NONHOLONOMIC MOBILE ROBOT
	7. EXPERIMENTAL RESULTS AND DISCUSSIONS
	8. CONCLUSIONS AND FUTURE WORKS
	REFERENCE
	APPENDIX A
	APPENDIX B

